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Let γ(P m 2P n ) be the domination number of the Cartesian product of directed paths P m and P n for m, n ≥ 2. In [13] Liu and al. determined the value of γ(P m 2P n ) for arbitrary n and m ≤ 6. In this work we give the exact value of γ(P m 2P n ) for any m, n and exhibit minimum dominating sets.

Introduction and definitions

Let G = (V, E) be a finite directed graph (digraph for short) without loops or multiple arcs.

A vertex u dominates a vertex v if u = v or uv ∈ E. A set S ⊂ V is a dominating set of G if any vertex of G is dominated by at least a vertex of S. The domination number of G, denoted by γ(G) is the minimum cardinality of a dominating set. The set V is a dominating set thus γ(G) is finite. These definitions extend to digraphs the classical domination notion for undirected graphs.

The determination of domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem has connections with information theory. For example the domination number of Hypercubes is linked to error-correcting codes. Among the lot of related works ( [START_REF] Haynes | Fundamentals of Domination in Graphs[END_REF], [START_REF]Domination in Graphs: Advanced Topics[END_REF]) mention the special case of domination of Cartesian product of undirected paths or cycles ( [START_REF] Chang | The Domination numbers of the 5 × n and 6 × n grid graphs[END_REF] to [START_REF] Hartnell | On dominating the Cartesian product of a graph and K 2[END_REF], [START_REF] Jacobson | On the Domination number of products of graphs I[END_REF], [START_REF] Klavžar | Dominating Cartesian products of cycles[END_REF]).

For two digraphs,

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ), the Cartesian product G 1 2G 2 is the digraph with vertex set V 1 × V 2 and (x 1 , x 2 )(y 1 , y 2 ) ∈ E(G 1 2G 2 ) if and only if x 1 y 1 ∈ E 1 and x 2 = y 2 or x 2 y 2 ∈ E 2 and x 1 = y 1 . Note that G2H is isomorphic to H2G.
The domination number of Cartesian product of two directed cycles have been recently investigated ( [START_REF] Liu | The Domination number of Cartesian products of directed cycles[END_REF], [START_REF] Liu | On Domination number of Cartesian product of directed cycles[END_REF], [START_REF] Shaheen | Domination number of toroidal grid digraphs[END_REF], [START_REF] Mollard | On Domination of Cartesian product of directed cycles[END_REF]). Even more recently, Liu and al.([13]) began the study of the domination number of the Cartesian product of two directed paths P m and P n . They proved the following result

Theorem 1 Let n ≥ 2. Then • γ(P 2 2P n ) = n • γ(P 3 2P n ) = n + n 4 • γ(P 4 2P n ) = n + 2n 3 • γ(P 5 2P n ) = 2n + 1 • γ(P 6 2P n ) = 2n + n+2 3 .
In this paper we are able to give a complete solution of the problem. In Theorem 2 we determine the value of γ(P m 2P n ) for any m, n ≥ 2. When m grows, the cases approach appearing in the proof of Theorem 1 seems to be more and more complicated. We proceed by a different and elementary method, but will assume that Theorem 1 is already obtained (at least for m ≤ 5 and arbitrary n). In the next section we describe three dominating sets of P m 2P n corresponding to the different values of m modulo 3. In the last section we prove that these dominating sets are minimum and deduce our main result:

Theorem 2 Let n ≥ 2. Then • γ(P 3k 2P n ) = k(n + 1) + n-2 3 for k ≥ 2 and n = 3 • γ(P 3k+1 2P n ) = k(n + 1) + 2n-3 3 for k ≥ 1 and n = 3 • γ(P 3k+2 2P n ) = k(n + 1) + n for k ≥ 0 and n = 3 • γ(P 3 2P n ) = γ(P n 2P 3 ) = n + n 4 .
We will follow the notations used by Liu and al. and refer to their paper for a more complete description of the motivations. Let us recall some of these notations. We denote the vertices of a directed path P n by the integers {0, 1, . . . , n -1}.

For any i in {0, 1, . . . , n -1}, P i m is the subgraph of P m 2P n induced by the vertices {(k, i) / k ∈ {0, 1, . . . , m -1}}. Note that P i m is isomorphic to P m . Notice also that

P m 2P n is isomorphic to P n 2P m thus γ(P m 2P n ) = γ(P n 2P m ). A vertex (a, b) ∈ P b m can be dominated by (a, b), (a -1, b) ∈ P b m (if a ≥ 1), (a, b -1) ∈ P b-1 m (if b ≥ 1).

