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Abstract 

 

In order to prevent bone fractures due to disease and ageing of the population, and to detect problems 

while still in their early stages, 3D bone micro architecture needs to be investigated and characterized. 

Here, we have developed various image processing and simulation techniques to investigate bone micro 

architecture and its mechanical stiffness. We have evaluated morphological, topological and mechanical 

bone features using artificial intelligence methods. A clinical study is carried out on 2 populations of 

arthritic and osteoporotic bone samples. The performances of Adaptive Neuro Fuzzy Inference System 

(ANFIS), Support Vector Machines (SVM) and Genetic Algorithm (GA) in classifying the different 

samples have been compared. Results show that the best separation success (100 %) is achieved with 

Genetic Algorithm.    

Keywords: Trabecular bone, Hybrid Skeleton Graph Analysis, SVM, GA, Anfis.  

 

Introduction 

 

The interest in three-dimensional image analysis is increasing in different fields of image 

processing. In biomedical systems many new tomographic modalities now model various 3-D 

images of organs and bones.  Applications of these methods range from biological studies [1] to 

character recognition [2]. Image analysis techniques are used in order to obtain morphological 

and topological characterizations.  



In the case of bone, the micro architecture plays an important role in osteoporosis, osteoarthritis 

and the prediction of fractures. To characterize such material, Cruz-Orive [3] and Levitz et al. [4] 

evaluated the mean size of materials by averaging 3D data. Odgaard et  al. [5] and Vogel [6] 

defined a connectivity index that can be computed by scanning data and storing topological 

information. In addition to these methods, the morphological structure can be accessed by 

determining parameters that can be computed directly from the 3D image without an underlying 

model assumption [7, 8]. This work led however to global methods based on physical models that 

cannot give precise information about the medium’s structure and its local properties. Nowadays, 

it is possible to study the object at a local scale and obtain information from each of the elements 

that compose the structure of the material [9]. A skeleton-based technique called Line Skeleton 

Graph Analysis (LSGA) [10] enables the bone micro architecture to be studied at a local scale, 

providing global information about the bone. This method preserves the topology of the medium 

but is not suitable for structures comprising different shapes such as trabecular bone, which is 

composed of rod-shaped and plate-shaped elements. In this case, all non-cylindrical shapes are 

better described by 2D-surfaces rather than by 1D-curves. 

 We have developed a new technique called Hybrid Skeleton Graph Analysis (HSGA) [11] 

to create structural models of disordered porous media. The method is based on [9], but takes into 

account the shape of the object, in order to improve the geometrical approximation of [9], since 

disordered porous media such as trabecular bone are not homogeneous but are composed of rod-

shaped and plate-shaped elements. Curve thinning and surface thinning are efficient respectively 

for one or the other, but not for both. Our early work for skeletonizing hybrid-shaped media 

focused on providing a tool for objects composed of rods and plates [10]. The HSGA method is 

based on a homotopic hybrid skeleton using curve and surface thinning techniques which 

preserve Betti-numbers [12]; the topology of the medium is thus perfectly preserved.  

 At the same time, the combination of skeletons and Finite Elements (FE) analysis to 

evaluate the stiffness of large-scale porous media has recently shown great potential [13, 14]. We 

have improved on a previously published beam Finite Element Analysis (FEA) in [13]. A full 

protocol [15, 16] has been developed for evaluating the stiffness of large scale porous media also 

based on the HSGA and using the advantage of both beam and shell Finite Elements to enable a 

fast and precise mechanical simulation.  



 The improvement of these techniques has enabled the determination of  various 

parameters  for quantifying the morphology and the stiffness of the bone micro architecture. 

These parameters have to be combined efficiently to study bone diseases. For this purpose, 

knowledge modeling is achieved using Artificial Intelligence (AI) approaches which are 

developed by human expertise [17-20].  These models are based on training and testing. The 

Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Machines (SVM) and Genetic 

Algorithm (GA) are the most successful tools for predicting input-output data set systems. 

 This work presents a study performed on 2 populations of trabecular bone samples with 

an a priori knowledge of fracture risk, 9 osteoarthritic (OA) samples and 9 osteoporotic (OP) 

samples. The different improved techniques have been processed on each of the 18 bone samples, 

producing features which are then used to quantify the microarchitectural bone quality. These 

parameters are used as entries for different artificial intelligence systems, namely: Adaptive 

Neuro-Fuzzy Inference System (ANFIS), Support Vector Machines (SVM) and Genetic 

Algorithm (GA). We also investigated whether the combination of these different techniques 

contributes to a better prediction of the nature (OA or OP) of each sample studied. 

 The paper is organized as follows: first, the different artificial intelligence systems used 

(ANFIS, SVM and GA) are presented. Then, the techniques used to compute the OA and OP data 

are presented. The results from the clinical study follow. A discussion concludes this work.  

 

Material and Methods 

 

This section presents the three artificial intelligence methods, Adaptive Neuro Fuzzy Inference 

System (ANFIS),  Support Vector Machines (SVM) and Genetic Algorithm (GA), as well as the 

image processing techniques, Hybrid Skeleton Graph Analysis (HSGA) and Finite Element 

Analysis (FEA) used to classify each sample of the two studied populations (OA and OP).  

 

1. Artificial Analysis 

Artificial Intelligence (AI) is the area of computer science which deals with machine help in 

finding solutions to complex problems in a more human-like fashion. This generally involves 

borrowing characteristics from human intelligence, and applying them as algorithms in a 

computer- friendly way. 
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1.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

 

ANFIS is a combination of ANN and Fuzzy Inference System (FIS) [18] which is used to 

determine the parameters of FIS. ANFIS implements a Takagi Sugeno Kang (TSK) [21] fuzzy 

inference system in which the conclusion of the fuzzy rule is constituted by a weighted linear 

combination of the crisp inputs.                               

 

1.1.1. Architecture of ANFIS 

 

ANFIS is a fuzzy Sugeno model implemented in the framework of adaptive systems to facilitate 

learning and adaptation [17]. Such a framework makes ANFIS modeling more systematic and 

less reliant on expert knowledge. To present the ANFIS architecture, two fuzzy if–then rules 

based on a first order Sugeno model are considered [17, 18, 21, 22].  

