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Abstract

The purpose of the work reported here is to design
a purely vision-based Simultaneous Localization And
Map-building system for a MAV flying at a constant
altitude. We demonstrate the effectiveness of our ap-
proach with videos taken from a heading-down cam-
era mounted on different MAV. In particular, results
on loop-closure detection and on map-precision im-
provement through an on-line estimate of the cam-
era’s radial distortion coefficient are presented.

1 Introduction

Over the last decade, MAV study has become a
wide research area involving many different disci-
plines such as control, structural design, electron-
ics, computer sciences or robotics. In particular, the
last one also imported skills from the artificial intelli-
gence community, offering opportunities to shift from
human-controlled aircrafts to partially-autonomous
flying agents. Today, one of the main goals of MAV
navigation is to achieve totally autonomous flight,
a challenge that implies the ability for the aircraft
to self-localize with no a priori map of its environ-
ment. Currently, in the MAV community, localiza-
tion is performed using GPS. However, because our
research efforts come under the Robur project ([Don-
cieux et al., 2004], [Doncieux et al., 2006]) that aims
at building an autonomous aircraft by drawing in-

spiration from biology, we prefer to rely on onboard
sensors only, such as vision. Consequently, a map
has to be built from scratch and simultaneously serve
to estimate the MAV’s position, leading to the so-
called Simultaneous Localization and Map-building
(SLAM) problem ([Filliat and Meyer, 2003], [Meyer
and Filliat, 2003]). Since 1987 [Smith et al., 1987],
several probabilistic frameworks have been developed
to solve this problem. In particular, Kalman and
particle filters, as well as the Expectation Maximisa-
tion (EM) algorithm [Thrun, 2002] are widely used.
Basically, all these approaches provide different im-
plementations of the same solution, relying on the
Bayes rule as a common mathematical background.
Based on those frameworks, SLAM has been partially
achieved on ground mobile robots (e.g. [Dissanayake
et al., 2001], [Thrun et al., 2004]), usually calling
upon precise range sensors such as lasers, sonars or
radars, and with the help of Kalman or particle fil-
ters to mix sensor information with robot odometry.
However, the use of such sensors with a MAV is cur-
rently impossible because of their large size, heavy
weight and high energy consumption. Instead, vision
seems to be a good alternative: it is cheap, easy to
manage, and offers good opportunities for character-
izing the objects recorded in the map.

In this paper, we describe a SLAM method, us-
ing a Kalman filter in the case of 2D MAV naviga-
tion, which allows to simultaneously build a metric
map of visual ground landmarks, and to perform ac-
curate aircraft localization in this map. Indeed, in
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the context of the Robur project, 2D-localization is
a suitable first step in the perspective of implement-
ing more cognitive behaviors like soaring for example,
because the search of thermals or slope-winds can be
done at a constant altitude. In our visual odome-
try approach, the 2D displacement of the aircraft be-
tween two adjacent instants in time is estimated us-
ing feature-matching between the corresponding im-
ages. To this end, we propose an image feature detec-
tor that associates the Harris corner detector [Harris
and Stephens, 1988] with the SIFT descriptor [Lowe,
2004]. Additionally, in order to improve the map pre-
cision, we estimate the radial distortion coefficient
of the camera on-line, as an additional parameter in
the Kalman filter. Our main results concern the sys-
tem’s loop-closure capacities ([Newman et al., 2006]),
i.e., the possibility of recognizing previously detected
landmarks, and the reduction of the uncertainties in
both the aircraft and the landmarks’ positions.

This paper is organised as follows: section 2 sum-
marizes related work in vision-based SLAM, section
3 describes our own approach, section 4 summarizes
the results obtained, which are discussed in section 5.

2 Related work

SLAM techniques are often used with ground mo-
bile robots, calling upon lasers, radars or sonars.
Data issued from sensor measurements are mixed
with wheel-encoded odometry using probabilistic es-
timators like Kalman or particle filters ([Dissanayake
et al., 2001], [Thrun et al., 2004]). Recently, sev-
eral authors (for example [Barfoot, 2005] or [Jeong
and Mu Lee, 2005]) incorporated vision in that tradi-
tional scheme, replacing the range sensors by a cam-
era. Also, the authors of [Kim and Sukkarieh, 2003]
performed SLAM on an aircraft using a heading-down
camera and control inputs sent to the aircraft instead
of odometry. However, all these approaches are not
totally vision-based since they still rely on “mechan-
ical” odometry or control inputs. To achieve exclu-
sively vision-based SLAM, two different approaches
are possible: the first one, called structure from mo-
tion (SfM), comes from the computer-vision commu-
nity and does not need any kind of odometry, while
the second one, let us call it visual odometry SLAM
(voSLAM), relies on the implementation of a visual
odometry scheme.