Three Dominating sets

We will first study P 3k 2P n for k ≥ 1 and n ≥ 2. Consider the following sets of vertices of P 3k .

• X = {0, 1, 3, 4, . . . , 3k -3, 3k -2} = {3i/i ∈ {0, 1, . . . k -1}} ∪ {3i + 1/i ∈ {0, 1, . . . k -1}} • Y = {2, 5, 8, . . . , 3k -1} = {3i + 2/i ∈ {0, 1, . . . k -1}} • I = {0, 3, 6, . . . , 3k -3} = {3i/i ∈ {0, 1, . . . k -1}} • J = {1, 4, 7, . . . , 3k -2} = {3i + 1/i ∈ {0, 1, . . . k -1}} • K = {0, 2, 5, 8 . . . , 3k -1} = {0} ∪ {3i + 2/i ∈ {0, 1, . . . k -1}}.
. Let D n (see Figure 1) be the set of vertices of P 3k 2P n consisting of the vertices

…. …. …. …. X Y I J 0 3i 3k-1 K I J …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. Figure 1: The dominating set D n • (a, 0) f or a ∈ X • (a, 1) f or a ∈ Y • (a, b) f or b ≡ 2 mod 3 (2 ≤ b < n) and a ∈ I • (a, b) f or b ≡ 0 mod 3 (3 ≤ b < n) and a ∈ J • (a, b) f or b ≡ 1 mod 3 (4 ≤ b < n) and a ∈ K. Lemma 3 For any k ≥ 1, n ≥ 2 the set D n is a dominating set of P 3k 2P n and |D n | = k(n + 1) + n-2 3 .
Proof : It is immediate to verify that

• All vertices of P 3k are dominated by the vertices of X

• The vertices of P 3k not dominated by some of Y are {0, 1, 4, . . . , 3k -2} ⊂ X

• The vertices of P 3k not dominated by some of I are {2, 5, . . . , 3k -1} = Y ⊂ K

• The vertices of P 3k not dominated by some of J are {0, 3, 6, . . . , 3k -3} ⊂ I

• The vertices of P 3k not dominated by some of K are {4, 7, . . . , 3k -2} ⊂ J.

Therefore any vertex of some P i 3k is dominated by a vertex in P i 3k ∩ D n or in

P i-1 3k ∩ D n (if i ≥ 1). Furthermore |X| = 2k, |Y | = |I| = |J| = k, and |K| = k + 1 thus |D n | = k(n + 1) + n-2 3 . 2 
Let us study now P 3k+1 2P n for k ≥ 1 and n ≥ 2. Consider the following sets of vertices of P 3k+1 .

• X = {0, 2, 4, 5, 7, 8, . . . , 3k -2, 3k - Let E n (see Figure 2) be the set of vertices of P 3k+1 2P n consisting of the vertices

1} = {0} ∪ {3i + 2/i ∈ {0, 1, . . . k -1}} ∪ {3i + 1/i ∈ {1, . . . k -1}} • I = {0, 3, 6, . . . , 3k} = {3i/i ∈ {0, 1, . . . k}} • J = {1, 4, 7, . . . , 3k -2} = {3i + 1/i ∈ {0, 1, . . . k -1}} • K = {0, 2, 5, 8, . . . , 3k -1} = {0} ∪ {3i + 2/i ∈ {0, 1, . . . k -1}}. . X 0 3i 3k I J K …. …. …. …. I J …. …. …. …. …. …. …. …. …. …. …. …. …. ….
• (a, 0) f or a ∈ X • (a, b) f or b ≡ 1 mod 3 (1 ≤ b < n) and a ∈ I • (a, b) f or b ≡ 2 mod 3 (2 ≤ b < n) and a ∈ J • (a, b) f or b ≡ 0 mod 3 (3 ≤ b < n) and a ∈ K. Lemma 4 For any k ≥ 1, n ≥ 2 the set E n is a dominating set of P 3k+1 2P n and |E n | = k(n + 1) + 2n-3 3
.

Proof : It is immediate to verify that

• All vertices of P 3k+1 are dominated by the vertices of X

• The vertices of P 3k+1 not dominated by some of I are {2, 5, . . . , 3k -1} ⊂ K ⊂ X

• The vertices of P 3k+1 not dominated by some of J are {0, 3, 6, . . . , 3k} = I

• The vertices of P 3k+1 not dominated by some of K are {4, 7, . . . , 3k -2} ⊂ J.