Rule 1: If (x is A1) and (y is B1) then 1 1 1 1f p q y r  
,             (1)    

Rule 2: If (x is A2) and (y is B2) then 2 2 2 2f p q y r  
.  (2)   

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi are the outputs within the fuzzy region 

specified by the fuzzy rule, and i i ip , q  and r
  are the design parameters that are determined 

during the training process.  

 

 

 

 

 

 

 

 

 

 

Figure 1. ANFIS architecture. 



The ANFIS architecture for the implementation of these two rules is shown in Figure 1, in which 

a circle indicates a fixed node, whereas a square indicates an adaptive node. In layer 1, all the 

nodes are adaptive nodes. The outputs of layer 1 are the fuzzy membership grade of the input, 

which are given by 

1

iO =
( )Ai x

,     i= 1, 2, or   (3)       

1

iO
i =  2( )B i y  ,     i= 3, 4,    (4)      

where ( )Ai x ,  2 ( )B i y  can adopt any fuzzy membership function. We will use the Gaussian 

membership function given by: 
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Where c represents the membership function’s (Mfs) center and  determined the Mfs width. ic  

and i  
are parameters to be learnt.  These are the premise parameters.  

In layer 2, the nodes are fixed. They are labeled with M, indicating that they behave as a simple 

multiplier. The outputs of this layer can be represented as 

2 ( ) ( ), 1,2
i ii i A BO w x y i   

  (6)      

which are the so-called firing strengths of the rules.   

In layer 3, the nodes are also fixed nodes. They are labeled with N, indicating that they 

play a normalization role to the firing strengths from the previous layer. The outputs of this layer 

can be represented as 

3

1 2

, 1,2i
ii

w
O w i

w w
  


    (7)       

These are the so-called normalized firing strengths.  

 In layer 4, the nodes are adaptive nodes. The output of each node in this layer is simply 

the product of the normalized firing strength and a first-order Sugeno model. Thus, the outputs of 

this layer are given by 

4 ( ), 1,2i ii i i i iO w f w p x q y r i    
  (8)      



 In layer 5, there is only one single fixed node labeled with S. This node performs the 

summation of all incoming signals. Hence, the overall output of the model is given by 

2
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   (9)      

 It can be observed that there are two adaptive layers in this ANFIS architecture, namely 

the first layer and the fourth layer. In the first layer, there are three modifiable 

parameters  , ,i i ia b c , which are related to the input membership functions. These parameters are 

the so-called premise parameters. 

 In the fourth layer, there are also three modifiable parameters , ,i i ip q r , pertaining to the 

first order Sugeno model. These parameters are called consequent parameters [22, 23].  

 

1.1.2. Hybrid Learning Algorithm of ANFIS 

 

The task of the learning algorithm for this architecture is to tune all the modifiable parameters, 

namely  , ,i i ia b c and  , ,i i ip q r , in order to make the ANFIS output match with the training data. 

When the premise parameters , ,i i ia b c  of the membership function are fixed, the output of the 

ANFIS model can be written as: 

1 2
1 2

1 2 1 2

w w
f f f

w w w w
 

 
.      (10)     

1 21 2.f w f w f 
        (11)     

1 21 1 1 2 2 2( ) ( ).f w p x q y r w p x q y r     
     (12)    

1 2 2 21 1 1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )f w x p w y q w r w x p w y q w r     
. (13)   

 

Where 1 1 1 2 2 2, , , , ,p q r p q r  are linear consequent parameters. When the premise parameters are not 

fixed, the search space becomes larger and the convergence of the training becomes slower. A 

hybrid algorithm combining the least squares method and the gradient descent method is adopted 

to solve this problem [24]. The hybrid algorithm is composed of forward pass and backward pass. 

The least squares method (forward pass) is used to optimize the consequent parameters with the 



fixed premise parameters. [25, 26]. Once the optimal consequent parameters have been found, the 

backward pass starts immediately. The gradient descent method (backward pass) is used to 

optimize the premise parameters corresponding to the fuzzy sets in the input domain. The output 

of the ANFIS is calculated by employing the consequent parameters found in the forward pass. 

The output error is used to adapt the premise parameters by means of a standard back propagation 

algorithm. It has been proven that this hybrid algorithm is highly efficient in training the ANFIS 

[26, 27]. 

 

1.2. Support Vector Machines (SVM) 

 

Support Vector Machine is an effective technique for data classification. The SVM proposed by 

Vapnik [19] has been extensively studied for classification, regression and density estimation.  A 

classification task usually involves training and testing data which consist of some data instances. 

Each sample in the training set contains one “target value” (class labels) and several “attributes” 

(features). The goal of SVM is to produce a model which predicts the target value of data 

instances in the testing set where only the attributes are known. Figure 2 illustrates the map of 

input – output SVM space. 

 

 

Figure 2. Mapping the Input and Output space.  

 

 In Figure 3, there are many possible linear classifiers that can separate the data, but there 

is only one that maximizes the margin (maximizes the distance between the nearest data point of 

each class). This linear classifier is termed the optimal separating hyper plane.  

 

 



 

Figure 3. General separation of optimal hyper plane. 

 

 Based on the principle of structural risk minimization, the SVM upper bounds the 

expected risk (mean error rate measured on the test set) using the sum of the empirical risk (mean 

error rate measured on the training set) and a bound, called the Vapnik–Chervonenkis (VC) 

confidence. In order to construct an optimal decision hypothesis, the SVM holds the empirical 

risk fixed and minimizes the VC confidence by limiting the flexibility of the set of candidate 

functions searched by the machine (classifier). The minimum of this upper bound is reached by 

maximizing the margin between the decision hypothesis and the classes as defined using support 

vectors, thereby enabling the improvement of the classifier generalization ability.   

 Support vector machines (SVMs) are a set of related supervised learning methods used for 

classification and regression. They belong to a family of generalized linear classifiers. A special 

property of SVMs is that they simultaneously minimize the empirical classification error and 

maximize the geometric margin; hence they are also known as maximum margin classifiers. 

