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1. Introduction and main results

1.1. Introduction. In this paper we study rigorously the diamagnetic response of a quantum
gas of non-interacting charged particles trapped in an amorphous medium and subjected to
an uniform magnetic field of intensity B ≥ 0. Under the grand-canonical conditions and in the
weak-field regime, this response is completely characterized by the pressure and its first two
derivatives w.r.t. B, i.e. the magnetization and the susceptibility. Especially we are focusing
on the bulk response which is of great interest since it is independent of the boundary effects.
This is obtained by proving the existence of the thermodynamic limit for these quantities
firstly defined at finite volume. From a mathematical point of view, this consists of showing
that the derivatives of the pressure w.r.t. B (performed at finite volume) commute with the
thermodynamic limit.

Our paper is an extension of the works of Briet et al. [3, 4, 5] where the case of a perfect
quantum gas has been treated. All these papers are in fact in the continuation of a study
initiated by Angelescu et al. [1, 2]; for a brief review see also [10, 4]. In the regime of positive
temperature T and small fugacity z, it is proved in [3, 4] the existence of the thermodynamic
limit for the pressure and all its derivatives w.r.t. B for any positive value of the cyclotron
frequency, b := qB/c. This proof is based on a main ingredient: the application of the so-called
gauge invariant magnetic perturbation theory to the corresponding Gibbs semigroups, see also
[10]. Afterwards in [5], they extend these results to the z-complex domain of analyticity of the
pressure, through the Vitali convergence theorem. Consequently they obtained the existence
but no explicit formula of the limits for all admissible values of z.

Recently, all these results have been improved in [6] covering the case of periodic interactions
with local singularities; basically of the Kato class. But in [6], only the limit of the pressure
has been considered. The proof is essentially based on the Pastur-Shubin formula for the
integrated density of states [15]. Later on the generalized susceptibilities were studied in [22].
These results have been used in [7] to get a zero-field orbital susceptibility formula for a Bloch
electron gas and the justification of the Landau-Peierls approximation at small density and
zero temperature.

In this paper, the background electric potential is assumed to be a G
3-ergodic (G = Z or

R) random field having two types of singularities: local singularities and a polynomial growth
at infinity, see assumptions (R1)-(R2) below. These assumptions cover most of the electric
potentials widely used in the quantum theory of solids, see Section 1.3 for examples. Our
main results prove generically the existence of an almost-sure non-random thermodynamic
limit for the pressure, magnetization and zero-field orbital susceptibility. Furthermore we give
an explicit expression of these limits on the maximal (independent of b) z-complex domains
without resorting to the Vitali theorem. These significant advances are made possible by
employing the gauge invariant magnetic perturbation theory to control the perturbed resolvent
operator, see [11] for further applications.

1.2. The setting and the main result. Consider a 3-dimensional quantum gas composed of
non-relativistic identical charged particles, obeying either the Bose-Einstein or the Fermi-Dirac
statistics, and subjected to an external constant magnetic field. Since we are only interested
in orbital diamagnetic effects, we do not consider the spin of particles. Besides each particle
interacts with a random electric potential (the sense will make precise hereafter) modeling
a disordered medium. The interactions between particles are neglected (strongly diluted gas
assumption) and the gas is at thermal equilibrium.

Let us precise our assumptions. The gas is confined in a cubic box centered at the origin
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given by ΛL = ΛL(0) := (−L/2, L/2)3, L > 0. The magnetic field is defined by B := (0, 0, B)
with B ≥ 0, and we use the symmetric gauge, i.e. the magnetic potential vector is defined by
Ba(x) := B

2 e3 ∧ x = B
2 (−x2, x1, 0). In the following we denote b := qB

c ∈ R.
Let (Ω,F ,P) be a complete probability space and E[· ] :=

∫

Ω P(dω)(· ) be the associated ex-

pectation. We consider random electric potentials, i.e. scalar random fields V : Ω × R
3 → R,

(ω,x) 7→ V (ω)(x) which are assumed to be jointly measurable with respect to the product of
the σ-algebra F on Ω and the Borel-algebra B(R3). In the whole of the paper we suppose:

(E) V (ω) is a R
3-ergodic random field.

Recall that this assumption (see e.g. [17]) requires the existence of an ergodic group {τk}k∈R3

of measure-preserving automorphisms on Ω s.t. V (ω) is R3-stationary in the sense that:

V (τkω)(x) = V (ω)(x− k) ∀x ∈ R
3, ∀k ∈ R

3, ∀ω ∈ Ω. (1.1)

(R) The realizations of V (ω) are given by:

V (ω)(x) = V
(ω)
1 (x) + V

(ω)
2 (x) x ∈ R

3, ω ∈ Ω, (1.2)

where P-a.s. on Ω:
(R1) V

(ω)
1 is an uniformly locally integrable function, i.e. V

(ω)
1 ∈ Lp

uloc(R
3) with p > 3.

(R2) V
(ω)
2 obeys the conditions:

0 ≤ V
(ω)
2 (x) ≤ cα(ω)(1 + |x|α) with α ∈ (0,

1

3
) and cα(ω) > 0. (1.3)

Recall that the space Lp
uloc(R

3) consists of measurable functions f : R3 → C satisfying:

‖f‖1≤p<∞,uloc := sup
x∈R3

(
∫

|x−y|<1
dy |f(y)|p

)
1
p

<∞, ‖f‖∞,uloc := ess sup
x∈R3

|f(x)| <∞. (1.4)

We discuss below about the choice of these assumptions, see the Section 1.3.

Introduce the ’one-particle’ Hamiltonian in L2(ΛL). On C∞
0 (ΛL) consider the operator:

HL(b, ω) :=
1

2
(−i∇− ba)2 + V (ω), b ∈ R. (1.5)

It is well-known (see e.g. [14, Prop. 2.1]) that P-a.s. on Ω, ∀b ∈ R, (1.5) defines a family of
self-adjoint and bounded below operators for any L ∈ (0,∞), denoted again by HL(b, ω), with
domain D(HL(b, ω)) = H1

0(ΛL) ∩ H2(ΛL). Obviously this definition corresponds to choose
Dirichlet boundary conditions on ∂ΛL. Moreover HL(b, ω) has purely discrete spectrum; we

denote the set of eigenvalues (counting multiplicities and in increasing order) by {e
(ω)
j (b, L)}j≥1.

Besides by [6, Prop. 2.2], P-a.s. on Ω, {HL(b, ω), b ∈ C} is a type (A)-entire family of operators.
When L = ∞, define on C∞

0 (R3) the operator:

H∞(b, ω) :=
1

2
(−i∇− ba)2 + V (ω), b ∈ R. (1.6)

Then P-a.s. on Ω, ∀b ∈ R, H∞(b, ω) is essentially self-adjoint and its self-adjoint extension
is bounded below, see [23, Thm. B.13.4]. Furthermore H∞(b, ω) is a family of R3-ergodic
self-adjoint operators. This comes from the measurability of the mapping ω ∈ Ω 7→ H∞(b, ω),
see [19, Coro. 3], associated to the assumption (E) which leads to the covariance relation
Tk,bH∞(b, ω)T−k,b = H∞(b, τkω), ∀k ∈ R

3. Here {Tk,b}k∈R3 stands for the family of the usual
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real magnetic translations, see (5.6). Our analysis is based on the fact that due to assumption
(R), the variational principle and the diamagnetic inequality [23], imply:

∀ b ∈ R, inf σ(HL(b, ω)) ≥ inf σ(H∞(b, ω)) ≥ E0, E0 := E0(0), (1.7)

as soon as the corresponding self-adjoint operators are well-defined.
Let us recall the basic points of the grand-canonical formalism of the quantum statistical

mechanics. Let β := (kBT )
−1 > 0 be the ’inverse’ temperature (kB is the Boltzmann constant).

Define the domains Dǫ = Dǫ(E0), ǫ = ±1, by:

D−1 := C \ [eβE0 ,+∞), D+1 := C \ (−∞,−eβE0 ]. (1.8)

In the following the parameter ǫ = −1 refers to the bosonic case, ǫ = +1 to the fermionic case.
For β > 0, b ∈ R and z ∈ Dǫ ∩R

∗
+, the finite-volume pressure and density are defined as [1, 2]:

P
(ω)
L (β, b, z, ǫ) :=

ǫ

β|ΛL|
TrL2(ΛL) ln(I+ ǫze−βHL(b,ω)) =

ǫ

β|ΛL|

∞
∑

j=1

ln(1 + ǫze−βe
(ω)
j (b,L)), (1.9)

ρ
(ω)
L (β, b, z, ǫ) := βz

∂P
(ω)
L

∂z
(β, b, z, ǫ) =

1

|ΛL|

∞
∑

j=1

ze−βe
(ω)
j (b,L)

1 + ǫze−βe
(ω)
j (b,L)

. (1.10)

The relations (1.9)-(1.10) are well-defined since P-a.s. on Ω, ∀b ∈ R, the semigroup {e−βHL(b,ω), β >
0} is trace class, see [6, Eq. (2.12)]. Moreover from [6, Thm. 1.1], then P-a.s. on Ω, ∀β > 0,

P
(ω)
L (β, ., ., ǫ) is an analytic function in (z, b) ∈ Dǫ×R. This allows us to define the finite-volume

magnetization and orbital susceptibility at β > 0, b ∈ R and z ∈ Dǫ ∩ R
∗
+ as [1, 3, 4]:

X
(ω)
L,n(β, b, z, ǫ) :=

(

q

c

)n∂nP
(ω)
L

∂bn
(β, b, z, ǫ) n = 1, 2. (1.11)

Hereafter we will sometimes use the notation X
(ω)
L,0 (β, b, z, ǫ) = PL(β, b, z, ǫ).

We now want to formulate our main results. We first introduce some notations.
By [23, Thm. B.7.2], P-a.s. on Ω, ∀b ∈ R and ∀ξ ∈ C\[E0,∞), R∞(b, ω, ξ) := (H∞(b, ω)−ξ)−1

has an integral kernel operator R
(1)
∞ (· , · ; b, ω, ξ) jointly continuous on R

6 \D∞, where D∞ :=
{(x,y) ∈ R

6 : x = y}. Under the same conditions, let Tj,∞(b, ω, ξ), j = 1, 2, be the operators
on L2(R3) defined via their integral kernel:

T1,∞(x,y; b, ω, ξ) := a(x− y) · (i∇x + ba(x))R(1)
∞ (x,y; b, ω, ξ), (1.12)

T2,∞(x,y; b, ω, ξ) :=
1

2
a2(x− y)R(1)

∞ (x,y; b, ω, ξ), (x,y) ∈ R
6 \D∞. (1.13)

Let β > 0, b ∈ R, z ∈ Dǫ, and K ⊂ Dǫ be a compact set containing z. Let ΓK be the positively
oriented contour around [E0,∞) defined in (4.1). Introduce the following operators on L2(R3):

L
(ω)
∞,0(β, b, z, ǫ) :=

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)R∞(b, ω, ξ), (1.14)

L
(ω)
∞,1(β, b, z, ǫ) := −

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)R∞(b, ω, ξ)T1,∞(b, ω, ξ), (1.15)

L
(ω)
∞,2(β, b, z, ǫ) :=

i

π

∫

ΓK

dξ fǫ(β, z; ξ)R∞(b, ω, ξ)
(

(T1,∞(b, ω, ξ))2 − T2,∞(b, ω, ξ)
)

, (1.16)
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where fǫ(β, z; .) := ln(1 + ǫze−β·). We will prove that generically these operators admit a

jointly continuous integral kernel on R
6 denoted by L

(ω)
∞,n(· , · ;β, b, z, ǫ), and are locally trace

class.

Our results concerning the pressure and the magnetization are the following:

Theorem 1.1. Suppose (E) and (R). Then:
i) P-a.s. on Ω, ∀b ∈ R, ∀0 < β1 < β2 and for any compact subset K of Dǫ, the thermodynamic
limit of the pressure and magnetization exist. These limits are non-random, and:

X∞,n(β, b, z, ǫ) := lim
L→∞

X
(ω)
L,n(β, b, z, ǫ) =

(

q

c

)n ǫ

β
E
[

L(ω)
∞,n(0,0;β, b, z, ǫ)

]

n = 0, 1, (1.17)

uniformly in (β, z) ∈ [β1, β2]×K.

ii) P-a.s. on Ω, ∀b ∈ R and ∀β > 0, P∞(β, b, · , ǫ) := ǫ
βE[L

(ω)
∞,0(0,0;β, b, · , ǫ)] is an analytic

function on Dǫ. Moreover, ∀0 < β1 < β2 and for any compact subset K of Dǫ, one has:

ρ∞(β, b, z, ǫ) := lim
L→∞

ρ
(ω)
L (β, b, z, ǫ) = βz

∂P∞
∂z

(β, b, z, ǫ), (1.18)

uniformly in (β, z) ∈ [β1, β2]×K.

iii) P-a.s. on Ω, ∀β > 0, ∀z ∈ Dǫ, P∞(β, · , z, ǫ) ∈ C1(R), and X∞,1(β, b, z, ǫ) = ( qc )
∂P∞
∂b (β, b, z, ǫ).

For the zero-field orbital susceptibility, we have:

Theorem 1.2. Suppose also (E) and (R). Then:
i) P-a.s. on Ω, ∀0 < β1 < β2 and for any compact subset K of Dǫ, the thermodynamic limit
of the zero-field orbital susceptibility exists. The limit is non-random and it is given by:

X∞,2(β, 0, z, ǫ) := lim
L→∞

X
(ω)
L,2 (β, 0, z, ǫ) =

(

q

c

)2 ǫ

β
E
[

L
(ω)
∞,2(0,0;β, 0, z, ǫ)

]

, (1.19)

uniformly in (β, z) ∈ [β1, β2]×K.
ii) Let α ∈ [0, 14). Then P-a.s. on Ω, ∀β > 0 and ∀z ∈ Dǫ, P∞(β, · , z, ǫ) is a C2-function near

b = 0, and X∞,2(β, 0, z, ǫ) = ( qc )
2 ∂2P∞

∂b2
(β, 0, z, ǫ).

Remark 1.3. By using simple arguments, P∞(β,−b, z, ǫ) = P∞(β, b, z, ǫ) = P∞(β, b, z, ǫ).
Then Theorem 1.1 iii) implies that P-a.s., ∀ β > 0, ∀ z ∈ Dǫ, X∞,1(β, 0, z, ǫ) = 0.

1.3. Discussions and examples. Let us comment (R1). Our approach is based on the
representation of the finite-volume pressure by using the Dunford-Schwartz integral formula,
see Section 4. However this requires the use of bounded below Schrödinger operators, see

[12, Sect. VII.9]. As we allow realizations of V
(ω)
1 to be negative with local singularities,

this condition is fulfilled if P-a.s. V
(ω)
1 ∈ Lp

uloc(R
3) with p > 3

2 , see [23, Eq. (A21)]. The
additional condition p > 3 will appear when estimating the derivative of the infinite-volume
resolvent’s integral kernel in (1.12), see the proof of Lemma 2.4 ii). Notice that (R1) does not

cover Coulomb-type singularities and implies that V
(ω)
1 should decay at infinity roughly like

O(|x|−(1+ǫ)), ǫ > 0. Finally we mention that under the conditions on V
(ω)
1 given in Section

1.2, there exists a ω-independent constant C > 0 s.t. P-a.s. on Ω, [17]:

‖V
(ω)
1 ‖p,uloc ≤ C. (1.20)
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Let us discuss (1.3). Unlike V
(ω)
1 , we allow V

(ω)
2 to have a polynomial growth at infinity.

Notice that V
(ω)
2 is not supposed to be monotone; indeed in that case the operator H∞(b, ω)

may have only discrete spectrum, and then the problem becomes irrelevant. On the contrary,

V
(ω)
2 is basically of sparse barrier potential type, so that the corresponding operator has [E0,∞)

in its spectrum and with a non-trivial spectral type. By considering an arbitrary polynomial
growth: |x|α, α > 0, the condition (n + 1)α < 1 with n = 1, 2 will appear when proving the
existence of the thermodynamic limits (1.17)-(1.19), see Proposition 6.2. However the relations
given in Theorems 1.1 iii) and 1.2 ii) require the additional condition (n + 2)α < 1. Notice
that if we only are interested in the case of the pressure or density, the assumption (R) can
be relaxed to the ones ensuring the validity of the Pastur-Shubin formula for the integrated
density of states, see [24, Sect. 2] and the method in [6, Sect. 3.4].