Therefore any vertex of some P i 3k+1 is dominated by a vertex in P i 3k+1 ∩ E n or in

P P i-1 3k+1 ∩ E n (if i ≥ 1). Furthermore |X| = 2k, |I| = |K| = k + 1, and |J| = k thus |E n | = k(n + 1) + 2n-3 3 . 2 
The last case will be P 3k+2 2P n for k ≥ 0 and n ≥ 2. Consider the following sets of vertices of P 3k+2 . Proof : It is immediate to verify that

• X = {0, 1, 3, 4, . . . , 3k, 3k +1} = {3i/i ∈ {0, 1, . . . k}}∪{3i+1/i ∈ {0, 1, . . . k}} • Y = {2, 5, 8, . . . , 3k -1} = {3i + 2/i ∈ {0, 1, . . . k -1}} • I = {0, 3, 6, . . . , 3k} = {3i/i ∈ {0, 1, . . . k}} • J = {1, 4, 7, . . . , 3k + 1} = {3i + 1/i ∈ {0, 1, . . . k}} • K = {0, 2, 5, 8 . . . , 3k -1} = {0} ∪ {3i + 2/i ∈ {0, 1, . . . k -1}}. . Y I J K …. …. …. …. X 0 3i 3k I J …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. ….
• All vertices of P 3k+2 are dominated by the vertices of X

• The vertices of P 3k+2 not dominated by some of Y are {0, 1, 4, . . . , 3k + 1} ⊂ X

• The vertices of P 3k+2 not dominated by some of I are {2, 5, . . . , 3k -1} = Y ⊂ K

• The vertices of P 3k+2 not dominated by some of J are {0, 3, . . . , 3k}=I

• The vertices of P 3k+2 not dominated by some of K are {4, 7, . . . , 3k + 1} ⊂ J.

Therefore any vertex of some P i 3k+2 is dominated by a vertex in

P i 3k+2 ∩ F n or in P i-1 3k+2 ∩F n (if i ≥ 1). Furthermore |X| = 2k +2, |Y | = k and |I| = |J| = |K| = k +1, thus |F n | = k(n + 1) + n. 2 
3 Optimality of the three sets

The structure of P m 2P n implies the following strong property.

Proposition 6 Let S be a dominating set of P m 2P n . For any n ≤ n consider

S n = i=0,..,n -1 P i m ∩ S.
Then S n is a dominating set of P m 2P n .

Notice that the three sets D n , E n , F n satisfy, for example, (D n ) n = D n therefore we can use the same notation without ambiguity. If S is a dominating set of P m 2P n , for any i in {0,1,. . . ,n-1} let

s i = |P i m ∩ S|.
We have thus |S| = n-1 i=0 s i .

Proposition 7 Let S be a dominating set of P m 2P n . Let i ∈ {1, 2, . . . , n -1} then

s i-1 + 2s i ≥ m.
Proof : Any vertex of P i m must be dominated by some vertex of P i m ∩ S or of

P i-1 m ∩ S.
A vertex in P i m ∩ S dominates at most two vertices of P i m and a vertex in

P i-1 m ∩ S dominates a unique vertex of P i m . 2 
Lemma 8 Let k ≥ 0 and n ≥ 2, n = 3, then γ(P 3k+2 2P n ) = k(n + 1) + n.

Proof : The case n = 2 is immediate by Theorem 1.

Let S be a dominating set of P 3k+2 2P n with n ≥ 4. By Proposition 7, s i ≤ k implies s i-1 + s i ≥ m -s i ≥ 2k + 2. Therefore for any i ∈ {2, . . . , n -1} we get s i ≥ k + 1 or s i-1 + s i ≥ 2(k + 1). Apply the following algorithm:

I := ∅; J := ∅; i := n -1; while i ≥ 5 do if s i ≥ k + 1 then I := I ∪ {i}; i := i -1 else J := J ∪ {i, i -1}; i := i -2
end if end while