Two-dimensional space that separates two classes of data shows a hyper plane is depicted in 

figure 4.  

 



 

Figure 4. Linear classifier and margins.  

 

wT xi + b ≥ 1   ,   yi= 1         (14) 

wT xi + b ≤ -1   , yi= -1 

The points on the planes H1 and H2 are the support vectors. A linear classifier is defined by a 

hyper plane’s normal vector w and an offset b. The decision boundary is, wT xi +  b = 0 . Each of 

the two half spaces defined by this hyper plane corresponds to one class,  yi= sgn (wT xi +  b)  The 

margin of a linear classifier is the minimal distance of any training point to the hyper plane.  

Viewing the input data as two sets of vectors in an n-dimensional space, an SVM will 

construct a separating hyper plane in that space, which maximizes the "margin" between the two 

data sets. To calculate the margin, we construct two parallel hyper planes, one on each side of the 

separating one, which are "pushed up against" the two data sets. Intuitively, a good separation is 

achieved by the hyper plane that has the largest distance from the neighboring data points of both 

classes. It is expected that the larger the margin or distance between these parallel hyper planes, 

the better the generalization error of the classifier will be.  

Let    , , 1,2,..... , 1,1i i ix y i k y    and n

ix IR  be the training samples where the training 

vector. ix  and iy  are corresponding target value. On input pattern x , the decision function of  

binary classifier is; 

1
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where k is the number of learning patterns, 
iy  is the target value of learning pattern 

ix , b is a 

bias, and ( , )iK x x  is a kernel function which high-dimensional feature space. 

 The idea of the kernel function is to enable operations to be performed in the input space 

rather than the potentially high dimensional feature space. Hence the inner product does not need 

to be evaluated in the feature space. This provides a way of addressing the problem of 

dimensionality. However, the computation is still critically dependent upon the number of 

training patterns and providing a good data distribution for a high dimensional problem will 

generally require a large training set.  This theory is based upon Reproducing Kernel Hilbert 

Spaces (RKHS) [28-30]. An inner product in feature space has an equivalent kernel in input 

space, ( , ') ( ), ( ')K x x x x                                        (16) 

provided certain conditions hold. If K is a symmetric positive definite function, which satisfies 

Mercer’s Conditions,  

( , ') ( ), ( '),m m m

m

K x x a x x


          0ma          (17) 

( , ') ( ) ( ') ' 0,K x x g x g x dxdx           2 ,g L         (18) 

 

then the kernel represents a legitimate inner product in feature space. Valid functions that satisfy 

Mercer’s conditions are now given, which unless stated are valid for all real x and x’.  A 

polynomial mapping is a popular method for non- linear modeling as, 

Polynomial (homogeneous): ( , ') ( . ')dk x x x x       (19) 

Polynomial (inhomogeneous): ( , ') ( . ' 1)dk x x x x     (20) 

Radial basis functions have received significant attention, most commonly with a Gaussian  form:  
 

2

2

'
( , ') exp( )

2

x x
k x x




               (21) 

 

 

Classical techniques utilizing radial basis functions employ some method of determining a subset 

of centers. Typically a method of clustering is first employed to select a subset of centers. An 



attractive feature of the SVM is that this selection is implicit, with each support vector 

contributing one local Gaussian functions, centered at that data point.  

 

1.3. Genetic Algorithm (GA) 

 

This method was inspired by work first reported by Siedlecki and Sklansky [20]. The genetic 

algorithm is a method for solving both constrained and unconstrained optimization problems that 

is based on natural selection, the process that drives biological evolution. In recent years, the 

genetic algorithms are used in many medical applications [31]. 

The genetic algorithm repeatedly modifies a population of individual solutions. At each 

step, the genetic algorithm selects individuals at random from the current population to be parents 

and uses them to produce the children for the next generation. Over successive generations, the 

population "evolves" toward an optimal solution. Genetic algorithms can be applied to solve a 

variety of optimization problems that are not well suited for standard optimization algorithms, 

including problems in which the objective function is discontinuous, non differentiable, 

stochastic, or highly nonlinear.  

 The genetic algorithm uses three main types of rules at each step to create the next 

generation from the current population. Firstly, selection rules select the individuals, called 

parents that contribute to the population at the next generation. Secondly, crossover rules 

combine two parents to form children for the next generation. Finally, mutation rules apply 

random changes to individual parents to form children. GA is designed to simulate the 

evolutionary processes that occur in nature [32, 33].  

 The basic idea is derived from the Darwinian theory of survival of the fittest.  Three 

fundamental mechanisms drive the evolutionary process: selection, crossover and mutation 

within chromosomes. As in nature, each mechanism occurs with a certain probability, allowing 

for some randomness. Selection occurs on the current population by choosing the most-fit 

individuals to reproduce. Reproduction, then, can result in the crossover and/or mutation of 

parent genes to form new solutions. The ratio of heuristic and stochastic decisions, at best, creates 

a natural balance between survival and evolution.  

  For each generation of the GA, individual solutions are evaluated using a fitness function.   

The evaluation method is a crucial component of the selection process since offspring for the next 



generation are determined by the fitness values of the present population.   Figure 5 provides a 

simple diagram of the iterative nature of genetic algorithms.  The generational process ends when 

the user-defined goal is reached.  In most cases, the number of generations is a constant and is set 

by the user [34].  

 

Figure 5. Flow diagram depicting the evolutionary process of genetic algorithm.  

 

The algorithm is; 

1. Population is randomly initialized 

2. Fitness of population is determined. 

3. Repeating… 

a) Select parents from population. 

b) Perform crossover on parents creating population.  
c) Perform mutation of population. 
d) Determine fitness of population  

4. until best separately is good enough.  

 

Figure 6. General separation of two classes by GA.  