Let us discuss the assumption (E). Since the proof of Theorems 1.1 i) and 1.2 i) is based
on the Birkhoff-Khintchine theorem in [21, Prop. 1.13], the use of R3-ergodic random field is
crucial. Nevertheless we can replace the assumption (E) with:

(E’) V (ω) is a Z
3-ergodic random field,

since this reduces to a R
3-ergodic random field with the suspension technique, see [21].

We now give physically relevant examples covered by the assumptions (E)-(R) or (E’)-(R).

0. The non-negative Poisson random field.

In (1.2) set V
(ω)
1 = 0 and choose for V

(ω)
2 the random field with realizations given by:

V
(ω)
P (x) =

∫

R3

µ
(ω)
λ (dy)u(y − x) x ∈ R

3, ω ∈ Ω,

where µ
(ω)
λ denotes the random Poisson measure on R

3 with parameter λ > 0 and u(· ) :
R
3 → [0,∞) is the single-site potential, see e.g. [21, 18]. By assuming that u is compactly

supported and u ∈ L∞(R3), then (E) is satisfied as well as (R2), since we have P-a.s., ∀x ∈ R
3,

0 ≤ V
(ω)
P (x) ≤ c(ω) ln(1 + |x|), see [13, Lem. 2.2].

1. The alloy-type random field (the so-called ’Anderson potential’).

In (1.2) set V
(ω)
2 = 0 and choose for V

(ω)
1 the random field with realizations given by:

V
(ω)
A (x) = g

∑

j∈Z3

λj(ω)u(x − xj) x ∈ R
3, ω ∈ Ω, g ∈ R.

Where {λj}j∈Z3 is a family of i.i.d. random variables with a common distribution what ensures

(E’), see e.g. [21, 18]. Besides we suppose that ∀ j ∈ Z
3, |λj(ω)| ≤ 1 and u satisfies the Birman-

Solomyak condition:
∑

j∈Z3(
∫

Λ1(j)
dx |u(x)|p)

1
p <∞, p > 3, where Λ1(j) denotes the unit cube

centered on site j. Then V
(ω)
A ∈ Lp

uloc(R
3) with p > 3, and we have (see also [22]):

X∞,n(β, b, z, ǫ) =

(

q

c

)n ǫ

β|Λ1(0)|

∫

Λ1(0)
dxE

[

L(ω)
∞,n(x,x;β, b, z, ǫ)

]

n = 0, 1, 2. (1.21)

2. Further models.

The periodic case. Set V2 = 0. We assume that V1 ∈ Lp
uloc(R

3), p > 3 and Z
3-periodic. The

suspension method can be applied to this case leading to define from V1, a R
3-ergodic random

field V
(ω)
1 . So (1.21) holds true but in that case, E

[

L
(ω)
∞,n(· , · ;β, b, z, ǫ)

]

= L
(ω)
∞,n(· , · ;β, z, ǫ),



6

see also [6, 22]. The random displacements model on R
3 (see e.g. [18]) or the quasi-periodic

case (see e.g. [21, 17]) are also covered by our results.

1.4. The content. In Section 2 we investigate the P-a.s. analyticity (in the Hilbert-Schmidt
topology) of the finite-volume resolvent and the analyticity of its integral kernel w.r.t. b.

In Section 3 we apply the gauge invariant magnetic perturbation theory (see e.g. [11, 20])
to the finite-volume perturbed resolvent. This allows us to get an expression of the partial
derivatives w.r.t. b of its integral kernel by keeping a good control over the linear growth of the
magnetic vector potential. Although taking the resolvent as ’central object’ leads to further
technical difficulties, but it allows us to get more powerful results.

In Section 4 we formulate the finite-volume quantities by using the expressions of the deriva-
tives w.r.t. b of the kernel of the finite-volume resolvent obtained in the previous section.

In Section 5 we investigate the main properties on the infinite-volume operators involved
in the thermodynamic limits. Note that here the gauge invariant perturbation theory gives
R
3-stationary quantities, see (1.1). This is necessary to apply the limit ergodic theorem.
In section 6 we prove the almost-sure non-random thermodynamic limits by the Birkhoff-

Khintchine theorem and we investigate the bulk properties. This section also contains the
proof of Theorems 1.1 and 1.2.

2. Regularity of the finite-volume resolvent in the b-parameter

2.1. Analyticity in the Hilbert-Schmidt topology. Hereafter we will denote respectively
by ‖ · ‖I1 , ‖ · ‖I2 and ‖ · ‖, the trace norm in I1(L

2(ΛL)), the Hilbert-Schmidt (H-S) norm in
I2(L

2(ΛL)), and the operator norm in B(L2(ΛL)).
From [6, Prop. 3.1], P-a.s., ∀b0 ∈ R, ∀0 < L <∞ and ∀ξ ∈ C\[E0,∞), there exists a complex

neighborhood Vξ,L(b0) of b0 s.t. the operator-valued function Vξ,L(b0) ∋ b 7→ RL(b, ω, ξ) :=
(HL(b, ω)− ξ)−1 is analytic in the H-S topology. We now precise this result.

Consider the following operators on L2(ΛL):

S1,L(b0, ω, ξ) := a · (i∇ + b0a)RL(b0, ω, ξ), S2,L(b0, ω, ξ) :=
1

2
a2RL(b0, ω, ξ). (2.1)

Again from [6, Sect. 2], P-a.s., ∀b0 ∈ R, ∀0 < L < ∞ and ∀ξ ∈ C \ [E0,∞), they are bounded
and, denote by d(ξ) := dist(ξ, [E0,∞)), then there exists a constant c > 0 s.t.:

‖S1,L(b0, ω, ξ)‖ ≤ c(1 +
1

d(ξ)
)(1 + |ξ|)L and ‖S2,L(b0, ω, ξ)‖ ≤

c

d(ξ)
L2. (2.2)

For all integer k ≥ 1, introduce the following family of H-S operators on L2(ΛL):

Jk,L(i)(b0, ω, ξ) := RL(b0, ω, ξ)
k
∏

m=1

Sim,L(b0, ω, ξ), i = {i1, . . . , ik} ∈ {1, 2}k , (2.3)

and for n ≥ k ≥ 1, χn
k , the characteristic function :

χn
k(i) :=

{

1 if i1 + · · ·+ ik = n
0 otherwise.

Proposition 2.1. P-a.s. on Ω, ∀b0 ∈ R, ∀0 < L <∞ and ∀ξ ∈ C \ [E0,∞), then there exists
a complex neighborhood Vξ,L(b0) of b0 s.t. in the H-S operators sense:

∀b ∈ Vξ,L(b0), RL(b, ω, ξ) = RL(b0, ω, ξ) +

∞
∑

n=1

(b− b0)
n

n!

∂nRL

∂bn
(b0, ω, ξ), (2.4)
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where for n ≥ 1:

∂nRL

∂bn
(b0, ω, ξ) := n!

n
∑

k=1

(−1)k
∑

i∈{1,2}k
χn
k(i)Jk,L(i)(b0, ω, ξ). (2.5)

Proof. Let ξ ∈ C \ [E0,∞), 0 < L <∞ and (b, b0) ∈ C× R. Set:

SL(b, b0, ω, ξ) := δb S1,L(b0, ω, ξ) + (δb)2S2,L(b0, ω, ξ), δb := b− b0. (2.6)

From the n-th iterated second resolvent equation, one has:

RL(b, ω, ξ) = RL(b0, ω, ξ)

[

I+
n
∑

k=1

(−1)k
(

SL(b, b0, ω, ξ)
)k
]

+(−1)n+1RL(b, ω, ξ)
(

SL(b, b0, ω, ξ)
)n+1

.

Then by (2.6), one gets after some rearranging:

RL(b, ω, ξ) = RL(b0, ω, ξ) +

n
∑

k=1

(δb)k
k

∑

l=1

(−1)l
∑

i∈{1,2}l
χk
l (i)Jl,L(i)(b0, ω, ξ) + Sn+1,L(b, b0, ω, ξ),

(2.7)

with: Sn+1,L(b, b0, ω, ξ) := (δb)n+1

{ n−1
∑

k=0

(δb)k
n
∑

l=1

(−1)l
∑

i∈{1,2}l
χk+n+1
l (i)Jl,L(i)(b0, ω, ξ)+

+ (−1)n+1
n+1
∑

k=0

(δb)k
∑

i∈{1,2}n+1

χk+n+1
n+1 (i)RL(b, ω, ξ)

n+1
∏

m=1

Sim,L(b0, ω, ξ)

}

. (2.8)

By using the analyticity properties of the resolvent in the H-S topology given above, the
proposition follows from (2.7) and (2.8). �

2.2. Regularity of the integral kernel. We know from [23, Thm. B.7.2] that P-a.s., ∀b ∈ R,

∀L ∈ (0,∞], ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, RL(b, ω, ξ) has an integral kernel R
(1)
L (· , · ; b, ω, ξ)

jointly continuous on Λ2
L \DL, DL := {(x,y) ∈ Λ2

L : x = y}. Moreover P-a.s., ∀η > 0 there
exists a constant γ = γ(η) > 0 and a polynomial p(· ) s.t. ∀b ∈ R, ∀L ∈ (0,∞] and ∀ξ ∈ C,
d(ξ) ≥ η:

∀ (x,y) ∈ Λ2
L \DL, |R

(1)
L (x,y; b, ω, ξ)| ≤ |p(ξ)|

e−γξ |x−y|

|x− y|
with γξ :=

γ

1 + |ξ|
. (2.9)

Notice that γξ can be more explicit w.r.t. the energy parameter. The one given in (2.9), valid
for ξ ∈ C, d(ξ) ≥ η > 0, contains the ξ-dependence we need in the whole of this work.

Remark 2.2. Consquently the product Πm
l=1RL(b, ω, ξl), m ≥ 2 has an integral kernel jointly

continuous on Λ2
L, and moreover, P-a.s., ∀η > 0, there exists a constant γ = γ(η,m) > 0 and

a polynomial p(· ) s.t. ∀b ∈ R, ∀L ∈ (0,∞] and ∀ξl ∈ C, l = 1, . . . ,m, d(ξl) ≥ η:

∀ (x,y) ∈ Λ2
L, |

(

Πm
l=1RL(b, ω, ξl)

)

(x,y)| ≤ (Πm
l=1|p(ξl)|)e

− γξ |x−y|, γξ :=
γ

1 + |ξ|
. (2.10)

This follows by induction on m from the case of m = 2 with:
(

Πm
l=1RL(b, ω, ξl)

)

(x,y) =

∫

ΛL

dz
(

Πm−1
l=1 RL(b, ω, ξl)

)

(x, z)R
(1)
L (z,y; b, ω, ξm).
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When m = 2 the continuity property holds true since the kernel R
(1)
L (· , · ; b, ω, ξ) fulfills the

assumptions of Lemma 7.1. Furthermore from (2.9) and (7.12), we get (2.10).

From Proposition 2.1 together with these results, we now prove:

Proposition 2.3. P-a.s. on Ω, ∀b0 ∈ R, ∀0 < L < ∞, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, then

there exists a complex neighborhood νξ,L,ω(b0) of b0 s.t. ∀(x,y) ∈ Λ2
L\DL, b 7→ R

(1)
L (x,y; b, ω, ξ)

is an analytic function on νξ,L,ω(b0) .

An important point for the proof of Proposition 2.3 is the following estimate. We choose to
give its proof in the appendix of the paper, see Section 7.

Lemma 2.4. i) P-a.s. on Ω, ∀b ∈ R, ∀L ∈ (0,∞], ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, then
(i∇x + ba(x))RL(b, ω, ξ) has an integral kernel jointly continuous on Λ2

L \DL.
ii) P-a.s. on Ω, ∀η > 0, there exists a constant γ = γ(η) > 0 and a polynomial p(· ) s.t.
∀L ∈ (0,∞], ∀b ∈ R, ∀ξ ∈ C, d(ξ) ≥ η, one has on Λ2

L \DL:

|(i∇x + ba(x))R
(1)
L (x,y; b, ω, ξ)| ≤ (1 + |b|3)|p(ξ)|(1 + |x|α + |y|α)

e−γξ |x−y|

|x− y|2
, γξ :=

γ

1 + |ξ|
.

(2.11)

Proof of Proposition 2.3. Under the conditions of the proposition, from (2.9) and Lemma 2.4,
the operators in (2.1) have an integral kernel jointly continuous on Λ2

L \DL, given by:

S1,L(x,y; b0, ω, ξ) := a(x) · (i∇x + b0a(x))R
(1)
L (x,y; b0, ω, ξ),

S2,L(x,y; b0, ω, ξ) :=
1

2
a2(x)R

(1)
L (x,y; b0, ω, ξ),

and moreover there exists a constant γ = γ(η) > 0 and a polynomial p(· ) s.t. on Λ2
L \DL:

|Sj,L(x,y; b0, ω, ξ)| ≤ |p(ξ)|(1 + Lα)Lj e
−γξ |x−y|

|x− y|2
, j = 1, 2. (2.12)

Then, considering (2.5), P-a.s., ∀b0 ∈ R, ∀0 < L < ∞, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, the

operator ∂nRL

∂bn (b0, ω, ξ), n ≥ 1 has an integral kernel given on Λ2
L \DL by:

∂nRL

∂bn
(x,y; b0, ω, ξ) := n!

n
∑

k=1

(−1)k
∑

i∈{1,2}k
χn
k(i)Jk,L(i)(x,y; b0, ω, ξ), (2.13)

where Jk,L(i)(· , · ; b0, ω, ξ) stands for the integral kernel of the operator in (2.3). It reads as:

Jk,L(i)(x,y; b0, ω, ξ) :=

∫

ΛL

dz1 · · ·

∫

ΛL

dzk R
(1)
L (x, z1; b0, ω, ξ)×

× Si1,L(z1, z2; b0, ω, ξ) · · · Sik,L(zk,y; b0, ω, ξ).

Furthermore, from estimates (2.9) and (2.12), by applying k-times successively Lemma 7.1 i)
combined with (7.14), we obtain that Jk,L(i)(· , · ; b0 , ω, ξ) is jointly continuous on Λ2

L \ DL.
By using (2.9), (2.12) with Lemma 7.2 ii), P-a.s., ∀b0 ∈ R, ∀η > 0, there exists a constant
γ = γ(η) > 0 and a polynomial p(· ) s.t. ∀0 < L <∞, ∀ξ ∈ C, d(ξ) ≥ η and ∀(x,y) ∈ Λ2

L \DL:

|Jk,L(i)(x,y; b0, ω, ξ)| ≤ |p(ξ)|k(1 + Lα)kLi1+···+ik
e
− γξ

2k
|x−y|

|x− y|
, γξ :=

γ

1 + |ξ|
.
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This estimate then imply the following rough estimate which holds on Λ2
L \DL:

∀n ∈ N
∗,

1

n!

∣

∣

∣

∣

∂nRL

∂bn
(x,y; b0, ω, ξ)

∣

∣

∣

∣

≤ cn|p(ξ)|n(1 + Lα)nLn e
− γξ

2n
|x−y|

|x− y|
, (2.14)

for some constant c > 0. So the analyticity property follows from (2.4), (2.14) since for |b− b0|
sufficiently small, the corresponding Taylor expansion converges. Here we use,

sup
x∈ΛL

∫

R3

dy
e−

ς
2n

|x−y|

|x− y|
=

(2n

ς

)2
, ς > 0. (2.15)

�

3. A new expression for the first and second derivatives w.r.t. b

In order to determine the thermodynamic limits, we want to isolate in the expression (2.13)
the term giving rise to the growth w.r.t. L when L→ ∞, see (2.14).