If n = 4 or n = 5 the algorithm only sets I and J to ∅. In the general case, the algorithm stop when i = 3 or i = 4 and we get two disjoint sets I, J with {0, 1, . . . , n -1} = {0, 1, 2, 3} ∪ I ∪ J or {0, 1, . . . , n -1} = {0, 1, 2, 3, 4} ∪ I ∪ J. Furthermore i∈I s i ≥ |I|(k + 1) and i∈J s i ≥ |J|(k + 1). We have thus one of the two inequalities

|S| -(s 0 + s 1 + s 2 + s 3 ) ≥ (n -4)(k + 1) or |S| -(s 0 + s 1 + s 2 + s 3 + s 4 ) ≥ (n -5)(k + 1).
In the first case by Proposition 6 and Theorem 1 we get s

0 + s 1 + s 2 + s 3 ≥ γ(P 3k+2 2P 4 ) = γ(P 4 2P 3k+2 ) = 3k + 2 + 6k+4 3 = 5k + 4. Thus |S| ≥ (n + 1)k + n.
In the second case we get s 0 + s 1 + s 2 + s 3 + s Proof : Consider some fixed k ≥ 1. Notice first that by Theorem 1, γ(P 3k+1 2P 2 ) = 3k + 1, γ(P 3k+1 2P 4 ) = 5k + 2 and γ(P 3k+1 2P 5 ) = 6k + 3 thus the result is true for n ≤ 5. We knows, by Lemma 4, that for any n ≥ 2 the set E n is a dominating set of P 3k+1 2P n and |E n | = (n + 1)k + 2n-3 3 . We will prove now that E n is a minimum dominating set .

If this is not true consider n minimum, n ≥ 2, such that there exists a dominating set S of P 3k+1 2P n with |S| < |E n |. We knows that n ≥ 6.

For n ≤ n let S n = ∪ i=0,..,n -1 P i 3k+1 ∩ S and s n = |P n 3k+1 ∩ S|. Liu and al.([13]). An open problem would be to characterize all minimum dominating sets of P m 2P n .
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 2419 4 ≥ γ(P 5 2P 3k+2 ) = 6k + 5. Thus again |S| ≥ (n + 1)k + n. Therefore for any n ≥ 4 we have γ(P 3k+2 2P n ) ≥ k(n + 1) + n and the equality occurs by Lemma 5. Notice that, by Theorem 1, γ(P 3k+2 2P 3 ) = 3k + 2 + 3k+2 Lemma Let k ≥ 1 and n ≥ 2, n = 3, then γ(P 3k+1 2P n ) = k(n + 1) + 2n-3 3 .

Case 1 n

 1 = 3p, p ≥ 2. Notice first that |E n | -|E n-1 | = k and |E n | -|E n-2 | = 2k + 1. We have also by hypothesis |S| ≤ |E n | -1. By minimality of n, E n-1 is minimum thus |S n-1 | ≥ |E n-1 |. Therefore s n-1 = |S|-|S n-1 | ≤ |E n |-1-|E n-1 | = k-1. On the other hand, by Proposition 7, s n-2 +2s n-1 ≥ 3k+1 thus s n-2 +s n-1 ≥ (3k+1)-(k-1) = 2k+2. This implies |S n-2 | ≤ |S n | -2k -2 ≤ |E n | -2k -3 < |E n | -2k -1 = |E n-2 |, thusE n-2 is not minimum in contradiction with n minimum.
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 6 2P n are different than those proposed by

Case 2 n = 3p + 1, p ≥ 2.

In this case we have |E n | -|E n-1 | = k + 1 and |E n | -|E n-2 | = 2k + 1. We have also by hypothesis |S| ≤ |E n | -1. By minimality of n, E n-1 is minimum thus

In this case, |E n | -|E n-2 | = 2k + 2 and we cannot proceed like case 1 and case 2.

Hopefully, by Lemma 8,

Proof :

We obtain the conclusion since 3p + 2 = n + 1 and n-2

By Lemma 8, γ(P 3k 2P 3p+2 ) = γ(P 3p+2 2P 3k ) = p(3k + 1) + 3k = k(3p + 3) + p. We obtain again the conclusion since 3p + 3 = n + 1 and n-2 

On the other hand, by Lemma 9,

Notice that, by Theorem 1, γ(P 3k 2P 3 ) = 3k + 3k 4 = 4k for k ≥ 3.

Conclusions

Putting together Lemma 8, Lemma 9, Lemma 10 and the case m = 3 or n = 3, we obtain γ(P m 2P n ) for any m, n (Theorem 2).

As a conclusion, notice that the minimum dominating sets we build for P 5 2P n and