A classification problem deals with associating a given input pattern with one of the distinct 

classes. Patterns are specified by a number or some measurements so it is natural to think of them 

as d-dimensional vectors, where d is the number of different features. This representation gives 

rise to a concept of feature space. The classification problem determines which of the regions a 

given pattern falls into. If classes do not overlap they are said to be separable and, in principle, 

one can design a decision rule which will successfully classify any input pattern. A decision rule 

determines a decision boundary which partitions the feature space into regions associated with 

each class. It represents the best solution to the classification problem.  Figure 6 illustrates a 2-

dimensional feature space with two classes occupying regions of the space. This method carries 

out feature extraction and classifier design simultaneously, through genetic learning and 

evolution as shown in figure 7. 

 

 

 

 

 

 

Figure 7. Feature extractor and classifier with feedback learning system. 

 The aim is to design a decision rule which is easy to compute and yields the smallest 

possible probability of misclassification of input patterns from the feature space.  

2. Image Processing and Mechanical Assessment 

 The next section details the techniques developed to investigate bone micro architecture 

and its mechanical stiffness.  

2.1. Hybrid Skeleton Graph Analysis (HSGA) 

 The Hybrid Skeleton Graph Analysis (HSGA) [11] model is a high- level representation of 

a hybrid shaped porous medium composed of rods and plates such as trabecular bone. The 

morphology and topology of disordered porous media were first investigated using global 

methods based on physical models that cannot give complete information about the trabeculae's  

Genetic Learning 

and Evolution 

Classifier Feature Extractor 



structure and its local properties. In 2000 a new method called Line Skeleton Graph Analysis 

(LSGA) [10] was introduced for studying porous media using a skeleton-based technique. 

However, as it uses a curve skeleton, the LSGA has its drawbacks since all non-cylindrical 

shapes are better described by 2D-surfaces rather than by 1D-curves. 

 

a) Hybrid skeleton 

The HSGA [11] relies on a new hybrid skeletonization process which is computed by processing 

curve or surface thinning, depending on the local shape of the object. To switch between the 2 

skeleton variants, the HSGA improves a recent algorithm [/***compléter bonnassie] which 

classifies the voxels of an object according to their topological predisposition to belong to a plate 

or to a rod zone [36]. Then, surface and curve thinning algorithms are applied depending on 

whether each primitive belongs to the set of rods or plates. The proposed hybrid thinning 

algorithm preserves connectivity which is an essential feature when characterizing porous media 

such as trabecular bone. Figure 8(a) and figure 8(b) show respectively an extracted portion of a 

trabecular bone sample and its hybrid skeleton.  

 

 b) Classification 

Once the hybrid skeleton (figure 8(a)) has been computed, a classification step is applied to label 

each voxel of the skeleton according to its structural role. The classification consists in affecting 

a class identifier to each voxel of the skeleton according to its structural role. We define 4 classes 

of voxels: “rod”, “line-end”, “plate” and “node”. As in [10], 2 voxels of the solid phase are 

neighbors if they are 26-connex (i.e. they share at least one corner). Similarly, voxels of the pore 

phase are neighbors if they are 6-connex (i.e. they share at least a face).  

The voxel classification is based on a 3-step process: 

1 Step 1: Initialization 

 All voxels are set to “plate”. 

2 Step 2: Determination of rod-shaped 1D-curves 

 A voxel is marked as “rod” if it has only 2 solid neighbors that are not neighbors 

themselves. A voxel is marked as “line-end” if it has only 1 neighbor. 

3 Step 3: Determination of interfaces between elements 

 Any voxel is set to node if: 



 - It has more than 2 “rod” or “line-end” neighbors 

 - It is a “plate” and has a “rod” or “line-end” neighbor 

 

Figure 8(c) shows the result of the classification step. Each voxel of the skeleton has been 

marked as belonging to a “rod”, “line-end”, “plate” or “node” class.  

 

c) Individualization 

After classification, the role of each voxel in the skeleton can be determined. However, the plates 

and rods of the structure cannot be processed one by one, since they have not been extracted and 

individualized. In each class, the structure elements have to be marked separately. To do so, all 

the information associated to one plate or rod must be collected. This is the object of the 

individualization process which processes recursively all the voxels of the structure and 

determines the interfaces of each element of the object. The elements individualization algorithm 

is implemented as a 3-step loop: 

 

4 Step 1: Finding a solid phase element 

 An initial voxel (the seed) is chosen in the classified skeleton. It can be of type 

“plate” for a plate element or “rod” for a rod element.  

5 Step 2: Spreading the information 

 The seed is recursively spread through the skeleton voxels until the element 

boundaries are found. Boundary voxels can be of type “node” or “line-end”. 

6 Step 3: Registering the new element 

 Once an element has been entirely defined, its voxels and interfaces are registered in 

the model. 

this information is registered in the HSGA model. Figure 8(c) illustrates how different elements 

of the structure are individualized.  

 

d) Segmentation 

The classified and individualized skeleton supports a standalone use as it already contains 

information about the medium. The analysis can be improved however by processing 

segmentation of the original object. For this purpose, we implement a 3D region-growth iterative 



process. It takes the skeleton voxels of each element as a seed and iteratively merges neighbors 

from the original volume. As a result, each solid voxel of the object is finally associated to an 

element of the HSGA model (plate or rod). Figure 8(d) illustrates this segmentation. All the 

voxels of the original object have been referenced in the model, and the global shape is 

unchanged. It can be seen that these voxels are associated to different plate or rod elements 

(shown by different colors), according to the natural region growth to which they belong.  

 

    

 (a)   (b)   (c)   (d) 

Figure 8. Illustration of the HSGA model and its different computing steps on a trabecular bone 

sample. Original trabecular bone (a), hybrid skeleton (b), classified hybrid skeleton (c), final 

HSGA segmented model (d). In (b) and (c), the skeleton is stacked over the original object.  

  

 Once the HSGA model has been completed, a template of the trabecular network is 

obtained. Each vertex and branch is localized, enabling the extraction of each trabecula from the 

network. The HSGA model contains morphological, topological and volumetric information and 

many parameters can be measured which are discussed in the clinical study. In the next section, 

The HSGA is used as a basis for the generation of finite element models.  