Let x,y ∈ ΛL. Define the magnetic phase φ as:

φ(x,y) :=
1

2
e3 · (y ∧ x) = −φ(y,x) with e3 := (0, 0, 1). (3.1)

Introduce on L2(ΛL) the operators Tj,L(b, ω, ξ), j = 1, 2 defined via their integral kernel:

∀(x,y) ∈ Λ2
L \DL, T1,L(x,y; b, ω, ξ) := a(x− y) · (i∇x + ba(x))R

(1)
L (x,y; b, ω, ξ), (3.2)

T2,L(x,y; b, ω, ξ) :=
1

2
a2(x− y)R

(1)
L (x,y; b, ω, ξ). (3.3)

Obviously |a(x−y)| ≤ |x−y|, then from (2.9) and (2.11), P-a.s., ∀b ∈ R, ∀η > 0, there exists
γ = γ(η) > 0 and a polynomial p(· ) s.t. ∀0 < L <∞ and ∀ξ ∈ C, d(ξ) ≥ η:

|Tj,L(x,y; b, ω, ξ)| ≤ |p(ξ)|(1 + Lα)
e−γξ |x−y|

|x− y|
j = 1, 2. (3.4)

Hence Tj,L(b, ω, ξ), j = 1, 2 are bounded operators and

‖Tj,L(b, ω, ξ)‖ ≤ |p(ξ)|(1 + Lα) j = 1, 2, (3.5)

for some polynomial p(· ). For any k ∈ {1, 2} and m ∈ {0, 1}, define on Λ2
L:

T m
k,L(x,y; b, ω, ξ) :=

k
∑

j=1

(−1)j
∑

i∈{1,2}j
χk
j (i)

∫

ΛL

dz1 · · ·

∫

ΛL

dzj
(

iφ(zj ,y)− iφ(zj ,x)
)m

×

×R
(1)
L (x, z1; b, ω, ξ)Ti1,L(z1, z2; b, ω, ξ) · · · Tij ,L(zj ,y; b, ω, ξ). (3.6)

Here we set 00 = 1. Notice that for x = y, the terms in the r.h.s. of (3.6) containing
the magnetic phase vanishes. Clearly P-a.s., ∀b ∈ R, ∀0 < L < ∞, ∀η > 0 and ∀ξ ∈ C,
d(ξ) ≥ η, T m

k,L(· , · ; b, ω, ξ) is jointly continuous on Λ2
L. To see that, we apply j-times Lemma

7.1 considering (2.9), (3.4) and (7.13). This also gives:

∀(x,y) ∈ Λ2
L, |T m

k,L(x,y; b, ω, ξ)| ≤ |p(ξ)|kLm(1 + Lα)k, k ∈ {1, 2}, m ∈ {0, 1}, (3.7)

for some polynomial p(· ). Note also that when x = y, the r.h.s. of (3.7) behaves like Lαk.

We now formulate the main result of this section; its proof is given in the next subsections:
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Proposition 3.1. P-a.s. on Ω, ∀b ∈ R, ∀0 < L < ∞, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, then
∀(x,y) ∈ Λ2

L \DL and for n = 1, 2:

1

n!

∂nR
(1)
L

∂bn
(x,y; b, ω, ξ) =

(

iφ(x,y)
)n

n!
R

(1)
L (x,y; b, ω, ξ) +

n
∑

k=1

T n−k
k,L (x,y; b, ω, ξ). (3.8)

3.1. Some preliminary results. Let (b, b0) ∈ R
2 and set δb := b − b0. Let η > 0 and

ξ ∈ C, d(ξ) ≥ η. Introduce on L2(ΛL) the operators R̃L(b, b0, ω, ξ) and T̃j,L(b, b0, ω, ξ), j = 1, 2
through their integral kernel which are respectively defined by:

∀ (x,y) ∈ Λ2
L \DL, R̃

(1)
L (x,y; b, b0, ω, ξ) := eiδbφ(x,y)R

(1)
L (x,y; b0, ω, ξ), (3.9)

T̃j,L(x,y; b, b0, ω, ξ) := eiδbφ(x,y)Tj,L(x,y; b0, ω, ξ). (3.10)

Set also:

T̃L(b, b0, ω, ξ) := δb T̃1,L(b, b0, ω, ξ) + (δb)2T̃2,L(b, b0, ω, ξ). (3.11)

Except a gauge phase factor, the integral kernel of R̃L(b, b0, ω, ξ) and T̃j,L(b, b0, ω, ξ) is the
same as the one of RL(b0, ω, ξ) and Tj,L(b0, ω, ξ) respectively. Therefore, P-a.s., ∀(b0, b) ∈ R

2,
∀0 < L <∞, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, they are bounded operators with a norm satisfying
(3.5). Besides they are eventually H-S operators on L2(ΛL), and:

‖R̃L(b, b0, ω, ξ)‖I2 ≤ |p(ξ)|L
3
2 , ‖T̃j,L(b, b0, ω, ξ)‖I2 ≤ |p(ξ)|(1 + Lα)L

3
2 . (3.12)

Under the same conditions as above, introduce the following bounded operators on L2(ΛL):

T̃1,L(b, b0, ω, ξ) := −R̃L(b, b0, ω, ξ)T̃1,L(b, b0, ω, ξ), (3.13)

T̃2,L(b, b0, ω, ξ) := R̃L(b, b0, ω, ξ)
(

(

T̃1,L(b, b0, ω, ξ)
)2

− T̃2,L(b, b0, ω, ξ)
)

, (3.14)

T̃3,L(b, b0, ω, ξ) := (δb)3
1

∑

k=0

(δb)k
∑

i∈{1,2}2
χ3+k
2 (i)R̃L(b, b0, ω, ξ)T̃i1,L(b, b0, ω, ξ)T̃i2,L(b, b0, ω, ξ)+

−RL(b, ω, ξ)
(

T̃L(b, b0, ω, ξ)
)3
. (3.15)

Then we prove (see also [4, Lem. 3.2] and [11, proof of Prop. 3.2]):

Lemma 3.2. P-a.s. on Ω, ∀(b, b0) ∈ R
2, ∀0 < L < ∞, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, then

one has in the H-S operators sense:

RL(b, ω, ξ) = R̃L(b, b0, ω, ξ) +

2
∑

k=1

(δb)k T̃k,L(b, b0, ω, ξ) + T̃3,L(b, b0, ω, ξ). (3.16)

Proof. From [10, Sect. 2], P-a.s, ∀b ∈ R, D̃ := {ϕ ∈ C1(ΛL) ∩ C2(ΛL), ϕ|∂ΛL
= 0} is a core for

HL(b, ω). Since a(· ) is the symmetric gauge, one has in the form sense on D̃× D̃:

(−i∇x − ba(x))eiδbφ(x,y) = eiδbφ(x,y)(−i∇x − b0a(x)− δba(x− y)). (3.17)

In view of (3.9)-(3.11) and (3.17), we get for any (ϕ,ψ) ∈ D̃× C∞
0 (ΛL):

lL(ϕ,ψ) := 〈(HL(b, ω)− ξ)ϕ, R̃L(b, b0, ω, ξ)ψ〉 = 〈ϕ,ψ〉 + 〈ϕ, T̃L(b, b0, ω, ξ)ψ〉.
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By standards arguments, lL can be extended in a bounded form on D(HL(b, ω)) × L2(ΛL).
Let ϕ = RL(b, ω, ξ̄)ϕ̂, with ϕ̂ ∈ L2(ΛL). Then the following identity holds in B(L2(ΛL)), and
eventually in the H-S operators sense (see (3.12)):

RL(b, ω, ξ) = R̃L(b, b0, ω, ξ)−RL(b, ω, ξ)T̃L(b, b0, ω, ξ). (3.18)

Now we iterate twice (3.18), in view of (3.11) and (3.13)-(3.15) the lemma follows. �

3.2. Proof of Proposition 3.1. Following Lemma 3.2, and by rewriting (3.16) in terms of
corresponding integral kernels, we get on Λ2

L \DL:

R
(1)
L (x,y; b, ω, ξ) = R̃

(1)
L (x,y; b, b0, ω, ξ) +

2
∑

k=1

(δb)k T̃k,L(x,y; b, b0, ω, ξ) + T̃3,L(x,y; b, b0, ω, ξ),

(3.19)
where, for all integer k ∈ {1, 2} and for any (x,y) ∈ Λ2

L:

T̃k,L(x,y; b, b0, ω, ξ) :=
k

∑

j=1

(−1)j
∑

i∈{1,2}j
χk
j (i)

∫

Λj
L

dz1 · · · dzj e
iδb(φ(x,z1)+···+φ(zj ,y))×

×R
(1)
L (x, z1; b0, ω, ξ)Ti1,L(z1, z2; b0, ω, ξ) · · · Tij ,L(zj ,y; b0, ω, ξ), (3.20)

and T̃3,L(· , · ; b, b0, ω, ξ) stands for the kernel of T̃3,L(b, b0, ω, ξ), see (3.15). We now remove the

b-dependence of the coefficient of (δb)k in the sum (3.19) by expanding in Taylor series the
exponential phase factor in (3.9) and in (3.20) up to the second order. Thus on Λ2

L \DL:

R̃
(1)
L (x,y; b, b0, ω, ξ)+

2
∑

k=1

(δb)kT̃k,L(x,y; b, b0, ω, ξ) =
2

∑

k=0

(δb)k
(

iφ(x,y)
)k

k!
R

(1)
L (x,y; b0, ω, ξ)+

+
2

∑

k=1

(δb)k
k

∑

m=1

T k−m
m,L (x,y; b0, ω, ξ) + T3,L(x,y; b, b0, ω, ξ),

where by construction the remainder term T3,L(x,y; · , b0 , ω, ξ) satisfy the property that its
first and second derivatives at b0 are all zero. It remains to use the definitions (3.9)-(3.11)
combined with (2.9), (3.4)and Lemma 7.2, this shows that P-a.s., ∀(b, b0) ∈ R

2, ∀0 < L < ∞,

∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, |T̃3,L(x,y; b, b0, ω, ξ)| = O(|δb|3) when |δb| → 0 uniformly in
x,y ∈ ΛL. Then the proposition follows from Proposition 2.3. �

4. The finite-volume diamagnetic response

Here, by using the results of the section 3, we want to get a new expression for the mag-
netization and the susceptibility. Recall that by applying [6, Thm 1.1 i)], P-a.s., ∀β > 0 and
∀b ∈ R, the pressure defined in (1.9) has an analytic extension in z ∈ Dǫ (see (1.8)). This
analytic continuation is defined as the following.

Let β > 0 and K ⊂ Dǫ be a compact subset. Let ΓK be the positively oriented contour
around the interval [E0,∞) defined by:

ΓK := {ℜξ = EK , ℑξ ∈ [
−ϑK
2β

,
ϑK
2β

]} ∪ {ℜξ ∈ [EK , ξK), ℑξ = ±
ϑK
2β

}∪

∪ {ℜξ ≥ ξK , arg(ξ − ξK ∓ i
ϑK
2β

) = ±ς}. (4.1)
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The constants ϑK > 0, EK < E0, ς ∈ (0, π/2) and ξK > E0 are chosen so that for all
z ∈ K, the closed subset surrounding by ΓK is a strict subset of the holomorphic domain of
the map ξ ∈ C 7→ fǫ(β, z; ξ) := ln(1 + ǫze−βξ), see [6, Lem. 3.4]. Besides fǫ(β, z; · ) admits an
exponentially decreasing estimate on ΓK , i.e. there exists a constant c = c(β,K) > 0 s.t.:

∀z ∈ K, ∀ξ ∈ ΓK , |fǫ(β, z; ξ)| ≤ ce−βℜξ . (4.2)

Let β > 0, b ∈ R, 0 < L <∞, z ∈ Dǫ, K ⊂ Dǫ be a compact neighborhood of z and ΓK given
in (4.1). Introduce on L2(ΛL):

L
(ω)
L (β, b, z, ǫ) :=

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)RL(b, ω, ξ). (4.3)

Then P-a.s., ∀β > 0, ∀b ∈ R, ∀0 < L < ∞ and ∀z ∈ Dǫ ∩ R, (4.3) defines a trace class
operator on L2(ΛL) (see [6, Sect. 3.2]), and via the standard functional calculus we have,

L
(ω)
L (β, b, z, ǫ) = ln(I + ǫze−βHL(b,ω)). Hence, this allows to us to define the finite-volume

pressure as:

P
(ω)
L (β, b, z, ǫ) =

ǫ

β|ΛL|
TrL2(ΛL)

(

L
(ω)
L (β, b, z, ǫ)

)

. (4.4)

It is shown in [6, Sect. 3.3] that (4.4) can be analytically extended to any z ∈ Dǫ, and on the
other hand, the definition (4.4) is independent of the choice of the compact subset K.

Proposition 4.1. P-a.s. on Ω, ∀0 < L < ∞, ∀β > 0, ∀b ∈ R, ∀z ∈ Dǫ and for any compact
subset K of Dǫ s.t. z ∈ K, then one has for n = 1, 2:

X
(ω)
L,n(β, b, z, ǫ) =

(

q

c

)n ǫ

β|ΛL|
TrL2(ΛL)

(∂nL
(ω)
L

∂bn
(β, b, z, ǫ)

)

=

(

q

c

)n ǫ

β|ΛL|

i

2π
TrL2(ΛL)

(
∫

ΓK

dξ fǫ(β, z; ξ)
∂nRL

∂bn
(b, ω, ξ)

)

. (4.5)

Proof. Let η := min{E0−EK ,
ϑK

2β } > 0. From (2.7) and (2.5), P-a.s., ∀(b, b0) ∈ R
2, ∀0 < L <∞

and ∀ξ ∈ C, d(ξ) ≥ η:

RL(b, ω, ξ) = RL(b0, ω, ξ) +

2
∑

k=1

(δb)k

k!

∂kRL

∂bk
(b0, ω, ξ) + S3,L(b, b0, ω, ξ). (4.6)

(4.6) holds in the bounded operators sense. Under the conditions of Proposition 4.1 and in
view of (4.1), we get from (4.3) followed by (4.6):

L
(ω)
L (β, b, z, ǫ) =

2
∑

k=0

(δb)k

k!

{

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)
∂kRL

∂bk
(b0, ω, ξ)

}

+

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)S3,L(b, b0, ω, ξ). (4.7)

Now from (2.2), (2.3), (2.5) and the estimate ‖RL(b0, ω, ξ)‖ ≤ η−1, ξ ∈ ΓK , then P-a.s.,
∀0 < L < ∞ there exits a polynomial p(· ) s.t. ∀b0 ∈ R, ∀ξ ∈ ΓK and k = 0, 1, 2,

‖∂kRL

∂bk
(b0, ω, ξ)‖ ≤ |p(ξ)|. Hence from (4.2), all the operators in the sum of the r.h.s. of

(4.7) are bounded operators. Moreover in view of (2.8) with n = 2, and since b ∈ R, the same
arguments as above applied to the last term of the r.h.s. of (4.7), show that this term behaves
like O(|δb|3) in the B(L2(ΛL))-sense. The proposition follows since P-a.s., ∀β > 0, ∀z ∈ K
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and ∀0 < L < ∞, L
(ω)
L (β, ·, z, ǫ) is an I1(L

2(ΛL))-real analytic operator-valued function, see
[6, proof of Prop. 3.5]. �

We now give the main result of this section:

Theorem 4.2. P-a.s. on Ω, ∀0 < L < ∞, ∀β > 0, ∀b ∈ R, ∀z ∈ Dǫ and for any compact
subset K of Dǫ s.t. z ∈ K, we have for n = 1, 2:

P
(ω)
L (β, b, z, ǫ) =

ǫ

β|ΛL|

i

2π

∫

ΛL

dx

(
∫

ΓK

dξ fǫ(β, z; ξ)R
(1)
L (x,y; b, ω, ξ)

)
∣

∣

∣

∣

y=x

, (4.8)

X
(ω)
L,n(β, b, z, ǫ) =

(

q

c

)n n!ǫ

β|ΛL|

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)

∫

ΛL

dx
n
∑

k=1

T n−k
k,L (x,x; b, ω, ξ), (4.9)

where T m
k,L(· , · ; b, ω, ξ) with k ∈ {1, 2}, m ∈ {0, 1} are given in (3.6).

The above result together with the joint continuity of T m
k,L(· , · ; b, ω, ξ) on Λ2

L lead to:

Corollary 4.3. Under the same conditions as in Theorem 4.2, we have:

X
(ω)
L,1 (β, b, z, ǫ) = −

(

q

c

)

ǫ

β|ΛL|

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)TrL2(ΛL)

(

RL(b, ω, ξ)T1,L(b, ω, ξ)
)

, (4.10)

X
(ω)
L,2 (β, b, z, ǫ) =

(

q

c

)2 ǫ

β|ΛL|

i

π

∫

ΓK

dξ fǫ(β, z; ξ)×

× TrL2(ΛL)

(

RL(b, ω, ξ)
(

(

T1,L(b, ω, ξ)
)2

− T2,L(b, ω, ξ)
)

)

, (4.11)

where Tj,L(b, ω, ξ), j = 1, 2 are defined via their kernel in (3.2) and (3.3) respectively.

Proof of Theorem 4.2. Under the conditions of Proposition 4.1 and for a fixed ξ0 < min{0, E0}
and large enough, the first resolvent equation followed by the Cauchy integral formula lead to:

L
(ω)
L (β, b, z, ǫ) =

i

2π

(
∫

ΓK

dξ (ξ − ξ0)fǫ(β, z; ξ)RL(b, ω, ξ)

)

RL(b, ω, ξ0).

From Remark 2.2 and in view of (4.1), then P-a.s., ∀b ∈ R, ∀0 < L < ∞ and ∀ξ ∈ ΓK , the
operator RL(b, ω, ξ)RL(b, ω, ξ0) has a jointly continuous kernel. Moreover P-a.s., there exists
a polynomial p(· ) s.t. ∀b ∈ R, ∀ξ ∈ ΓK and ∀(x,y) ∈ Λ2

L, |(RL(b, ω, ξ)RL(b, ω, ξ0))(x,y)| ≤

|p(ξ)|. By using (4.2), the joint continuity of the integral kernel of L
(ω)
L (β, b, z, ǫ) follows by

standard arguments. This proves (4.8). Let n = 1, 2. Clearly as in the proof of Proposition
4.1, we have for any ϕ ∈ C∞

0 (ΛL) and x ∈ ΛL:

(∂nL
(ω)
L

∂bn
(β, b, z, ǫ)ϕ

)

(x) =
i

2π

∫

ΓK

dξ fǫ(β, z; ξ)

∫

ΛL

dy
∂nR

(1)
L

∂bn
(x,y; b, ω, ξ)ϕ(y). (4.12)

The estimates (2.14), (2.15), (4.2) and standard arguments then imply:

∀(x,y) ∈ Λ2
L,

∂nL
(ω)
L

∂bn
(x,y;β, b, z, ǫ) =

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)
∂nR

(1)
L

∂bn
(x,y; b, ω, ξ). (4.13)
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Now use (3.8). Then from (4.13), we have on Λ2
L:

∂nL
(ω)
L

∂bn
(x,y;β, b, z, ǫ) = n!

n
∑

k=1

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)T
n−k
k,L (x,y; b, ω, ξ)+

+ (iφ(x,y))nL
(ω)
L (x,y;β, b, z, ǫ).

(4.14)

We have already proved that the second term in the r.h.s. of (4.14) is jointly continuous on Λ2
L.

Besides we know from Section 3 that P-a.s., ∀b ∈ R, ∀0 < L < ∞, ∀ξ ∈ ΓK , T m
k,L(· , · ; b, ω, ξ),

k = 1, 2, m = 0, 1, are jointly continuous on Λ2
L. Moreover we have the bound (3.7). Again by

standard arguments, we conclude that each term in the sum of the r.h.s. of (4.14) is jointly
continuous on Λ2

L. So we perform the trace in (4.5) as the integral on ΛL of the diagonal part
of the integral kernel (4.14). This together with φ(x,x) = 0 imply (4.9). �

Remark 4.4. Due to (2.5), (4.5) can be extended for any integer n ≥ 3 to define the gener-
alized susceptibilities at finite volume, see [3, 4, 5]. If n = 3:

X
(ω)
L,3 (β, b, z, ǫ) :=

(

q

c

)3∂3P
(ω)
L

∂b3
(β, b, z, ǫ) =

(

q

c

)3 ǫ

β|ΛL|

3i

π

∫

ΓK

dξ fǫ(β, z; ξ)

{
∫

ΛL

dxU
(ω)
L,1 (x,x; b, ξ) +

∫

ΛL

dxU
(ω)
L,2 (x,x; b, ξ)

}

, (4.15)

where: U
(ω)
L,1 (x,y; b, ξ) :=

(

RL(b, ω, ξ)
(

T1,L(b, ω, ξ)T2,L(b, ω, ξ) + T2,L(b, ω, ξ)T1,L(b, ω, ξ) −
(

T1,L(b, ω, ξ)
)3
)

)

(x,y),

U
(ω)
L,2 (x,y; b, ξ) :=

∫

ΛL

dz1

∫

ΛL

dz2

∫

ΛL

dz3
(

i(φ(x, z1) + φ(z1, z2) + φ(z2,y))
)

×

R
(1)
L (x, z1; b, ω, ξ)T1,L(z1, z2; b, ω, ξ)T1,L(z2,y; b, ω, ξ). (4.16)

Due to (2.9), (3.4) and the estimate |φ(x, z1) + φ(z1, z2) + φ(z2,x)| ≤ |x − z1||z1 − z2| (see

(3.1)), P-a.s., ∀b ∈ R, ∀0 < L < ∞, ∀ξ ∈ ΓK , the integral kernels U
(ω)
L,j (· , · ; b, ξ), j = 1, 2 are

well-defined on Λ2
L and eventually jointly continuous.

5. The bulk operators

5.1. Preliminaries. In the following we denote by Pl(b) := P(b) · el, l = 1, 2 where P(b) :=
(i∇x + ba(x)), e1 := (1, 0, 0) and e2 := (0, 1, 0).

Lemma 5.1. P-a.s. on Ω, ∀b ∈ R, ∀η > 0, ∀ξ ∈ C, d(ξ) ≥ η, then Pk(b)R∞(b, ω, ξ)Pl(b),
k, l = 1, 2 are bounded operators and there exists a polynomial p(· ) independent of (ω, b) s.t.:

‖Pk(b)R∞(b, ω, ξ)Pl(b)‖ ≤ |p(ξ)|. (5.1)

Proof. By using (1.20), the analysis of [23, Sect. A2] and the diamagnetic inequality, we know
that for any ε > 0, then if ξ < E0 and large enough, P-a.s., ∀b ∈ R:

‖|V
(ω)
1 |1/2R∞(b, ω, ξ)|V

(ω)
1 |1/2‖ ≤ ε.

This implies that ∀ε > 0, there exists a(ε) independent of ω and b s.t. ∀ϕ ∈ D(H∞(b, ω)):

(ϕ, |V
(ω)
1 |ϕ) ≤ ε|(ϕ,H∞(b, ω)ϕ)| + a(ε)‖ϕ‖22. (5.2)
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Besides P-a.s., ∀b ∈ R, D(H∞(b, ω)) ⊂ {φ ∈ L2(R3) : (i∇ + ba)φ ∈ (L2(R3))3, (V
(ω)
2 )

1
2φ ∈

L2(R3)}, see [23, Sect. B13]. Under these conditions we conclude the following. From (5.2),
for any ϕ ∈ D(H∞(b, ω)):

1

2
‖Pk(b)ϕ‖

2
2 ≤ (1 + ε)ℜ(ϕ, (H∞(b, ω)− ξ)ϕ) + ((1 + ε)|ℜξ|+ a(ε))‖ϕ‖22. (5.3)

Choose ϕ = R∞(b, ω, ξ)ψ with ψ ∈ L2(R3), ‖ψ‖2 = 1 and ξ ∈ C, d(ξ) ≥ η, then (5.3) shows
that there exists a constant c1 > 0 independent of ω and b s.t.:

‖Pk(b)R∞(b, ω, ξ)ψ‖2 ≤ c1(1 + |ξ|)1/2. (5.4)

Therefore Pk(b)R∞(b, ω, ξ) is a bounded operator and ‖Pk(b)R∞(b, ω, ξ)‖ ≤ c1(1+|ξ|)1/2. Now
choose ϕ = R∞(b, ω, ξ)Pk(b)ψ with ψ ∈ D(H∞(b, ω)), ‖ψ‖2 = 1, and ξ ∈ C, d(ξ) ≥ η, then
(5.3) and (5.4) imply that there exists a constant c2 > 0 independent of (ω, b) s.t.:

‖Pk(b)R∞(b, ω, ξ)Pk(b)ψ‖
2
2 ≤ c2(‖Pk(b)R∞(b, ω, ξ)Pk(b)ψ‖2 + (1 + |ξ|)2). (5.5)

Hence Pk(b)R∞(b, ω, ξ)Pk(b) is bounded and ‖Pk(b)R∞(b, ω, ξ)Pk(b)‖ ≤ c′2(1+ |ξ|) for another
constant c′2 > 0 independent of (ω, b). Let ϕ = R∞(b, ω, ξ)Pl(b)ψ, with ψ ∈ D(H∞(b, ω)),
‖ψ‖2 = 1, then (5.3)-(5.5) together imply:

‖Pk(b)R∞(b, ω, ξ)Pl(b)ψ‖
2
2 ≤ c2(‖Pl(b)R∞(b, ω, ξ)Pl(b)ψ‖2 + (1 + |ξ|)2).

Again Pk(b)R∞(b, ω, ξ)Pl(b), k 6= l is bounded and ‖Pk(b)R∞(b, ω, ξ)Pl(b)‖ ≤ c3(1 + |ξ|) for
some constant c3 > 0 independent of (ω, b). �

Let {Tk,b}k∈R3 be the family of the usual real magnetic translations defined as the following.
Let φ be the phase defined as in (3.1), and:

∀k ∈ R
3, (Tk,bψ)(x) := eibφ(x,k)ψ(x − k) ψ ∈ L2(R3). (5.6)

Lemma 5.2. P-a.s. on Ω, ∀b ∈ R, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, then for j = 1, 2:
i) Tj,∞(b, ω, ξ) is a bounded operator and there exists a polynomial p(·) independent of (ω, b)
s.t.:

‖Tj,∞(b, ω, ξ)‖ ≤ |p(ξ)|. (5.7)

ii) Tj,∞(b, ω, ξ) satisfies the covariance relation:

∀k ∈ R
3, Tk,bTj,∞(b, ω, ξ)T−k,b = Tj,∞(b, τkω, ξ). (5.8)

Here Tj,∞(b, ω, ξ), j = 1, 2 are defined via their integral kernel in (1.12), (1.13) respectively.

Proof. Let us consider the operator T1,∞(b, ω, ξ). In view of its integral kernel (1.12), the
definition of the symmetric gauge and under the conditions of Lemma 5.2, we have on R

6\D∞:

T1,∞(x,y; b, ω, ξ) =
1

2
(i∇x + ba(x)) · (−(x2 − y2)e1 + (x1 − y1)e2)R

(1)
∞ (x,y; b, ω, ξ).

By using the same arguments as the ones in the proof of [7, Prop. 3.2], we get:

T1,∞(b, ω, ξ) =
i

2

(

P1(b)R∞(b, ω, ξ)P2(b)− P2(b)R∞(b, ω, ξ)P1(b)

)

R∞(b, ω, ξ), (5.9)

which is valid in the form sense on C∞
0 (R3)× C∞

0 (R3). By Lemma 5.1, P-a.s., ∀b ∈ R, ∀η > 0,
∀ξ ∈ C, d(ξ) ≥ η, the r.h.s of (5.9) defines a bounded operator on L2(R3). So this holds for



16

the operator T1,∞(b, ω, ξ). The same arguments can be applied to the operator T2,∞(b, ω, ξ),
but from the equality valid in the form sense on L2(R3):

T2,∞(b, ω, ξ) = −
1

4

(

R∞(b, ω, ξ)P1(b)R∞(b, ω, ξ)P1(b)+

+R∞(b, ω, ξ)P2(b)R∞(b, ω, ξ)P2(b)−R∞(b, ω, ξ)

)

R∞(b, ω, ξ). (5.10)

This proves i). Let us show ii). The measurability of ω 7→ H∞(b, ω) combined with the
assumption (E) lead to the covariance relation:

∀k ∈ R
3, Tk,bR∞(b, ω, ξ)T−k,b = R∞(b, τkω, ξ). (5.11)

This implies the following identity on R
6 \D∞:

∀k ∈ R
3, R(1)

∞ (x− k,y − k; b, ω, ξ)e−ibφ(y,k) = e−ibφ(x,k)R(1)
∞ (x,y; b, τkω, ξ),

and from (3.17), e−ibφ(x,k)a(x− y)(i∇x + ba(x)) = a(x− y)(i∇x + ba(x− k))e−ibφ(x,k). Then
(5.8) follows from these two relations together with(1.12)-(1.13). �

We now use these results to investigate the P-a.s. properties of the operators involved in
the definition (1.15) and (1.16). Introduce the notation:

Ij(b, ω, ξ) := R∞(b, ω, ξ)Tj,∞(b, ω, ξ) j ∈ {1, 2}, (5.12)

I3(b, ω, ξ) := R∞(b, ω, ξ)T 2
1,∞(b, ω, ξ), (5.13)

and also set:
I0(b, ω, ξ) = I0(b, ω, ξ, ξ0) := R∞(b, ω, ξ)R2

∞(b, ω, ξ0), (5.14)

for a fixed ξ0 < min{0, E0} (see (1.7)) and large enough. Notice that from Lemma 5.2, P-a.s.,
∀b ∈ R, ∀η > 0 and ∀ξ ∈ C, d(ξ) ≥ η, these operators are bounded on L2(R3). Below we
denote by χU the characteristic function of a given U ⊂ R

3.

Proposition 5.3. P-a.s. on Ω, ∀b ∈ R, ∀η > 0, ∀ξ ∈ C, d(ξ) ≥ η, one has for j = 0, 1, 2, 3:
i) For any open and bounded set U ⊂ R

3, χUIj(b, ω, ξ)χU is trace class on L2(R3) and

‖χUIj(b, ω, ξ)χU‖I1 ≤ |p(ξ)|,

for some polynomial p(· ).
ii) Ij(b, ω, ξ) has an integral kernel Ij(· , · ; b, ω, ξ) jointly continuous on R

6, and moreover
there exists a polynomial p(· ) independent of (ω, b) s.t.:

∀(x,y) ∈ R
6, |Ij(x,y; b, ω, ξ)| ≤ |p(ξ)|. (5.15)

iii) (ω,x) 7→ Ij(x,x; b, ω, ξ) is a R
3-ergodic random field with a finite expectation:

∀x ∈ R
3, E[|Ij(x,x; b, ω, ξ)|] <∞. (5.16)

Proof. From (2.9) and (2.11), P-a.s., ∀b ∈ R, ∀η > 0 there exists γ = γ(η) > 0 and a polynomial
p(· ) s.t. ∀L ∈ (0,∞] and ∀ξ ∈ C, d(ξ) ≥ η, on Λ2

L \DL:

|R
(1)
L (x,y; b, ω, ξ)|, |T2,L(x,y; b, ω, ξ)| ≤ |p(ξ)|

e
− γ

1+|ξ| |x−y|

|x− y|
, (5.17)

|T1,L(x,y; b, ω, ξ)| ≤ |p(ξ)|(1 + |x|α + |y|α)
e
− γ

1+|ξ| |x−y|

|x− y|
. (5.18)
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Then we have the following estimates [16]:

‖χUR∞(b, ω, ξ)‖I2 , ‖χUT1,∞(b, ω, ξ)‖I2 , ‖χUT2,∞(b, ω, ξ)‖I2 ≤ |p(ξ)|,

for some polynomial p(· ). Besides we have (5.7). By standard operator estimates, i) follows.
Let us show ii). From (5.17), (5.18) and Lemma 7.1 ii), the integral kernels of Ij(b, ω, ξ),
j = 0, 1, 2 are jointly continuous on R

6. This also holds for I3(· , · ; b, ω, ξ) from the identity:

I3(x,y; b, ω, ξ) =

∫

R3

dzI1(x, z; b, ω, ξ)T1,∞(z,y; b, ω, ξ),

followed by Lemma 7.1 ii) together with (5.17) and the rough estimate:

∀ (x,y) ∈ R
6, |I1(x,y; b, ω, ξ)| ≤ |p(ξ)|(1 + |x|α + |y|α),

for some polynomial p(· ). We now prove (5.15). Although the case of j = 0 is straightforward,
the method given below covers all cases j = 0, 1, 2, 3. Let ξ0 < min{0, E0}. We firstly show:

Ij(b, ω, ξ) = R∞(b, ω, ξ0)Aj(b, ω, ξ)R∞(b, ω, ξ0), (5.19)

where Aj(b, ω, ξ) consists of a finite linear combination of operator products of type:

(ξ − ξ0)
qRr

∞(b, ω, ξ){Pk(b)R∞(b, ω, ξ)Pl(b)}
sRt

∞(b, ω, ξ) r + s+ t ≥ 1, (5.20)

where the exponents q, r, t ∈ {0, 1, 2}, s ∈ {0, 1}, k, l ∈ {1, 2} depend on j. Notice that Lemma
5.1 implies that P-a.s., ∀η > 0 there exists a ω-independent polynomial p(· ) s.t. ∀b ∈ R and
∀ξ ∈ C, d(ξ) ≥ η:

‖Aj(b, ω, ξ)‖ ≤ |p(ξ)|. (5.21)

Obviously (5.19) holds for j = 0. If j = 1, 2, we use once the first resolvent equation for the
resolvent appearing in (5.12):

Ij(b, ω, ξ) = R∞(b, ω, ξ0)Tj,∞(b, ω, ξ) + (ξ − ξ0)R∞(b, ω, ξ0)Ij(b, ω, ξ).