 

2.2. Mechanical Assessment 

 

The reference for Finite Elements (FE) analysis of discrete samples is unquestionably voxel-to-

element conversion as discussed in many articles [37, 38]. However, in the case of skeleton-based 

models, other types of elements can be used to simplify large-scale problems and prevent time 

resource consumption. In this section, we explain our modeling choices, relative to the 

compromise between simplification and loss of accuracy in the simulation. First, the method used 



to convert rod shapes to beam chains is explained. Then the triangulation technique for 

converting plate shapes to shell elements is described.  

 

a) Rods to beam elements chains conversion 

The FE that matches the geometry of a straight rod is the beam element. Its geometry is described 

as a 1D segment, which is assigned a circular cross section. This technique was first investigated 

in [13] to assess the stiffness of trabecular bone. However, results show that modeling the bone 

by a simple rod network is not sufficient to obtain an accurate assessment of stiffness, due to 

geometrical lack of accuracy. Lenthe et al. [14] explored this field of beam-modeling rod shapes 

in porous media, but did not resolve the shape accuracy issues.  

 In order to convert a rod item to FE, we introduced the “beam chains” concept [15]. Based 

on a feature extraction technique used in the field of 3D animation [39], the beam chain 

introduces evenly set intermediate nodes on the curve skeleton as seen in figure 9. This process is 

called “splitting” as it breaks the curve into small segments that better match the curvature of the 

rod item. Finally, each split element (i.e. each effective beam FE) is assigned a section according 

to the local thickness values recorded in the HSGA model, as illustrated in figure 9.  

   

(a)    (b)    (c) 

Figure 9. Illustration of the rods to beam elements chains conversion: voxels of the 1D path 

extracted from its curve skeleton with intermediate nodes (a), simple cylinder model assumption 

using the rod’s volume and skeleton length to compute its section as S = V / l (b), and beam chain 

modeling of the item using local thicknesses (c) 

 

b) Plates to shell elements conversion 

Plate zones are badly described in the case of beam-only models [15, 36], which lead to a non-

negligible bias for morphological results [13]. It is suspected that this lack of geometrical 



accuracy also alters mechanical results. In fact, modeling plates is much more challenging than 

modeling rods, since research in this area is scanty. Recently, Lenthe et al. [14] proposed 

converting a plate into a set of beams instead of a single beam. Ye t, the efficiency of this 

conversion is questionable since the notion of beam set is not geometrically obvious, and the 

beam sections are model-dependent. We present here an original approach that combines the 

power of a new triangulation method and a better choice of FE type to improve plate modeling. 

The FE used to describe planar shapes is the shell element. It is defined as a 2D medial surface 

geometry (either triangle or quad strips for example), on which each element is assigned a 

thickness value. The challenge in this case was to be able to transform the 26-connected plate 

voxels sets into a list of simple 2D primitives such as triangles or quads. Meshing iso-surfaces 

has been widely explored in computer graphics since the early 80s, leading to a great range of 

techniques: surface fitting, surface tracking (also known as continuation methods) and spatial 

sampling. However, the case of crossing and stacking manifold surfaces from disordered data is 

still difficult to handle with criteria like Delaunay tracking, and none of these techniques suited 

our needs. We chose therefore to draw on a well-known spatial sampling method: Marching 

Cubes (MC) [40], which subdivides space into cells and searches those that intersect the implicit 

surface. Our algorithm, called Surface Marching Cubes (SMC), computes the full- resolution 

triangulation of any 26-connected surface by following the MC principle while using a new set of 

neighborhood patterns. All the triangles linking the voxels of the surface are generated. Figure 10 

presents the result of the triangulation of a simple 26-connex surface set. Finally, each shell 

element (i.e. each triangle) is assigned a section according to the local thickness value in the 

thickness map, as was done for the beam elements in the case of rod shapes. 

  

(a)    (b) 



Figure 10. Illustration of the plates to shell elements conversion: 26-connex voxels of the 2D 

surface extracted from its surface skeleton (a), and example of a shell elements triangulation 

using Surface Marching Cubes (b). 

 

 The HSGA is used as a basis for the generation of FE models. Thickness map matching 

[41] is processed to improve the geometrical accuracy of all the FE models generated, using local 

cross-section values. 

 All the FE models were imported into the commercial software “Abaqus”, which was 

used to estimate their apparent Young’s Modulus. As the simulation required material definition, 

we assigned the entire model the same behavior, with a bone tissue characterized by an arbitrary 

Young’s modulus of 15 GPa and a Poisson’s coefficient of 0.3. These values are close to those  

found in the literature [14, 42]. In this kind of comparative study, the material’s behavior does not 

really matter since the measured reaction forces are compared relatively. Once defined, each 

model was tested in compression in the 3 space directions (x, y and z). Boundary conditions on 

the cube’s faces were set to zero for translations perpendicular to the faces and their 

complementary rotations. Complementary translations were also blocked for the 2 faces 

perpendicular to the compression axis. Then, a displacement value Δl was applied on the 

compression direction’s front face. A small displacement of 2% of the cube’s size (i.e. 0.0913 

mm) avoided non- linearity issues. The apparent Young’s modulus (Eapp) of the model was then 

computed [14] as: 

2  ( /  ) /( / )Eapp RF l l l       (22) 

where ΣRF represents the measured sum of the Reaction Forces (RF) on each node of the 

compression face, and l is the size of the cube’s side.  

 

Results  

 

The HSGA is an efficient tool for the analysis of porous media. This section presents its 

usefulness to describe trabecular bone samples from a clinical study. For this purpose, the 

medical staff at the hospital of Orleans (France) provided us with 2 populations of 9 sa mples 

each, extracted from post-mortem femoral head and acquired using a Sky Scan micro-scanner 



with a high-resolution µ-CT (12 µm). The first 9 samples came from OsteoArthritic (OA) 

patients, whose bone structure is known to be hypertrophied, increasing the bone density. The 

other 9 samples were extracted from OsteoPorotic (OP) patients characterized by the 

deterioration of bone micro architecture which leads to bone fragility and fracture risk. As the 

characteristics of the 2 populations are previously known, they can be used to verify the 

separating power of any feature that is said to reflect the bone micro architecture alterations. The 

numerical samples are 4003 isotropic voxels 8-bit grey level volumes. They were pre-processed 

as follows: after applying a median filter, they were binarized at the local minimum threshold 

between the 2 modes of their histogram. The Hoshen-Kopelman [43] clustering algorithm was 

then used to remove non-connected solid voxel sets, as there can be no isolated material in the 

bone sample. Figure 11 shows 2 extracts from an OA and an OP sample. It can be seen that there 

is more solid material in the OA sample.  