Then we use (5.9)-(5.10), and again the first resolvent equation for the last resolvent in the
expression (5.9)-(5.10). This leads to (5.19) by a straightforward calculation. For j = 3,
we use twice the identity (5.9) in (5.13) and we repeat the same procedure as above. This
proves (5.19). Furthermore from (1.20), [23, Sect.A2] together with [8, Eq. (2.40)], then P-a.s.,
∀ξ0 < min{0, E0} and large enough, there exists a ω-independent constant c > 0 s.t. ∀b ∈ R:

‖R∞(b, ω, ξ0)‖1,2 = ‖R∞(b, ω, ξ0)‖2,∞ ≤ c,

where ‖ · ‖p,q denotes the norm for operator from Lp(R3) to Lq(R3), 1 ≤ p, q ≤ ∞. Further,
let B(b, ω, ξ) be a bounded operator on L2(R3). Then for any ϕ,ψ ∈ C∞

0 (R3):

|
(

ϕ,R∞(b, ω, ξ0)B(b, ω, ξ)R∞(b, ω, ξ0)ψ)| ≤ c2‖ϕ‖1‖ψ‖1‖B(b, ω, ξ)‖.

Suppose that the operator R∞(b, ω, ξ0)B(b, ω, ξ)R∞(b, ω, ξ0) has a jointly continuous integral
kernel. Then by using a limiting procedure we conclude that:

∀(x,y) ∈ R
6, |(R∞(b, ω, ξ0)B(b, ω, ξ)R∞(b, ω, ξ0))(x,y)| ≤ c2‖B(b, ω, ξ)‖. (5.22)

Thus by setting B(b, ω, ξ) = Aj(b, ω, ξ), we get (5.15) from (5.19) and (5.21).
Let us prove iii). As a result of (5.11) and (5.8), the following covariance relation holds:
∀k ∈ R

3, Tk,bIj(b, ω, ξ)T−k,b = Ij(b, τkω, ξ). This implies ∀(x,y) ∈ R
6:

∀k ∈ R
3, Ij(x,y; b, τkω, ξ) = eibφ(x,k)Ij(x− k,y − k; b, ω, ξ)e−ibφ(y,k).
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Then (ω,x) 7→ Ij(x,x; b, ω, ξ) is well defined and R
3-stationary. (5.16) follows from the ω-

independent estimate (5.15). �

We deduce properties of the operators in (1.14)-(1.16) from the following. Let ξ0 as above.
The first resolvent equation and the Cauchy integral formula imply that P a.s., ∀β > 0, ∀b ∈ R,
∀z ∈ Dǫ and ∀K compact subset of Dǫ, s.t. z ∈ K:

L
(ω)
∞,0(β, b, z, ǫ) =

i

2π

∫

ΓK

dξ (ξ − ξ0)
2fǫ(β, z; ξ)I0(b, ω, ξ), (5.23)

and, from (5.12)-(5.13),

L
(ω)
∞,1(β, b, z, ǫ) = −

i

2π

∫

ΓK

dξ fǫ(β, z; ξ)I1(b, ω, ξ), (5.24)

L
(ω)
∞,2(β, b, z, ǫ) =

i

π

∫

ΓK

dξ fǫ(β, z; ξ)
(

I3(b, ω, ξ) − I2(b, ω, ξ)
)

.

Then Proposition 5.3 together with the estimate (4.2) imply:

Corollary 5.4. P-a.s. on Ω, ∀β > 0,∀b ∈ R, ∀z ∈ Dǫ and any compact subset K of Dǫ s.t.
z ∈ K, one has for n = 0, 1, 2:

i) For all open and bounded set U ⊂ R
3, χUL

(ω)
∞,n(β, b, z, ǫ)χU is trace class on L2(R3).

ii) L
(ω)
∞,n(β, b, z, ǫ) has an integral kernel L

(ω)
∞,n(· , · ;β, b, z, ǫ) jointly continuous on R

6.

iii) (ω,x) 7→ L
(ω)
∞,n(x,x;β, b, z, ǫ) is a R

3-ergodic random field with a finite expectation.

The last two results of this section needed to prove our main theorems are the following.

Proposition 5.5. P-a.s. on Ω, ∀b ∈ R and j = 0, 1, 2, 3, then the following maps:
i)

ξ ∈ ΓK 7→
1

|ΛL|
TrL2(R3)

(

χΛL
Ij(b, ω, ξ)χΛL

)

is continuous uniformly in L ∈ (0,∞).
ii) ξ ∈ ΓK 7→ E[Ij(0,0; b, ω, ξ)] is continuous.

Proof. Let ξ1 ∈ ΓK be fixed. Due to Proposition 5.3, to prove i) it is sufficient to show that
P-a.s., ∀b ∈ R, there exists a constant c > 0 independent of L s.t. ∀x ∈ R

3, ∀ξ ∈ ΓK with
|δξ| := |ξ − ξ1| small enough:

|Ij(x,x; b, ω, ξ) − Ij(x,x; b, ω, ξ1)| ≤ c|δξ|. (5.25)

Let j = 0. From (5.14) together with the first resolvent equation, we get for any x ∈ R
3:

I0(x,x; b, ω, ξ) − I0(x,x; b, ω, ξ1) =
(

ξ − ξ1)(R∞(b, ω, ξ0)R∞(b, ω, ξ)R∞(b, ω, ξ1)R∞(b, ω, ξ0)
)

(x,x).

Since ‖R∞(b, ω, ξ)R∞(b, ω, ξ1)‖ ≤ η−2, by applying (5.22) withB(b, ω, ξ) = R∞(b, ω, ξ)R∞(b, ω, ξ1),
we get (5.25). Let j = 1, 2, 3. In view of (5.19), we have to estimate:

Ij(x,x; b, ω, ξ) − Ij(x,x; b, ω, ξ1) =
(

R∞(b, ω, ξ0)
(

Aj(b, ω, ξ)−Aj(b, ω, ξ1)
)

R∞(b, ω, ξ0)
)

(x,x), (5.26)
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where Aj(b, ω, .) consists of a finite linear combination of operators of type (5.20). Choose a
generic term appearing in (Aj(b, ω, ξ)−Aj(b, ω, ξ1)):

C(b, ω, ξ, ξ1) := (ξ − ξ0)
qR∞(b, ω, ξ)Pk(b)R∞(b, ω, ξ)Pl(b)+

− (ξ1 − ξ0)
qR∞(b, ω, ξ1)Pk(b)R∞(b, ω, ξ1)Pl(b) q ∈ {0, 1, 2}.

By using twice the resolvent equation in the first term of the r.h.s. of this formula, we get:

C(b, ω, ξ, ξ1) = ((ξ− ξ0)
q − (ξ1− ξ0)

q)R∞(b, ω, ξ1)Pk(b)R∞(b, ω, ξ1)Pl(b)+ (ξ− ξ1)(ξ− ξ0)
q×

R∞(b, ω, ξ1)
(

R∞(b, ω, ξ)Pk(b)R∞(b, ω, ξ)Pl(b) + Pk(b)R∞(b, ω, ξ)R∞(b, ω, ξ1)Pl(b)
)

.

By (5.1) and (5.4), P-a.s., ∀b ∈ R, ∀ξ ∈ ΓK sufficiently near ξ1, there exists c > 0 independent of
ξ and L s.t. ‖C(b, ω, ξ, ξ1)‖ ≤ c|δξ|. This also holds for ‖Aj(b, ω, ξ)−Aj(b, ω, ξ1)‖ which implies
(5.25) from (5.22) and (5.26). Now ii) follows from the continuity of ξ 7→ Ij(x,x; b, ω, ξ),
∀x ∈ R

3 together with the ω-independent estimate (5.15). �

Proposition 5.6. P-a.s. on Ω, ∀ξ ∈ ΓK and j = 0, 1, then the following maps:
i)

b ∈ R 7→
1

|ΛL|
TrL2(R3)

(

χΛL
Ij(b, ω, ξ)χΛL

)

,

is continuous uniformly in L ∈ (0,∞).
ii) b ∈ R 7→ E[Ij(0,0; b, ω, ξ)] is continuous.

To prove this result we need the following. Introduce on L2(R3) the operator W(b, b0, ω, ξ)
through its integral kernel defined on R

6 \D∞ as:

W(x,y; b, b0, ω, ξ) := eiδbφ(x,y)a(x− y)R∞(x,y; b0, ω, ξ). (5.27)

From (2.9), P-a.s., ∀(b, b0) ∈ R
2, ∀ξ ∈ ΓK , it is bounded and there exists a polynomial p(· )

independent of (b0, b) s.t.:

‖W(b, b0, ω, ξ)‖ ≤ |p(ξ)|.

Lemma 5.7. P-a.s. on Ω, ∀(b0, b) ∈ R
2, ∀ξ ∈ ΓK , P(b) ·W(b, b0, ω, ξ) is bounded and there

exists a polynomial p(· ) s.t. ∀b ∈ R
2, |b− b0| small enough and ∀ξ ∈ ΓK :

‖P(b) ·W(b, b0, ω, ξ)‖ ≤ |p(ξ)|. (5.28)

Proof. Similarly to the proof of Lemma 3.2, then P-a.s. , ∀(b, b0) ∈ R
2 and ∀ξ ∈ ΓK , we have

in the bounded operators sense (see also [11, Prop. 3.2]):

R∞(b, ω, ξ) = R̃∞(b, b0, ω, ξ)−R∞(b, ω, ξ)T̃∞(b, b0, ω, ξ), (5.29)

where R̃∞(b, b0, ω, ξ) is the operator generated by the kernel defined in (3.9) with L = ∞ and:

T̃∞(b, b0, ω, ξ) := δbT̃1,∞(b, b0, ω, ξ) + (δb)2T̃2,∞(b, b0, ω, ξ), (5.30)

with T̃j,∞(b, b0, ω, ξ) the operator generated by the kernel defined in (3.10) with L = ∞. Notice
that due to (2.9), P-a.s., there exists a polynomial p(· ) s.t. ∀(b, b0) ∈ R

2, ∀ξ ∈ ΓK :

‖R̃∞(b, b0, ξ)‖, ‖T̃2,∞(b, b0, ξ)‖ ≤ |p(ξ)|. (5.31)

Now we remove the (ω, ξ)-dependence. From (5.29), we have on R
6 \D∞:

(P(b) ·W(b, b0))(x,y) = a(x− y) ·P(b)R(1)
∞ (x,y; b) + a(x− y) ·P(b)(R∞(b)T̃∞(b, b0))(x,y).
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The first term in the r.h.s of this expression is the integral kernel of T1,∞(b) which is bounded,
and its norm satisfies (5.7). We want to study the second term. On R

6 \D∞, we have:

a(x− y) ·P(b)(R∞(b)T̃∞(b, b0))(x,y) =

∫

R3

dza(x− z) ·P(b)R(1)
∞ (x, z)T̃∞(z,y; b, b0)+

+

∫

R3

dzP(b)R(1)
∞ (x, z)a(z − y)T̃∞(z,y; b, b0), (5.32)

The first term of the r.h.s. of (5.32) is the integral kernel of T1,∞(b)T̃∞(b, b0) =
i
2(P1R∞(b)P2−

P2R∞(b)P1)R∞(b)T̃∞(b, b0) which is bounded due to (5.1) and (5.31) knowing (5.29), its norm
is bounded above by a b-independent quantity. Furthermore in view of (3.17), on R

6 \D∞:

a(z− y)T̃∞(z,y; b, b0) = eiδbφ(z,y)a(z− y)
(

δbP(b) · a(z− y) +
(δb)2

2
a2(z− y)

)

R(1)
∞ (z,y; b0)

= δbP(b)eiδbφ(z,y)a2(z− y)R(1)
∞ (z,y, b0)−

1

2
(δb)2eiδbφ(z,y)a3(z− y)R(1)

∞ (z,y; b0), (5.33)

which is the integral kernel of 2δbP(b)T̃2,∞(b, b0)−(δb)2Y(b, b0), whereY(b, b0) = Y(b, b0, ω, ξ)
is the operator defined via its integral kernel on R

6 \D∞:

Y(x,y; b, b0, ω, ξ) :=
1

2
a2(x− y)W(x,y; b, b0 , ω, ξ). (5.34)

Notice that from (2.9) and (5.27), ‖Y(b, b0, ω, ξ)‖ ≤ |p(ξ)| for some polynomial p(· ) indepen-
dent of (b, b0). Since Y(b, b0) is bounded, then by Lemmas 5.2 and 5.1 the second term of

the r.h.s. of (5.32) is the kernel of the bounded operator δbP(b)R∞(b)
(

2P(b)T̃2,∞(b, b0) −

δbY(b, b0)
)

and its norm is bounded above by a b-independent polynomial in ξ. �

Proof of Proposition 5.6. Let j = 0. Define Ĩ0(b, b0, ω, ξ) as in (5.14) but we replace each

operators R∞(b, .) with R̃∞(b, b0, .). Then from (5.29) and (5.14), P-a.s., ∀(b, b0) ∈ R
2, ∀ξ ∈

ΓK :

I0(b, ω, ξ) − I0(b0, ω, ξ) = Ĩ0(b, b0, ω, ξ)− I0(b0, ω, ξ)− R̃0(b, b0, ω, ξ),

where R̃0(b, b0, ω, ξ) is the following bounded operator:

(R̃∞(., ξ0))
2R∞(., ξ)T̃∞(., ξ) +R∞(., ξ0)T̃∞(., ξ0)R∞(., ξ0)R∞(., ξ)+

+ R̃∞(., ξ0)R∞(., ξ0)T̃∞(., ξ0)R∞(., ξ). (5.35)

Firstly in the kernel sense, for any x ∈ R
3:

Ĩ0(x,x; b, b0, ω, ξ) − I0(x,x; b0, ω, ξ) =

∫

R6

dz1dz2 {e
iδb(φ(x,z1)+φ(z1,z2)+φ(z2,x)) − 1}×

×R(1)
∞ (x, z1; b0, ω, ξ0)R

(1)
∞ (z1, z2; b0, ω, ξ)R

(1)
∞ (z2,x; b0, ω, ξ0).

Since |eiδb(φ(x,z1)+φ(z1,z2)+φ(z2,x))− 1| ≤ |δb||x− z1||z1 − z2|, then (2.9) imply that P-a.s., there
exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀x ∈ R

3, ∀b ∈ R with |b− b0| small enough:

|Ĩ0(x,x; b, b0, ω, ξ)− I0(x,x; b0, ω, ξ)| ≤ |δb||p(ξ)|. (5.36)

Let us now estimate TrL2(R3){χΛL
R̃0(b, b0, ω, ξ)χΛL

}. Consider the following term in (5.35):

r0(b, b0, ω, ξ) :=
(

R̃∞(b, b0, ω, ξ0)
)2
R∞(b, ω, ξ)T̃∞(b, b0, ω, ξ).
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By using (3.10), (3.11) with L = ∞ and (3.17), we have on R
6:

(R∞(b, ω, ξ)T̃∞(b, b0, ω, ξ))(x,y) = −(δb)2(R∞(b, ω, ξ)T̃2,∞(b, b0, ω, ξ))(x,y)+

+ δb

∫

R3

dzR(1)
∞ (x, z; b, ω, ξ)(i∇z + ba(z)) · a(z− y)eiδbφ(z,y)R(1)

∞ (z,y; b0, ω, ξ).

Then

R∞(b, ω, ξ)T̃∞(b, b0, ω, ξ) = δbR∞(b, ω, ξ)
(

P(b) ·W(b, b0, ω, ξ)− δbT̃2,∞(b, b0, ω, ξ)
)

, (5.37)

where W(b, b0, ω, ξ) is defined in (5.27). Hence we have to estimate:
∥

∥

∥
χΛL

(

R̃∞(b, b0, ω, ξ0)
)2
R∞(b, ω, ξ)

(

P(b) ·W(b, b0, ω, ξ)χΛL
− T̃2,∞(b, b0, ω, ξ)χΛL

)

∥

∥

∥

I1
.