 

 

  

(OA)     (OP) 

Figure 11. Two 643 voxels extracts from Osteoarthritis (OA) and Osteoporotic (OP) samples to 

illustrate the micro architectural differences in the two trabecular bones. The solid phase (bone) is 

illustrated in black while the pore phase is in white.  

 

 Using the Hybrid Skeleton Graph Analysis, topological, morphological and mechanical 

features can be measured as described below. 

 

a) Topological parameters 

As the HSGA conserves the connectivity of the studied media, it is possible to measure 

topological parameters such as: Connectivity (Beta1), Number of cavities of the solid phase 

(Beta2), Connectivity Density (Conn.D, mm-3). 



 

b) Morphological parameters 

From a morphological point of view, the HSGA enables the following non exhaustive list of 

parameters to be measured: Bone Mineral Density (BMD, defined as Bone Volume over Total 

Volume, BV/TV), Bone Surface over Total Volume (BS/TV, mm-1), Bone Surface over Bone 

Volume (BS/BV, mm-1), Rod Volume (Rod.V, mm3), Rod Proportion (Rod.Prop, % ), Plate 

Volume (Plate.V, mm3), Plate Proportion (Plate.Prop, %), Element Number (El.N defined as 

Ro.N plus Pl.N), Plate Number (Pl.N), Rod Number (Ro.N), Rod Length (Ro.L, mm), Rod 

Volume (Ro.V, mm3), Rod Section (Ro.S, mm2), Rod Thickness (Ro.Th, mm), Plate Surface 

(Pl.S, mm2), Plate Volume (Pl.V, mm3), Plate Thickness (Pl.Th, mm). 

 

c) Mechanical parameters 

Finally, associating the HSGA model to Finite Element Analysis allows measurement of new 

features such as: Mesh Shell Number (M.Sh.N), Mesh Node Number (M.No.N), Mesh Beam 

Number (M.Be.N), and Young’s Modulus (EApp(x, y, z)) in the 3 Space directions (x,x and z).  

  

Table 1 gives all the input parameters with minimum, maximum, mean and standard deviation 

values for each of the 27 parameters described above. Figure 12 shows all the input parameters’ 

distribution versus one output parameter value.  



Table 1:  Input parameters obtained from HSGA and FE Analysis.  

    Parameters Minimum Maximum Mean StdDev 

 

1 Beta1 259 1650 795,111 336,375 

2 Beta2 3 41 20,33 12,654 

3 Conn.D -14,692 -2,294 -6,962 2,971 

 

4 BV/TV 0,058 0,321 0,209 0,067 

5 MC.BS/TV 1,418 3,946 3,194 0,634 

6 MC.BS/BV 11,326 24,325 16,16 3,28 

7 Rod.V 3,469 13,939 8,791 2,578 

8 Rod.Prop 0,193 0,881 0,405 0,147 

9 Plate.V 0,773 27,282 14,492 6,097 

10 Plate.Prop 0,119 0,807 0,595 0,147 

11 Shape.Ratio 0,24 7,379 1,012 1,606 

12 El.N 604 3414 1,868,611 822,669 

13 Ro.N 445 2438 1,448,778 589,738 

14 Pl.N 37 976 419,833 253,171 

15 Ro.L 0,174 0,444 0,245 0,065 

16 Ro.V 0,002 0,009 0,004 0,002 

17 Ro.S 0,017 0,073 0,039 0,016 

18 Ro.Th 0,149 0,305 0,218 0,044 

19 Pl.S 0,069 0,616 0,243 0,132 

20 Pl.V 0,022 0,101 0,05 0,019 

21 Pl.Th 0,163 0,361 0,266 0,054 

 

22 Mesh.Sh.N 15376 338683 211581,39 74,493,854 

23 Mesh.No.N 10292 186793 117405,94 40,368,399 

24 Mesh.Be.N 791 3549 2,253,722 650,924 

25 Mec.Eapp.X 3,405 265,664 72,669 60,356 

26 Mec.Eapp.Y 4,856 358,696 99,122 97,839 

27 Mec.Eapp.Z 11,126 164,913 76,068 43,687 



 

a) 

 
b) 

Figure 12. Input and output parameters. a) Distribution of 27 Input parameters versus 1 Output 

Parameter, b) One output Parameter of two classes (OA, OP).  



Figure 12 shows that none of the computed 27 parameters is able to distinguish significantly 

between the 2 populations studied.  This study involves 18 samples with 27 input parameters and 

1 output parameter. 12 samples are used for prediction and 6 for the test to be classified as OA or 

OP with Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machines (SVM) 

and Genetic Algorithm (GA).  Firstly we used ANFIS (Figure 13).  

 

   

Figure13. Architecture of our ANFIS model: 27 inputs and 1 output with 4 rules.  

 

In ANFIS model, Gaussian Membership Function and 5 rules were used. Therefore, 18 

samples are not enough for accurate prediction with ANFIS. We could not obtain satisfactory 

results and it is shown in figure 14. 18 samples are not enough for accurate prediction with 

ANFIS.   We could not obtain satisfactory results using ANFIS, as shown in figure 14.  

 

 



 

  

Figure 14.  Prediction after training, “o” is the actual value and “*” is the predicted value.  

 

We applied the same real data group for SVM with Linear kernel function. For linear kernel C=1, 

Epsilon = e-12 and tolerance parameter = 0.100 are chosen. For Genetic Algorithm; population 

size is 50, crossover rate is 0.9 and mutation rate is 0.07. 

 
Classification of OA and OP using Genetic Algorithm and SVM Algorithm are simulated for 

various training- test ratios (%) of all data set such as 50-50 and 66.6-33.3.  In order to obtain 

better network generalization, 4-fold cross validations are also used.  Table 2 lists confusion 

matrix and obtained classification success rate.   