In view of (5.27) and (2.9), P-a.s., there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R and
∀L ∈ (0,∞):

‖χΛL
R̃∞(b, b0, ω, ξ0)‖I2 , ‖W(b, b0, ω, ξ)χΛL

‖I2 , ‖T̃2,∞(b, b0, ω, ξ)χΛL
‖I2 ≤ |p(ξ)|L

3
2 . (5.38)

Then from (5.4) and (5.31), P-a.s., there exists another polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R

with |b− b0| small enough and ∀L ∈ (0,∞):

|ΛL|
−1|TrL2(R3){χΛL

r0(b, b0, ω, ξ)χΛL
}| ≤ |δb||p(ξ)|. (5.39)

Now consider the operator r1(b, b0, ω, ξ) := R∞(., ξ0)T̃∞(., ξ0)R∞(., ξ0)R∞(., ξ). From (5.37):

r1(b, b0, ω, ξ) = δbR∞(., ξ0)
(

P(.) ·W(., ξ0)− δbT̃2,∞(., ξ0)
)

R∞(., ξ0)R∞(., ξ)

Then by using (5.28) and the above arguments, we conclude that P-a.s., there exists a poly-
nomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R with |b− b0| small enough and ∀L ∈ (0,∞):

|ΛL|
−1|TrL2(R3){χΛL

r1(b, b0, ω, ξ)χΛL
}| ≤ |δb||p(ξ)|. (5.40)

This also holds for the last term of (5.35) and then |ΛL|
−1|TrL2(R3){χΛL

R̃0(b, b0, ω, ξ)χΛL
}| ≤

|δb||p(ξ)|. This together with (5.36) prove i) with j = 0. Let us show ii). From (5.17)-(5.18),
(5.30), (5.35) and Lemma 7.2 ii), then P-a.s., there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK ,
∀b ∈ R with |b− b0| small enough:

∀x ∈ R
3, |R̃0(x,x; b, b0, ω, ξ)| ≤ |δb||p(ξ)|(1 + |x|α).

This together with (5.36) imply:

|I0(0,0; b, ω, ξ) − I0(0,0; b0, ω, ξ)| ≤ |δb||p(ξ)|. (5.41)

Then ii) with j = 0 follows from (5.41) and the ω-independent estimate (5.15).
Let j = 1. Define the function on R

3:

Ĩ1(x,x; b, b0, ω, ξ) :=

∫

R3

dz R̃(1)
∞ (x, z; b, b0, ω, ξ)a(z − x) · (i∇z + ba(z))R̃(1)

∞ (z,x; b, b0, ω, ξ).

Due to (5.17)-(5.18) and (3.1), P-a.s., ∀(b, b0) ∈ R
2, ∀ξ ∈ ΓK , it is well-defined since by (3.17):

Ĩ1(x,x; b, b0, ω, ξ) =

∫

R3

dzR(1)
∞ (x, z; b0, ω, ξ)T1,∞(z,x; b0, ω, ξ)+

+ 2δb

∫

R3

dzR(1)
∞ (x, z; b0, ω, ξ)T2,∞(z,x; b0, ω, ξ). (5.42)
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From the definition (5.12) of I1, we replace the resolvent on the left and the one in T1,∞ (see
(1.12)) with the r.h.s. of (5.29). Then ∀x ∈ R

3:

I1(x,x; b, ω, ξ) − I1(x,x; b0, ω, ξ) = Ĩ1(x,x; b, b0, ω, ξ) − I1(x,x; b0, ω, ξ) + R̃1(x,x; b, b0, ω, ξ),

where R̃1(·, ·; b, b0, ω, ξ) := s0(·, ·; b, b0, ω, ξ) + s1(·, ·; b, b0, ω, ξ) and

s0(·, ·; b, b0, ω, ξ) :=
(

R∞(b, ω, ξ)T̃∞(b, b0, ω, ξ)T1,∞(b, ω, ξ)
)

(·, ·), (5.43)

s1(·, ·; b, b0, ω, ξ) :=

∫

R3

dz R̃(1)
∞ (·, z; b, b0, ω, ξ)a(z − ·)P(b)

(

R∞(b, ω, ξ)T̃∞(b, b0, ω, ξ)
)

(z, ·).

(5.44)

First by (5.42), we have for any x ∈ R
3:

Ĩ1(x,x; b, b0, ω, ξ)− I1(x,x; b0, ω, ξ) = 2δb
(

(R∞(b0, ω, ξ)T2,∞(b0, ω, ξ)
)

(x,x).

Then by (5.17)-(5.18), P-a.s., there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R, ∀x ∈ R
3:

|Ĩ1(x,x; b, b0, ω, ξ)− I1(x,x; b0, ω, ξ)| ≤ |δb||p(ξ)|. (5.45)

From (5.37), (5.43) is the diagonal part of the integral kernel of the bounded operator:

s0(b, b0, ω, ξ) :=
iδb

2
R∞(b, ω, ξ)

(

P(b) ·W(b, b0, ω, ξ)− δbT̃2,∞(b, b0, ω, ξ)
)

×
(

P1(b)R∞(b, ω, ξ)P2(b)− P2(b)R∞(b, ω, ξ)P1(b)
)

R∞(b, ω, ξ).

By using again the same arguments as above together with (5.1), (5.28) and (5.31), then P-a.s.
there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R with |b−b0| small enough and ∀L ∈ (0,∞):

|ΛL|
−1|TrL2(R3){χΛL

s0(b, b0, ω, ξ)χΛL
}| ≤ |δb||p(ξ)|. (5.46)

Similary to the proof of Lemma 5.7. Then (3.17), (5.9), (5.33) and (5.37), show that (5.44) is
the diagonal part of the integral kernel of the bounded operator :

s1(b, b0, ω, ξ) =
i

2
R̃∞(b, b0, ξ)

(

P1(b)R∞(b, ξ)P2(b)−P2(b)R∞(b, ξ)P1(b)
)

R∞(b, ξ)T̃∞(b, b0, ξ)+

+ δbR̃∞(b, b0, ξ)P(b)R∞(b, ξ)
(

2P(b)T̃2,∞(b, b0, ξ)− δbY(b, b0, ξ)
)

,

with Y(b, b0, ξ) the operator defined in (5.34). Due to (5.1), the first term in the above r.h.s.
can be treated exactly as the operator r0(b, b0, ω, ξ) at the beginning of this proof. For the

second term, we have (5.38) and under the same conditions, ‖Y(b, b0, ξ)χΛL
‖I2 ≤ |p(ξ)|L

3
2 .

Therefore P-a.s., there exists another polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R with |b− b0| small
enough and ∀L ∈ (0,∞):

|ΛL|
−1|TrL2(R3){χΛL

s1(b, b0, ω, ξ)χΛL
}| ≤ |δb||p(ξ)|.

Due to (5.46), this also holds for |ΛL|
−1|TrL2(R3){χΛL

R̃1(b, b0, ω, ξ)χΛL
}|. This together with

(5.45) prove i) with j = 1. Now consider (5.43)-(5.44). From (5.17)-(5.18) and Lemma 7.2 ii),
P-a.s., there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK , ∀b ∈ R, |b− b0| small enough:

∀x ∈ R
3, |R̃1(x,x; b, b0, ω, ξ)| ≤ |δb||p(ξ)|(1 + |x|α)2.

This together with (5.45) imply:

|I1(0,0; b, ω, ξ) − I1(0,0; b0, ω, ξ)| ≤ |δb||p(ξ)|. (5.47)

Then ii) follows from (5.47) and the ω-independent estimate (5.15). �
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6. Proof of Theorem 1.1 and Theorem 1.2

In the whole of this section, for any compact subset K of Dǫ and any β ∈ [β1, β2] ∈ R, ΓK

is defined for β = β2, so we will use η := min{E0 − EK ,
ϑK

2β2
}. We first give two important

points proven subsequently.

Proposition 6.1. i) P-a.s. on Ω, ∀b ∈ R, ∀0 < β1 < β2, ∀K compact subset of Dǫ, one has:

lim
L→∞

1

|ΛL|

∫

ΛL

dxL(ω)
∞,n(x,x;β, b, z, ǫ) = E

[

L(ω)
∞,n(0,0;β, b, z, ǫ)

]

n = 0, 1,

uniformly in (β, z) ∈ [β1, β2]×K.
ii) P-a.s. on Ω, ∀0 < β1 < β2, ∀K compact subset of Dǫ, one has:

lim
L→∞

1

|ΛL|

∫

ΛL

dxL
(ω)
∞,2(x,x;β, 0, z, ǫ) = E

[

L
(ω)
∞,2(0,0;β, 0, z, ǫ)

]

,

uniformly in (β, z) ∈ [β1, β2]×K.

Proposition 6.2. P-a.s. on Ω, ∀b ∈ R, ∀0 < β1 < β2, ∀K compact subset of Dǫ, one has:

lim
L→∞

1

|ΛL|

1

β

∣

∣

∣

∣

∫

ΛL

dx

(

∂nL
(ω)
L

∂bn
(x,x;β, b, z, ǫ) −L(ω)

∞,n(x,x;β, b, z, ǫ)

)∣

∣

∣

∣

= 0 n = 0, 1, 2, (6.1)

uniformly in (β, z) ∈ [β1, β2]×K.

6.1. Proof of Theorem 1.1.

6.1.1. Proof of i). The results follow from Propositions 6.1 and 6.2, with the simple relation:

X
(ω)
L,n(β, b, z, ǫ) =

(

q

c

)n ǫ

β|ΛL|

∫

ΛL

dx

(

∂nL
(ω)
L

∂bn
(x,x;β, b, z, ǫ) − L(ω)

∞,n(x,x;β, b, z, ǫ)

)

+

+

(

q

c

)n ǫ

β|ΛL|

∫

ΛL

dxL(ω)
∞,n(x,x;β, b, z, ǫ). (6.2)

6.1.2. Proof of ii). Define the operator on L2(R3):

J (ω)
∞ (β, b, z, ǫ) :=

i

2π

∫

ΓK

dξ
ze−βξ

1 + ǫze−βξ
R∞(b, ω, ξ),

Since the function ξ 7→ ze−βξ

1+ǫze−βξ is also exponentially decreasing on ΓK when |ℜξ| → ∞, the

study of the operator J
(ω)
∞ (β, b, z, ǫ) is therefore similar to the one of L

(ω)
∞,0(β, b, z, ǫ). Then we

deduce that P-a.s., ∀0 < β1 < β2, ∀b ∈ R and for any compact subset K of Dǫ:

ρ∞(β, b, z, ǫ) := lim
L→∞

ρ
(ω)
L (β, b, z, ǫ) = E[J (ω)

∞ (0,0;β, b, z, ǫ)], (6.3)

uniformly in (β, z) ∈ [β1, β2]×K. Here J
(ω)
∞ (· , · ;β, b, z, ǫ) is the integral kernel of J

(ω)
∞ (β, b, z, ǫ).

Let K ′ be the interior of K which is supposed nonempty. Fix z0 ∈ K ′. Let z ∈ K near z0.

Since P-a.s., ∀β > 0 and ∀b ∈ R, P
(ω)
L (β, b, · , ǫ) is an analytic function on Dǫ, then:

P
(ω)
L (β, b, z, ǫ) = P

(ω)
L (β, b, z0, ǫ) + (z − z0)

1

βz0
ρ
(ω)
L (β, b, z0, ǫ) + o((z − z0)). (6.4)
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Notice that since ‖RL(b, ω, ξ)‖ ≤ c,∀ξ ∈ ΓK and L ∈ (0,∞], the third term in the r.h.s. of
(6.4) is L-independent. It follows from Theorem 1.1 i), P-a.s., ∀β > 0, ∀b ∈ R and for z ∈ K
near z0, the following identity between non-random limits:

P∞(β, b, z, ǫ) − P∞(β, b, z0, ǫ) = (z − z0)
1

βz0
E[J (ω)

∞ (0,0;β, b, z0 , ǫ)] + o(z − z0).

So P∞(β, b, · , ǫ) is analytic in z0, and βz0
∂P∞
∂z (β, b, z0, ǫ) = E[J

(ω)
∞ (0,0;β, b, z0, ǫ)].

6.1.3. Proof of iii). Let α ∈ (0, 13) and b0 ∈ R be fixed. Since P-a.s., ∀β > 0 and ∀z ∈ Dǫ,

b 7→ P
(ω)
L (β, b, z, ǫ) is a C∞-function, then for b ∈ R near b0:

P
(ω)
L (β, b, z, ǫ) = P

(ω)
L (β, b0, z, ǫ) + (b− b0)

c

q
X

(ω)
L,1 (β, b0, z, ǫ) + o((b− b0)).

In virtue of Remark 6.5 below, the third term in the r.h.s. of the above equality is uniformly
bounded in L ∈ (0,∞). It follows from Theorem 1.1 i), P-a.s., ∀β > 0, ∀z ∈ Dǫ and for b ∈ R

sufficiently close to b0, the following relation:

P∞(β, b, z, ǫ) − P∞(β, b0, z, ǫ) = (b− b0)
c

q
X∞,1(β, b0, z, ǫ) + o((b− b0)).

Then P∞(β, · , z, ǫ) is differentiable at b0 and ∂P∞
∂b (β, b0, z, ǫ) = ( cq )X∞,1(β, b0, z, ǫ).

6.2. Proof of Theorem 1.2. i) follows from (6.2) for n = 2 and b = 0, Propositions 6.1 ii)

and 6.2. Let us prove ii). Let α ∈ (0, 14). Since P-a.s. ∀β > 0 and ∀z ∈ Dǫ, b 7→ X
(ω)
L,1 (β, b, z, ǫ)

is a C∞-function near b0 = 0, then for real b sufficiently small:

X
(ω)
L,1 (β, b, z, ǫ) = X

(ω)
L,1 (β, 0, z, ǫ) + b

c

q
X

(ω)
L,2 (β, 0, z, ǫ) + o(b).

From Remarks 4.4 and 6.5, the last term in the r.h.s. of this equality is uniformly bounded in
L ∈ (0,∞). it follows from Theorems 1.1 i) and 1.2 i):

X∞,1(β, b, z, ǫ) − X∞,1(β, 0, z, ǫ) = b
c

q
X∞,2(β, 0, z, ǫ) + o(b).

Then together with Theorem 1.1 iii), this implies that P∞(β, · , z, ǫ) is twice differentiable near

b = 0 and ∂2P∞
∂b2 (β, 0, z, ǫ) = ( cq )

2X∞,2(β, 0, z, ǫ).

6.3. Proof of Proposition 6.1. By Corollary 5.4, we can apply the Birkhoff-Khintchine

theorem [21, Prop. 1.13] to (ω,x) 7→ L
(ω)
∞,n(x,x;β, b, z, ǫ), n = 0, 1, 2. Then implies that P-a.s.,

for any β > 0 and z ∈ K:

lim
L→∞

1

|ΛL|

∫

ΛL

dxL(ω)
∞,n(x,x;β, b, z, ǫ) = E

[

L(ω)
∞,n(0,0;β, b, z, ǫ)

]

n = 0, 1, 2.

But this is not sufficient to prove Proposition 6.1. Consider the case of n = 0. In view of (5.23)
and Proposition 5.3, we can use the Birkhoff-Khintchine theorem for (x, ω) → I0(x,x; b, ω, ξ).
∀b ∈ R and ∀ξ ∈ ΓK , there exists Ωξ,b ⊂ Ω with P(Ωξ,b) = 1 s.t. ∀ω ∈ Ωξ,b:

lim
L→∞

1

|ΛL|

∫

ΛL

dx I0(x,x; b, ω, ξ) = E
[

I0(0,0; b, ω, ξ)
]

. (6.5)

Now choose a countable dense subset of ΓK , Γc := {ξi, i ∈ N}. Then ∀b ∈ R, there exists
Ωb ⊂ Ω with P(Ωb) = 1 s.t. ∀ω ∈ Ωb and ∀ξi ∈ Γc, (6.5) holds. Next we use Proposition 5.5 i):
∀b ∈ R, there exists Ω′

b ⊂ Ωb with P(Ω′
b) = 1 s.t. ∀ω ∈ Ω′

b, the map ξ ∈ ΓK → ςL(b, ω, ξ) :=
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1
|ΛL|

∫

ΛL
dx I0(x,x; b, ω, ξ) is continuous uniformly in L ∈ (0,∞). Let ξ ∈ ΓK . Then ∀ε > 0

there exists ξi ∈ Γc s.t. ∀L ∈ (0,∞), |ςL(b, ω, ξ) − ςL(b, ω, ξi)| ≤ ε. On the other hand by
Proposition 5.5 ii), ξi can also be chosen s.t. |E

[

I0(0,0; b, ω, ξ)
]

− E
[

I0(0,0; b, ω, ξi)
]

| ≤ ε.
Then taking the real part we get:

ℜ{E
[

I0(0,0; b, ω, ξ)
]

} − 2ε ≤ lim inf
L

ℜ{ςL(b, ω, ξ)} ≤

lim sup
L

ℜ{ςL(b, ω, ξ)} ≤ ℜ{E
[

I0(0,0; b, ω, ξ)
]

}+ 2ε.