 

Table 2. Confusion Matrix and results of simulated methods. 

Methods 
Evaluate on 

 9 training and 9 testing data 

  

4-fold cross-validation 

  

Evaluate on  

12 training and 6 testing data 

SVM 

OA OP Success Rate=100% OA OP 
Success 

Rate=88.88% 
OA OP 

Success 

Rate=83.33% 

4 0 OA 8 1 OA 3 0 OA 

0 5 OP 1 8 OP 1 2 OP 

GA 

OA OP Success Rate=100% OA OP 
Success 

Rate=94.44% 
OA OP 

Success 
Rate=100% 

4 0 OA 9 0 OA 3 0 OA 

0 5 OP 1 8 OP 0 3 OP 

 

 

 



Discussion 

This paper presents an original association of image processing and artificial intelligence 

methods for a better classification of two studied populations composed of 9 osteoarthritis and 9 

osteoporosis samples denoted OA and OP respectively.  

 Concerning image processing, we have presented a precise assessment technique for the 

3D characterization of a complex porous medium such as trabecular bone. Hybrid Skeleton 

Graph Analysis (HSGA) is a technique which generates structural models of the object. It 

consists in an efficient combination of curve and surface thinning techniques and considers the 

local shape of each element that composes the structure of the medium. HSGA can classify each 

element of the structure as rod- like or plate- like without ignoring the intersections and the 

termini. Features extracted from the HSGA contain significant topological and morphological 

information. The HSGA is used to extract mechanical features thanks to a finite element analysis. 

Twenty-seven features are processed on each of the 18 bone samples.  A comparative 

discriminate analysis using artificial intelligence is applied to identify each of the samples as OA 

or OP. 

 For the first test, Adaptive Neuro-Fuzzy Inference System (ANFIS) was used but its 

success in identifying each of the samples was poor due to lack of samples and many nodes 

(Figure 14). We then applied Support Vector Machines (SVM) with Linear Polynomial Kernel 

and obtained a high degree of success. Finally, we used Genetic Algorithm (GA) and obtained 

correct predictions and 100 % success (Table 2). 

 The results presented in this paper are consistent with our expectations, since geometrical 

improvement in the models leads to better and more precise characterization of the structure. The 

long-term aim of our work is to develop a biomechanical simulation protocol that could be used 

to virtually characterize the stiffness of trabecular bone samples [16]. This will contribute 

significantly to detecting bone fragilities simply by acquiring 3D images, for example with a 

high-resolution in-vivo CT and simulating mechanical compression using fast and precise FE 

models. Associating different techniques with artificial intelligence could be used by physicians 

to complete their diagnosis efficiently. The drawback of this study is the small number o f 

samples in the populations. Further work is to be carried out on larger sets of trabecular bone 

samples. 

 



References 
 

 

1.  Thiel, E.,  and Montanvert, A., Shape splitting from  medial lines using the 3-4 chamfer   
     distance, In C. Arcelli et al., editors, Visual Form Analysis and Recognition, 537-546.   

     Plenum, New York, 1992. 
 
2.  Gonzalez, R.C., and Woods, R.E., Digital Image Processing. Addison Wesley  publisher    

     50803, 1992. 
 

3.  Cruz-Orive, L. M., Estimation of sheet thickness distribution from linear and plate   
     Sections. Biomed, No; 21, pp. 717-730, 1979. 
 

4.  Levitz, P., and Tchoubar, D., Disordered porous solids: from chord distributions to small  
     angle scattering. J. Phys, No: II 2, pp. 771-790, 1992. 

 
5.  Odgaard, A., and Gundersen, H. J. G., Quantification of connectivity in cancellous   
     bone, with special emphasis on 3D reconstructions. Bone, No : 14, pp. 173-182, 1993. 

 
6.  Vogel, H. J., Digital unbiased estimation of the Euler-Poincaré characteristic in different  

     Dimensions. Acta Stereol., No: 16, pp. 97-104, 1997. 
 
7.  Hildebrand, T., and Rüegsegger, P., A new method for the model- independent assessment  

     of thickness in three-dimensional images. J. Microsc., Vol. 185, pp 67–75, 1997. 
 
8.  Jennane, R., Ohley, W. J.,  Majumdar, S., and Lemineur, G., Fractal Analysis of Bone  

     X-Ray Tomographic Microscopy Projections, IEEE Tans. on Med. Imag., Vol. 20, No: 5, 
     pp. 443- 449, 2001. 

 
9.  Pothuaud, L., Orion, P.,  Lespessailles, E., Benhamou, C. L., and Levitz, P., A new method 
     for  three-dimensional skeleton graph analysis of porous media : application to trabecular  

     bone microarchitecture”, Journal of microscopy, Vol. 199 Pt. 2, pp. 149-161, 2000. 
 

 
10. Aufort, G., Jennane, R., Harba, R., and Benhamou, C. L.,  A New 3D Shape-Dependent  
      Skeletonization Method. Application to Porous Media. EUSIPCO-2006, Florence, Italy, 

      September 2006.  
 

11. Aufort, G., Jennane, R., and Harba, R., Hybrid skeleton graph analysis of disordered  
      porous media. Application to trabecular bone. In Proc. IEEE Int. Conf. Acou. Spee. Sig.  
      Proc. 2007, pp. II 781–784, Toulouse, France. May 2006. 

 
 

12. Morgenthaler, D. G., Three-dimensional simple points: serial erosion, parallel thinning  
      and skeletonization. Tech. Rep. TR-1005, 1981. 
 



 

13. Pothuaud, L., Rietbergen, B. V., Charlot, C.,  Ozhinsky, E., and Majumdar, S., A new  
      computational efficient approach for trabecular bone analysis using beam models   

      generated with skeletonized graph technique. Computer Methods in Biomech. Biomed.  
      Eng., vol. 7, no.  4, pp. 205–213, 2004 
 

 
14. Lenthe, H. G.,  Stauber, M., and Müller, R., Specimen specific beam models for fast and  

      accurate prediction of human trabecular bone mechanical properties. Bone, 39(6):1182– 
      1189, 2006. 
 