Obviously, this also holds true for the imaginary part. Consequently ∀b ∈ R, ∀ω ∈ Ω′
b, (6.5)

holds ∀ξ ∈ ΓK . We can repeat the same arguments as above to remove the b-dependance but
with the use of Proposition 5.6. Then we conclude that P-a.s., ∀b ∈ R and ∀ξ ∈ ΓK (6.5)
holds true. Notice that since P-a.s., ∀b ∈ R and ∀ξ ∈ ΓK the integral kernel of I0(b, ω, ξ) is
uniformly bounded by a constant independent of ω and ξ, therefore we have:

i

2π

∫

ΓK

dξ (ξ − ξ0)
2fǫ(β, z; ξ)E

[

I0(0,0; b, ω, ξ)
]

= E
[

L
(ω)
∞,0(0,0;β, b, z, ǫ)

]

.

Afterwards consider the quantity:

Q0(β, b, z, ǫ) :=
i

2π

∫

ΓK

dξ (ξ−ξ0)
2fǫ(β, z; ξ)

(

1

|ΛL|

∫

ΛL

dx I0(x,x; b, ω, ξ)−E
[

I0(0,0; b, ω, ξ)
]

)

.

Then by using (4.2) there exists a constant c = c(β1,K) > 0 s.t. ∀ β ∈ [β1, β2] and ∀ z ∈ K:

|Q0(β, b, z, ǫ)| ≤ c

∫

ΓK

|dξ| |ξ − ξ0|
2e−β1ℜξ

∣

∣

∣

∣

1

|ΛL|

∫

ΛL

dx I0(x,x; b, ω, ξ) − E
[

I0(0,0; b, ω, ξ)
]

∣

∣

∣

∣

.

In view of (6.5), this proves the proposition for n = 0.
Similary we consider the case of n = 1 from (5.24). in view of Propositions 5.3, 5.5 and 5.6,

P-a.s., ∀b ∈ R and ∀ξ ∈ ΓK , (6.5) also holds true if we consider now the kernel I1(x,x; b, ω, ξ)
instead of I0(x,x; b, ω, ξ). Hence, following the proof for the case of n = 0 step by step, we
conclude the proof for the case of n = 1.This proves i). ii) also follows by the same arguments
but we disregard the b-dependence since we only treat the zero-field case.

6.4. Proof of Proposition 6.2. Let L > 0 and κ > 0. We use the decomposition:

ΛL = (ΛL \ Λκ) ∪ Λκ with Λκ := {x ∈ ΛL : d(x) < κ}, (6.6)

where we set d(x) := dist(x, ∂ΛL). Note that the definition (6.6) implies:

|Λκ| = O(L2) when L→ ∞. (6.7)

Hereafter we denote by χΛκ the characteristic function of Λκ.

Lemma 6.3. P-a.s. on Ω, ∀b ∈ R, ∀0 < L <∞ and ∀ξ ∈ ΓK , then:

i) x 7→
(

R
(1)
L (x,y; b, ω, ξ)−R

(1)
∞ (x,y; b, ω, ξ)

)
∣

∣

y=x
and x 7→

(

(i∇x+ ba(x))(R
(1)
L (x,y; b, ω, ξ)−

R
(1)
∞ (x,y; b, ω, ξ))

)∣

∣

y=x
are continuous functions on ΛL \ Λκ.

ii) There exists a constant γ > 0 and a polynomial p(· ) both L-independent s.t. on Λ2
L \DL:

|R
(1)
L (x,y; b, ω, ξ) −R(1)

∞ (x,y; b, ω, ξ)|

≤ |p(ξ)|(1 + |x|α + |y|α)e
− γ

1+|ξ| |x−y|
(

χΛκ(x)

|x− y|
+
χΛκ(y)

|x− y|
+ e

− γ
1+|ξ| (d(x)+d(y))

)

, (6.8)
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|(i∇x + ba(x))(R
(1)
L (x,y; b, ω, ξ) −R(1)

∞ (x,y; b, ω, ξ))|

≤ |p(ξ)|(1 + |x|α + |y|α)2e
− γ

1+|ξ| |x−y|
(

χΛκ(x)

|x− y|2
+
χΛκ(y)

|x− y|2
+ e

− γ
1+|ξ| (d(x)+d(y))

)

. (6.9)

Proof. Under the conditions of Lemma 6.3 and from the Green’s identity, we have on Λ2
L \DL:

R
(1)
L (x,y; b, ω, ξ)−R(1)

∞ (x,y; b, ω, ξ) = −
1

2

∫

∂ΛL

dσ(z)R(1)
∞ (x, z; b, ω, ξ)[nz ·∇zR

(1)
L (z,y; b, ω, ξ)],

where dσ(z) is the measure on ∂ΛL and nz the outer normal to ∂ΛL. From (2.9), Lemma 2.4
and since z ∈ ∂ΛL, then P-a.s., ∀b ∈ R there exists a constant γ > 0 and a polynomial p(· )
s.t. ∀ξ ∈ ΓK the integrand in the r.h.s. is a continuous function on (ΛL \ Λκ)

2 satisfying
∫

∂ΛL

dσ(z)
∣

∣

∣
R(1)

∞ (x, z; b, ω, ξ)[nz · ∇zR
(1)
L (z,y; b, ω, ξ)]

∣

∣

∣

≤ |p(ξ)|(1 + |x|α + |y|α)e
− γ

1+|ξ| |x−y|
e
− γ

1+|ξ| (d(x)+d(y))
. (6.10)

Then (6.10) together with (2.9) imply (6.8). We also have on Λ2
L \DL:

(i∇x + ba(x))(R
(1)
L (x,y; b, ω, ξ) −R(1)

∞ (x,y; b, ω, ξ)) =

−
1

2

∫

∂ΛL

dσ(z) (i∇x + ba(x))R(1)
∞ (x, z; b, ω, ξ)[nz · ∇zR

(1)
L (z,y; b, ω, ξ)],

Then Lemma 2.4 together with the above arguments show that (i∇x+ba(x))(R
(1)
L (· , · ; b, ω, ξ)−

R
(1)
∞ (· , · ; b, ω, ξ)) is also a continuous function on (ΛL \ Λκ)

2 and (6.9) holds. �

Remark 6.4. Definitions (3.2) and (3.3) then imply the following estimates. Under the same
conditions as Lemma 6.3, ∀(x,y) ∈ (ΛL × ΛL) \DL and for j = 1, 2:

|Tj,L(x,y; b, ω, ξ) − Tj,∞(x,y; b, ω, ξ)|

≤ |p(ξ)|(1 + |x|α + |y|α)2e
− γ

1+|ξ| |x−y|
(

χΛκ(x)

|x− y|
+
χΛκ(y)

|x− y|
+ e

− γ
1+|ξ| (d(x)+d(y))

)

, (6.11)

for another constant γ > 0 and polynomial p(· ).

6.4.1. The case of n=0. Under the conditions of Proposition 6.2, we have:

1

|ΛL|

1

β

∫

ΛL

dx
(

L
(ω)
L (x,x;β, b, z, ǫ) − L

(ω)
∞,0(x,x;β, b, z, ǫ)

)

=

1

β

1

L3

i

2π

(
∫

ΓK

dξ fǫ(β, z; ξ)

∫

ΛL\Λκ

dx
(

R
(1)
L (x,y; b, ω, ξ) −R(1)

∞ (x,y; b, ω, ξ)
)
∣

∣

y=x
+

∫

ΓK

dξ (ξ−ξ0)fǫ(β, z; ξ)

∫

Λκ

dx (RL(b, ω, ξ0)RL(b, ω, ξ))(x,x)−(R∞(b, ω, ξ0)R∞(b, ω, ξ))(x,x)

)

.

Here we have used the first resolvent equation and the integral Cauchy formula to rewrite the
second term of the r.h.s. of this expression. From Remark 2.2 and (4.2) this second term is
bounded above by c × |Λκ| for some constant c = c(β1,K) > 0. On the other hand, due to
(6.8), a straightforward calculus leads to:

∣

∣

∣

∣

∫

ΛL\Λκ

dx
(

R
(1)
L (x,y; b, ω, ξ) −R(1)

∞ (x,y; b, ω, ξ)
)
∣

∣

y=x

∣

∣

∣

∣

≤ |p(ξ)|L2+α,
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for another polynomial p(· ). Hence as in the proof of Proposition 6.1, then P-a.s., ∀β ∈ [β1, β2],
∀b ∈ R, ∀z ∈ K and for L sufficiently large:

∣

∣

∣

∣

1

|ΛL|

∫

ΛL

dx
(

L
(ω)
L (x,x;β, b, z, ǫ) − L

(ω)
∞,0(x,x;β, b, z, ǫ)

)

∣

∣

∣

∣

≤ c
1

L1−α
,

for some constant c = c(β1, b,K) > 0. This proves the case of n = 0.

6.4.2. The cases of n=1,2. For any b ∈ R, L ∈ (0,∞] and ξ ∈ ΓK , introduce the notations:

KL,j(x, z) = KL,j(x, z; b, ω, ξ) := (−1)j+1R
(1)
L (x, z; b, ω, ξ)Tj,L(z,x; b, ω, ξ) j = 1, 2,

where (x, z) ∈ Λ2
L and x 6= z. Furthermore for j = 1, 2 set:

u
(ω)
L,j(b, ξ) :=

∫

ΛL

dx

∫

ΛL

dzKL,j(x, z), u
(ω)
∞,j(b, ξ) :=

∫

ΛL

dx

∫

ΛL

dzK∞,j(x, z), (6.12)

v
(ω)
∞,j(b, ξ) :=

∫

ΛL

dx

∫

R3\ΛL

dzK∞,j(x, z).

Obviously we have the following estimate:
∣

∣

∣

∣

∫

ΛL

dx

(
∫

ΛL

dzKL,j(x, z) −

∫

R3

dzK∞,j(x, z)

)
∣

∣

∣

∣

≤ |u
(ω)
L,j(b, ξ)− u

(ω)
∞,j(b, ξ)|+ |v

(ω)
∞,j(b, ξ)|.

We want to estimate each term in the above r.h.s. Firstly let us prove the following result.
P-a.s., ∀b ∈ R, there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK and for large L:

|u
(ω)
L,j(b, ξ)− u

(ω)
∞,j(b, ξ)| ≤ |p(ξ)|L2+2α. (6.13)

With our previous notations we have:

u
(ω)
L,j(b, ξ)− u

(ω)
∞,j(b, ξ) =

∫

ΛL

dx

∫

ΛL

dz
(

KL,j(x, z) −K∞,j(x, z)
)

. (6.14)

By leaving out the dependence on b, ω and ξ for the kernels, we have for j = 1, 2:

|KL,j(x, z)−K∞,j(x, z)| ≤ |(R
(1)
L −R(1)

∞ )(x, z)Tj,L(z,x)|+|R(1)
∞ (x, z)(Tj,L−Tj,∞)(z,x)|. (6.15)

In view of (6.15), let us estimate the r.h.s of (6.14). By (5.18)-(5.17) for L = ∞, (6.8) and
(6.11), then P-a.s., ∀b ∈ R there exists a constant γ > 0 and a polynomial p(· ) s.t. ∀ξ ∈ ΓK ,
for L large and ∀(x, z) ∈ Λ2

L \DL:

|KL,j(x, z)−K∞,j(x, z)| ≤ |p(ξ)|L2α(
χΛκ(x)

|x − z|
+
χΛκ(z)

|x− z|
+e

− γ
1+|ξ| (d(z)+d(x))

)
e
−2 γ

1+|ξ| |x−z|

|x− z|
. (6.16)

Put the estimate (6.16) in the r.h.s. of (6.14) and a straightforward computation leads to
(6.13). On the other hand from (5.18)-(5.17), we have:

∀ ξ ∈ ΓK , |K∞,j(x, z)| ≤ |p(ξ)|(1 + |z|α)
e
− γ

1+|ξ| |x−z|

|x− z|2
,

for another γ > 0 and polynomial p(· ). We now use that there exists a constant c > 0 s.t.:

∀γ > 0, ∀L ∈ (0,∞),

∫

ΛL

dx

∫

R3\ΛL

dz
e−γ|x−z|

|x− z|k
≤ cγ−(2+k)L2 k = 1, 2.

Then P-a.s., ∀b ∈ R, there exists another polynomial p(· ) s.t. ∀ξ ∈ ΓK and for large L:

|v
(ω)
∞,j(b, ξ)| ≤ |p(ξ)|L2+α. (6.17)
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Then (6.13)-(6.17) imply:
∣

∣

∣

∣

∫

ΛL

dx

(
∫

ΛL

dzKL,j(x, z) −

∫

R3

dzK∞,j(x, z)

)
∣

∣

∣

∣

≤ |p(ξ)|L2+2α. (6.18)

From this analysis we conclude the case of n = 1. Indeed from (6.13)-(6.17), P-a.s., ∀b ∈ R

there exists a constant c = c(β1,K, b) > 0 s.t. ∀β ∈ [β1, β2], ∀z ∈ K and large L:

∣

∣

∣

∣

1

|ΛL|

∫

ΛL

dx

(

∂L
(ω)
L

∂b
(x,x;β, b, z, ǫ) − L

(ω)
∞,1(x,x;β, b, z, ǫ)

)
∣

∣

∣

∣

≤
1

|ΛL|

∫

ΓK

|dξ||fǫ(β, z; ξ)|

∣

∣

∣

∣

∫

ΛL

dx

(
∫

ΛL

dzKL,1(x, z) −

∫

R3

dzK∞,1(x, z)

)
∣

∣

∣

∣

≤ c
1

L1−2α
.

We now complete the proof of the proposition. Define for any b ∈ R, L ∈ (0,∞] and ξ ∈ ΓK :

KL,3(x,Z) := R
(1)
L (x, z1; b, ω, ξ)T1,L(z1, z2; b, ω, ξ)T1,L(z2,x; b, ω, ξ),

where Z := (z1, z2), (x, z1, z2) ∈ Λ3
L and x 6= z1 6= z2. Introduce the quantities u

(ω)
L,3(b, ξ), u

(ω)
∞,3(b, ξ)

as in (6.12) but with KL,3(x,Z) instead of KL,j(x,Z), j = 1, 2 and integrating w.r.t. the mea-
sure dxdZ. Moreover set:

v
(ω)
∞,3(b, ξ) :=

∫

ΛL

dx

{
∫

R3\ΛL

dz1

∫

R3

dz2 K∞,3(x,Z) +

∫

ΛL

dz1

∫

R3\ΛL

dz2K∞,3(x,Z)

}

.

(6.19)

Let us estimate u
(ω)
L,3(b, ξ)−u

(ω)
∞,3(b, ξ) with the same method as above. (6.15) is replaced with:

|KL,3(x,Z)−K∞,3(x,Z)| ≤ |(R
(1)
L −R(1)

∞ )(x, z1)T1,L(z1, z2)T1,L(z2,x)|+

|R(1)
∞ (x, z1)(T1,L − T1,∞)(z1, z2)T1,L(z2,x)|+ |R(1)

∞ (x, z1)T1,∞(z1, z2)(T1,L − T1,∞)(z2,x)|.

Here it is convenient to set z0 = z3 = x. By using (5.18), (5.17) together with (6.8), (6.9),
then P-a.s., ∀b ∈ R there exists a constant γ > 0 and a polynomial p(· ) s.t. ∀ξ ∈ ΓK , for large
L and ∀(x,Z) ∈ Λ3

L with x 6= z1 6= z2:

|KL,3(x,Z)−K∞,3(x,Z)| ≤ |p(ξ)|L3αe
− γ

1+|ξ|
∑2

l=0 |zl−zl+1|×

× (

2
∏

l=0

1

|zl+1 − zl|
)

2
∑

l=0

(χΛκ(zl) + |zl+1 − zl|e
− γ

1+|ξ| (d(zl+1)+d(zl))). (6.20)

So from (6.20) by a tedious computation, we obtain that P-a.s., ∀b ∈ R, there exists another
polynomial p(· ) s.t. ∀ξ ∈ ΓK and for large L:

|u
(ω)
L,3(b, ξ) − u

(ω)
∞,3(b, ξ)| ≤ |p(ξ)|L2+3α. (6.21)

We also have the estimate:

|K∞,3(x,Z)| ≤ |p(ξ)|(1 + |z1|
α)(1 + |z2|

α)(

2
∏

l=0

1

|zl+1 − zl|
)e

− γ
2(1+|ξ|)

∑2
l=0 |zl−zl+1|,

for another constant γ > 0 and polynomial p(· ). In view of (6.19), by some straightforward
estimates, P-a.s., ∀b ∈ R, there exists another polynomial p(· ) s.t. ∀ ξ ∈ ΓK and large L:

|v
(ω)
∞,3(b, ξ)| ≤ |p(ξ)|L2+2α. (6.22)
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Consequently,
∣

∣

∣

∣

∫

ΛL

dx

(
∫

Λ2
L

dZKL,3(x,Z)−

∫

R3

dZK∞,3(x,Z)

)∣

∣

∣

∣

≤ |p(ξ)|L2+3α. (6.23)

Let us prove the case n = 2. From (6.18) and (6.23), P-a.s., ∀b ∈ R there exists a constant
c = c(β1,K, b) > 0 s.t. ∀β ∈ [β1, β2], ∀z ∈ K and for large L:

∣

∣

∣

∣

1

|ΛL|

∫

ΛL

dx

(

∂2L
(ω)
L

∂b2
(x,x;β, b, z, ǫ) − L

(ω)
∞,2(x,x;β, b, z, ǫ)

)∣

∣

∣

∣

≤
1

|ΛL|

∫

ΓK

|dξ||fǫ(β, z; ξ)|

{∣

∣

∣

∣

∫

ΛL

dx

(
∫

Λ2
L

dZKL,3(x,Z)−

∫

R6

dZK∞,3(x,Z)

)∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ΛL

dx

(
∫

ΛL

dzKL,2(x, z)−

∫

R3

dzK∞,2(x, z)

)
∣

∣

∣

∣

}

≤ c
1

L1−3α
. (6.24)

Since we suppose that 0 < α < 1
3 , the proposition follows. �

Remark 6.5. (6.18), (6.23) and (4.5) show that the finite-volume magnetization and suscep-
tibility, if they are defined, are uniformly bounded in L provided that α ∈ (0, 13). In fact these

considerations can be extended to estimate X
(ω)
L,3 (β, b, z, ǫ) in (4.15). Indeed let:

2
∑

j=1

(
∫

ΛL

dxU
(ω)
L,j (x,x; b, ξ) −

∫

ΛL

dxU
(ω)
∞,j(x,x; b, ξ)

)

, (6.25)

where U
(ω)
L,j (· , · ; b, ξ) are defined in (4.16) and U

(ω)
∞,j(· , · ; b, ξ) are defined in the same way but

with L = ∞. (6.25) can be estimate as above. In that case, handling heavy technicalities, we
can show that P-a.s., ∀b ∈ R there exists a polynomial p(· ) s.t. ∀ξ ∈ ΓK , the quantity in (6.25)
is bounded above by |p(ξ)|L2+4α. It follows that if α ∈ (0, 14), then (4.15) and (4.2) imply that

P-a.s., ∀β > 0, ∀b ∈ R and ∀z ∈ K, X
(ω)
L,3 (β, b, z, ǫ) is also bounded uniformly in L ∈ (0,∞).

7. Appendix

7.1. Proof of Lemma 2.4. For all L ∈ (0,∞] and b ∈ R denote by GL(· , · ; t, b) the integral

kernel of the strongly continuous semigroup {e−tH0,L(b), t > 0}; here H0,L(b), L < ∞, L = ∞

is the free operator defined respectively in (1.5) and (1.6) with V (ω) = 0. It is known that
GL(· , · ; t, b) is smooth and obeys, see [4, Eq. (2.31) & (4.13)]:

∀(x,y) ∈ Λ2
L, |(i∇x + ba(x))GL(x,y; t, b)| ≤ c(1 + |b|)3(1 + t)5t−2e−

|x−y|2
16t , (7.1)

where c > 0 is a L-independent constant. Let λ < min{0, E0}. By using the Laplace transform
[15, Eq. (2.5)] in the kernels sense, we get on Λ2

L \DL:

(i∇x + ba(x))R
(1)
0,L(x,y; b, λ) =

∫ +∞

0
dt eλt(i∇x + ba(x))GL(x,y; t, b), (7.2)

where R
(1)
0,L(· , · ; b, λ) denotes the integral kernel of R0,L(b, λ) := (H0,L(b) − λ)−1, L ∈ (0,∞].

Due to (7.1), (7.2) is well-defined and the function (x,y) 7→ (i∇x + ba(x))R
(1)
0,L(x,y; b, λ) is
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jointly continuous on Λ2
L \DL. Besides, there exists a constant c = c(λ) > 0 s.t.:

∀(x,y) ∈ Λ2
L \DL, |(i∇x + ba(x))R

(1)
0,L(x,y; b, λ)| ≤ c(1 + |b|)3

e
−

√
−λ

2
√

2
|x−y|

|x− y|2
. (7.3)

Now P-a.s., ∀b ∈ R, ∀λ < min{0, E0} and ∀L ∈ (0,∞], the second resolvent equation:

RL(b, ω, λ) = R0,L(b, λ) −R0,L(b, λ)V
(ω)RL(b, ω, λ), (7.4)

holds in the bounded operators sense. Indeed, P-a.s., ∀b ∈ R, V (ω)RL(b, ω, λ) is bounded if

L <∞. When L = ∞, R0,∞(b, λ)V (ω)R∞(b, ω, λ) is defined as the closure of the same operator
defined on the domain (H∞(b, ω)− λ)C∞

0 (R3) which is dense in L2(R3). Hence, we have

(i∇x + ba(x))R
(1)
L (x,y; b, ω, λ) = (i∇x + ba(x))R

(1)
0,L(x,y; b, λ) −ML(x,y; b, ω, λ), (7.5)

ML(x,y; b, ω, λ) :=

∫

ΛL

dz (i∇x + ba(x))R
(1)
0,L(x, z; b, λ)V

(ω)(z)R
(1)
L (z,y; b, ω, λ).

According to the decomposition V (ω) = V
(ω)
1 + V

(ω)
2 , set on Λ2

L \DL:

ML(x,y; b, ω, λ) = ML,1(x,y; b, ω, λ) +ML,2(x,y; b, ω, λ).

From (2.9), (7.3), Lemma 7.4 with (R1) if l = 1 and, Lemma 7.1 i) with (1.3) if l = 2 together
with (7.2) and (7.4) imply P-a.s., ∀b ∈ R, ∀λ < min{0, E0}, ∀L ∈ (0,∞] and ∀(x,y) ∈

Λ2
L \ DL, (i∇x + ba(x))R

(1)
0,L(x, · ; b, λ)V

(ω)
l (· )R

(1)
L (· ,y; b, ω, λ) ∈ L1(ΛL) ∀(x,y) ∈ Λ2

L \ DL.

From Lemmas 7.1 and 7.4 then (x,y) 7→ ML,l(x,y; b, ω, λ) are jointly continuous on Λ2
L \DL.

Therefore this also holds for (x,y) 7→ (i∇x + ba(x))R
(1)
L (x,y; b, ω, λ).

On the other hand, from Lemmas 7.2 and 7.3 together with (2.9), (7.3) and the inequality:

|x− z|−1|z− y|−1 ≤ |x− y|−1(|x− z|−1 + |z− y|−1) x 6= y 6= z, (7.6)

then there exists a constant c > 0 s.t.:

∀(x,y) ∈ Λ2
L \DL, |ML,1(x,y; b, ω, λ)| ≤ c(1 + |b|)3

e−c
′
(λ)|x−y|

|x− y|
, (7.7)

where c
′
(λ) := 1

2 min{
√
−λ

2
√
2
, γ
1+|λ|} = 1

2
γ

1+|λ| if λ < 0 is chosen large enough. From (1.3), (2.9),

(7.3) together with (7.6), then there exists c > 0 s.t.:

∀(x,y) ∈ Λ2
L \DL, |ML,2(x,y; b, ω, λ)| ≤ c(1 + |b|)3(1 + |x|α + |y|α)

e−
c
′
(λ)
4

|x−y|

|x− y|
. (7.8)

Therefore in view of (7.5), then (7.3) together with (7.7) and (7.8) imply that P-a.s., ∀λ <
min{0, E0}, there exists c > 0 s.t. ∀L ∈ (0,∞], ∀b ∈ R, we have on Λ2

L \DL:

|(i∇x + ba(x))R
(1)
L (x,y; b, ω, λ)| ≤ c(1 + |b|)3(1 + |x|α + |y|α)

e−
c
′
(λ)
8

|x−y|

|x− y|2
. (7.9)

Now the first resolvent equation allows us to write ∀(x,y) ∈ Λ2
L \DL:

(i∇x + ba(x))R
(1)
L (x,y; b, ω, ξ) = (i∇x + ba(x))R

(1)
L (x,y; b, ω, λ) +NL(x,y; b, ω, ξ, λ),

NL(x,y; b, ω, ξ, λ) := (ξ − λ)

∫

ΛL

dz (i∇x + ba(x))R
(1)
L (x, z; b, ω, λ)R

(1)
L (z,y; b, ω, ξ). (7.10)
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Due to (2.9), (7.9) and Lemma 7.1 i), P-a.s., ∀b ∈ R, ∀L ∈ (0,∞], ∀η > 0, ∀λ < min{0, E0},
and ∀ξ ∈ C s.t. d(ξ) ≥ η, (x,y) 7→ NL(x,y; b, ω, ξ, λ) is jointly continuous on Λ2

L \DL. This
proves Lemma 2.4 i). ii) follows from (2.9), (7.9) and the fact that for |λ| large enough, there

exists γ′ > 0 s.t. ∀ξ ∈ C, d(ξ) ≥ η, min{ c
′
(λ)
16 , γ

1+|ξ|} ≥ γ′

1+|ξ| . �

7.2. Some kernel estimates. Here we give some useful estimates needed in this paper.

Lemma 7.1. Let U ⊆ R
3 be an open set and D := {(x,y) ∈ U2 : x = y}.

Let Kl(· , · ) : U
2 \D → C, l = 1, 2 be integral kernels satisfying:

(h1) K1(· , z) and K2(z, · ) are continuous on U \ {z} for almost all z ∈ U .
(h2) There exists real numbers cl, γl > 0 and νl, µl ≥ 0 as well as δl ∈ [0, 3) s.t.:

∀(x,y) ∈ U2 \D, |Kl(x,y)| ≤ cl(|x|
νl + |y|µl)

e−γl|x−y|

|x− y|δl
l = 1, 2. (7.11)

Then:
i) K1(x, · )K2(· ,y) ∈ L1(U) for all (x,y) ∈ U2 \D. Furthermore the map:
(x,y) 7→ K(x,y) :=

∫

U dzK1(x, z)K2(z,y) is jointly continuous on U2 \D.

ii) Under the additional assumption δ1 + δ2 ∈ [0, 3), K1(x, · )K2(· ,x) ∈ L1(U) for all x ∈ U .
Moreover x 7→ K(x,x) is continuous on U .

This result is obtained by using standard arguments, see e.g. [9, Sect. 3].

Lemma 7.2. Consider the assumptions (h1)-(h2) of Lemma 7.1 but with µl, νl = 0.
i) Let δl = 1, 2 and γ := min{γ1, γ2}. Then there exists a constant c > 0 s.t. on U2:
∫

U
dz |K1(x, z)K2(z,y)| ≤

c

γ
e−

γ
2
|x−y| ×

{

1
|x−y|−min{δ1,δ2} if δ1, δ2 6= 1 and x 6= y

1 if δ1, δ2 = 1
. (7.12)

ii) Let γl = γ and δl = l, l = 1, 2. Then ∀k ≥ 2 there exists a constant c > 0 s.t. on U2:
∫

Uk

dz1 · · · dzk |K1(x, z1)K1(z1, z2) · · ·K1(zk,y)| ≤
c

γ2k−1
e
− γ

2k
|x−y|

, (7.13)

∫

Uk

dz1 · · · dzk |K1(x, z1)K2(z1, z2) · · ·K2(zk,y)| ≤
c

γk
e
− γ

2k
|x−y|

|x− y|
if x 6= y. (7.14)

Proof. The main ingredient is the following estimate. For all γ > 0 and δ ∈ [0, 3),

sup
x∈U

∫

R3

dy
e−γ|x−y|

|x− y|δ
=

∫ ∞

0
dr r2−δe−γr =

Γ(3− δ)

γ3−δ
, (7.15)

where Γ(· ) denotes the usual Gamma Euler function. When δ1 = δ2 = 1, we have:

∀(x,y) ∈ U2,

∫

U
dz |K1(x, z)K2(z,y)| ≤ c1c2e

− γ
2
|x−y|

∫

R3

dz
e−

γ1
2
|x−z|

|x− z|

e−
γ2
2
|z−y|

|z− y|
.

Then by the Cauchy-Schwarz inequality and (7.15), (7.12) follows. Similarly we get the cases
of δ1 = 2, δ2 = 1 and δ1 = δ2 = 2 from (7.6) combined with (7.15).
The estimates (7.13) and (7.14) are obtained by induction from the above arguments. �

Lemma 7.3. Let γ > 0, δ ∈ (0, 3) and p > 3
(3−δ) . Suppose that V ∈ Lp

uloc(R
3). Then ∀x ∈ R

3,

V (·)e−γ|x−· ||x− · |−δ ∈ L1(R3), and there exists a constant c = c(γ, δ, ‖V ‖p,uloc) > 0 s.t.:

sup
x∈R3

‖V (· )e−γ|x−· ||x− · |−δ‖1 ≤ c.
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Proof. Let 1
p +

1
q = 1 and p > 3

(3−δ) . By the Hölder inequality, we get:

∫

|x−y|<1
dy |V (y)|

e−γ|x−y|

|x − y|δ
≤ ‖V ‖p,uloc

(
∫

|x−y|<1
dy

e−qγ|x−y|

|x− y|qδ

)
1
q

<∞.

On the other hand, with same p, q, we have:
∫

|x−y|≥1
dy |V (y)|

e−γ|x−y|

|x − y|δ
≤

( ∞
∑

k=1

∫

k<|x−y|≤k+1
dy |V (y)|pe−

pγ
2
|x−y|

)
1
p
(
∫

|x−y|≥1
dy e−

qγ
2
|x−y|

)
1
q

.

Since the domain k < |x− y| ≤ k + 1 is covered by cste× k2 unit balls, then the above r.h.s.

is bounded from above by c‖V ‖p,uloc
(
∑∞

k=1 k
2e−

pγ
2
k
)

1
p <∞ for some constant c > 0. �

From Lemma 7.1 together with Lemma 7.3, we finally prove:

Lemma 7.4. Consider the assumptions (h1)-(h2) of Lemma 7.1. Let V ∈ Lp
uloc(R

3) with

p > 3
3−max{δ1,δ2} if δ1 + δ2 6= 0, elsewhere p ≥ 1. Then K1(x, · )V (· )K2(· ,y) ∈ L1(U) for all

x 6= y. Furthermore, (x,y) 7→
∫

U dzK1(x, z)V (z)K2(z,y) is jointly continuous on U2 \D.

Proof. Consider only the ’most tricky’ case which occurs when U = R
3. Note first that the

estimate in (h2) can be rewritten on U2 \D as:

|K1(x,y)| ≤ c1(1 + |x|ν1+µ1)
e−

γ1
2
|x−y|

|x− y|δ1
, |K2(x,y)| ≤ c2(1 + |y|ν2+µ2)

e−
γ2
2
|x−y|

|x− y|δ2
, (7.16)

for another constants c1, c2 > 0. Set J(x,y; · ) := K1(x, · )V (· )K2(· ,y). Let 0 < ς < 1
2 |x −

y| and denote by B(· , ς) the open ball having the radius ς > 0. From (7.16), there exists

a constant c = c(|x|, |y|) > 0 s.t. ∀z ∈ B(x, ς), |J(x,y; z)| ≤ c|V (z)|e−
γ1
2
|x−z||x − z|−δ1 .

Then by Lemma 7.3, J(x,y; · ) ∈ L1(B(x, ς)) as soon as p > 3/(3 − δ1). On the same way

J(x,y; · ) ∈ L1(B(y, ς)) as soon as p > 3/(3 − δ2). Besides there exists a constant c
′
=

c
′
(|x|, |y|) > 0 s.t. ∀z ∈ R

3 \ (B(x, ς) ∪ B(y, ς)), |J(x,y; z)| ≤ ce−
γ1
2
|x−z||V (z)|e−

γ2
2
|z−y|. As

supx∈R3 ‖V (· )e−
γ1
2
|x−· |‖p, supy∈R3 ‖e−

γ2
2
|· −y|‖q < ∞ whenever p, q ≥ 1, then by the Hölder

inequality, J(x,y; · ) ∈ L1(R3 \ (B(x, ς) ∪ B(y, ς))). Therefore J(x,y; · ) ∈ L1(R3) provided
that p > 3/(3 −max(δ1, δ2)). By standard arguments, the continuity property follows. �
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