15. Aufort, G., Jennane, R., Harba, R., Gasser, A., Soulat, D., and Benhamou, C. L., Nouvelle  
      approche de modélisation de milieux poreux. Application à l'os trabéculaire.  

      GRETSI’05, pp. 429–432, Louvain- la-Neuve, Belgium, September 2005. 
 
16. Aufort, G., Jennane, R., Harba, R., Gasser, A., Soulat, D., and Benhamou, C. L.,    

      Mechanical assessment of porous media using hybrid skeleton graph analysis and finite  
      elements. Application to trabecular bone.  Proc. EUSIPCO-2007, Poznan, Poland, 

      September 2007. 
 
17. Cherkassky, V., Fuzzy Inference Systems: A Critical Review, Computational Intelligence,   

      Soft Computing and Fuzzy-Neuro Integration with Applications of NATO ASI Series.  
      Computer and Systems Sciences, Springer-Verlag, Chapter 3.2, pp. 177-197. Vol. 162  

      Berlin, 1998. 
 
18. Jang, J., Self- learning fuzzy controllers based on temporal backpropagation. IEEE Trans.  

      Neural Network, vol.3 No.5, 1992.  
 

19. Vapnik, V., The nature of statistical learning theory. New York: Springer-Verlag, 1995. 
 
20. Siedlecki, W., and Sklansky, J., A Note on Genetic Algorithms for Large-Scale Feature   

      Selection. Pattern Recognition Letters, vol. 10, no. 335-347, Nov. 1989. 
 

21. Sugeno, M., and Kang, G. T., Structure identification of fuzzy model. Fuzzy Sets and   
      Systems 28: 15-33, 1988. 
 

22. Sun, C.T., Rulebase structure identification in an adaptive-network-based fuzzy inference   
      system. IEEE Trans. Fuzzy Systems, vol.2, pp. 64-73, 1994. 

 
23. Takagi, T., and Sugeno, M., Derivation of fuzzy control rules from human operator's   
      control actions. Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge  

      Representation and Decision Analysis, pp. 55-60, 1983. 
 

24. Übeyl, E. D., and  Güler, I., Automatic detection of erythemato-squamous diseases using     
      adaptive neuro-fuzzy inference systems. Computers in Biology and Medicine 35 (5): 421- 
      433, 2005. 

 



25. Takagi, T., and Sugeno, M., Fuzzy identification of systems and its applications to  

      modeling and control. IEEE Transactions on Systems, Man and Cybernetics , vol. SMC- 
      15, pp.116-132, 1985. 

 
26. Fogelman, S. F., and Herault, J., Neuro-computing: Algorithms, Architectures and  
      Applications. NATO ASI Series in Systems and Computer Science, Springer,  227-236.  

      New York, 1990. 
 

27. Broomhead, D.S. And Lowe, D.,  Multivariable functional interpolation and  
      adaptive networks. Complex Syst. 2, pp. 321-355, 1988. 
 

28. Aronszajn, N., Theory of reproducing kernels. Trans. Amer. Math. Soc. 686:337–404, 
      1950. 

 
29. Girosi, F., An equivalence between sparse approximation and Support Vector Machines.  
      A.I. Memo 1606, MIT Artificial Intelligence Laboratory, 1997. 

 
30. Wahba, G., Spline Models for Observational Data. Series in Applied Mathematics.  

      Vol. 59, SIAM, Philadelphia, 1990. 
 
31 Kilic, N. Ucan, O.N.,  and Osman, O., Colonic Polyp Detection in CT Colonography with 

     Fuzzy Rule based Template Maching. JOMS, Vol. 33:9-18, 2009.     
 

32. Peña-Reyes, C. A., and M. Sipper, Evolutionary Computation in Medicine: an Overview.  
      Artificial  Intelligence in Medicine, 2000. 19:1-23. 
 

33. Koza, J. R., Keane, M.A., and Streeter, M., Evolving Inventions.  Scientific American,  
      February 2003:52-59. 

 
34. Miller, M.T., Jerebko, A. K., Malley, J. D., and Summers, R. M., Feature Selection for  
      Computer-Aided Polyp Detection using Genetic  Algorithm. SPIE Medical Imaging. 

      2003. 
 

35. Pei, M., Ding, Y., Punch, W.F., and Goodman, E.D., Genetic Algorithms For 
      Classification and Feature Extraction, Classification Society Conference , June 1995. 
 

36. Aufort, G., Jennane, R., Harba, R., and Benhamou, C. L., Shape classification techniques  
      for discrete 3D porous media. Application to trabecular bone. IEEE-EMBC 2007, August  

      2007. 
 
37. Ulrich D., Rietbergen, B. V., Weinans, H., and Rüegsegger, P., Finite element analysis of 

      trabecular bone structure: a comparison of image-based meshing techniques. J. biomech.,  
      31(12):1187–1192, 1998. 

 
38. Bayraktar, H. H., Nonlinear micro finite element analysis of human trabecular bone.  
      Circle 141 - Abaqus Inc., pp. 22–25, 2004. 

 



39. Reinders, F.,. Jacobson, M. E. D., and Post, F. H., Skeleton graph generation for feature 

      shape description. In Proc. Data Visualization, pp. 73–82, 2000. 
 

40. Lorensen, W. E., and Cline H. E., Marching cubes: a high resolution 3D surface  
      construction algorithm. Computer Graphics, 21:163–169, 1987. 
 

41. T. Hilderbrand and P. Ruegsegger, A new method for the model independent assessment of 
       thickness in threedimensional images. Jour. of Microscopy, 185:65–67, 1997 

 
42. Bourne, B. C. , Marjolein, C.H., and Meulen, V.D., Finite element models predict 
      cancellous apparent modulus when tissue modulus is scaled from specimen ct-attenuation. 

      J Biomech., 37(5):613–621, May 2004. 
 

43. Hoshen, J., and Kopelman, R., Percolation and cluster distribution i. cluster multiple  
      labeling technique and critical concentration algorithm. Phys. Rev. B, 14:3438–3445, 
      October 1976. 

 