In the SfM approach ([Chiuso et al., 2002], [Davi-
son, 2003]), the 3D-displacement of the camera is es-
timated using feature-tracking in images grabbed at
consecutive instants in time. It calls upon the associ-
ation of the eight points algorithm [Longuet-Higgins,

1981] with a Kalman filter used to simultaneously es-
timate the position of the camera and the structure
of the scene. The pose of the camera is computed as
a combination of 3D rotation and translation relative
to the original position. The structure of the scene
is a map containing points (or features) extracted
from the images, whose 3D-coordinates are triangu-
lated once the camera’s position has been estimated.
The method used for feature detection is generally a
simple corner detector, and matching is usually done
by the minimization of a Sum of Squared Difference
(SSD) over patches taken around the points in the
image. The KLT algorithm [Shi and Tomasi, 1994]
is an efficient implementation of such a feature de-
tector. The SfM approach does not need any kind of
odometry, which makes it independent from the dy-
namic model of the camera motion: the frame rate
is considered high enough (25 to 30Hz) to only con-
cern very small displacements between two adjacent
instants in time. Then, when the camera has moved,
since its new pose is considered very close to the
previously computed one, some uncertainty is simply
added to this last one, without modifying it. After
that, matching between the actually observed points
and those recorded in the map correct the predicted
pose, as well as the previously computed feature co-
ordinates.

In the voSLAM approach ([Jung, 2004], [Lemaire
et al., 2006] and [Saeedi et al., 2006]), a model of the
MAV motion is needed and point matching between
two adjacent images is used to compute the corre-
sponding visual odometry. Several optimization algo-
rithms, like the Least Square Estimation (LSE), can
be used to estimate the combination of rotation and
translation that corresponds to the motion separat-
ing the two consecutive images. The depth-estimate
of the points recorded in the map can be done sep-
arately or simply abandoned. In the former case, a
stereo-vision system can be used to compute the 3D
local coordinates of the features. In the latter case,
localization and mapping are performed in 2D, with
a single camera moving on a plane perpendicular to
its optical axis. In both cases, when the camera has
moved, visual odometry is used to predict its new
pose, using the same correction procedure as the SfM
one. As the visual odometry may be difficult to es-
timate reliably for some particular displacements of
the camera, as stated in [Saeedi et al., 2006], it may
be useful to allow only certain types of movements
for the aircraft, so as to obtain a precise estimation
the motion, assuming for example that rotations are
small in comparison with translations.

Finally, the main advantage of the SfM approach
is its ability to handle almost any type of 3D camera
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motion (independently of any precise dynamic model)
and to incorporate the depth-estimate of the features,
provided that the differences between consecutive im-
ages are small, which implies a high frame rate. In-
stead, voSLAM does not need high frame rates and
visual odometry can be a good alternative to tradi-
tional wheel-encoded odometry in the case of MAV
navigation, providing a good estimate of the pre-
dicted position. Moreover, when the dynamic model
is well known and finely tuned, the associated uncer-
tainty can be managed more precisely, in order to fit
the real kinematic model.

Nevertheless, for SfM or voSLAM methods to per-
form well, the data association problem ([Neira and
Tardós, 2001]), i.e., the problem of correctly match-
ing individual visual features, needs to be solved. In
the SfM scheme, matching is done by simple keypoint
tracking over several consecutive images, without the
addition of any extra-information to the landmarks
of the map. Loop-closure detection is thereby very
difficult in this case, implying very precise position
estimates, with near-zero drift over time, to make
it possible. On the contrary, the use of the SIFT
descriptor (detailed in [Lowe, 2004]), as in [Barfoot,
2005] and [Saeedi et al., 2006] permits efficient large
baseline matching, i.e. the match of visual features
when differences between images are large, and en-
hances loop-closure detection.

In our case, we have a precise knowledge of the
MAV’s dynamic model and we want to be able to
detect loop-closure, so as to decrease the aircraft un-
certainty and to obtain a reliable trajectory estimate.
For these reasons, the voSLAM solution to the SLAM
problem seems to be a better alternative than the SfM
approach and has been applied here.

3 System description

The experimental setup leading to the results de-
scribed herein consists in a tiny wireless grayscale
camera, mounted downward on a MAV flying at a
constant altitude and over a flat terrain. Both a
blimp (see figure 1) or the Twinstar MAV of the
Paparazzi team1 (see figure 2) were used, the cor-
responding images being sent to a ground receptor
connected to a PC that performed the required com-
putations.

Our system is based on visual odometry as-
sociated with an Extended Kalman Filter (EKF)
[Smith et al., 1987], and accordingly pertains to
the voSLAM category mentioned earlier. Let Xt =

1www.nongnu.org/paparazzi

Figure 1: The blimp.

Figure 2: Paparazzi Twinstar.

[

[Xaircraft]
T , [Xmap]

T
]T

denote the state vector of
the EKF, recording the positions of the aircraft and
visual landmarks’ at time t, where:

• Xaircraft = [xa, ya, φa]
T

contains the 2D coordi-
nates and orientation of the aircraft

• Xmap = [x1, y1, . . . , xi, yi, . . . , xn, yn]
T

contains
the 2D coordinates of n punctual landmarks in
the map

All the coordinates contained in the state vector
are given in pixels and correspond to positions in the
space of the images. Furthermore, since the camera
is heading-down, its position (which is considered to
be the MAV’s position) corresponds to the centre of
the image. Then, the SLAM problem consists in re-
covering the state Xt from observations Zt and visual
odometry U t up to time t, in a way that maximizes
the posterior distribution over the map and the air-
craft’s pose p(Xt|Zt, U t). The evolution of Xt over
time is modelled by a function f of the prediction
model :
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Xt = f(Xt−1, Ut) + q (1)

Under a static world assumption, the function f

does not affect Xmap. Only Xaircraft is modified ac-
cording to the displacement estimated by the visual
odometry Ut. q represents the time-independent zero-
mean gaussian noise associated with the displacement
of the MAV. Also, a function h of the observation
model transforms the global coordinates of the land-
marks stored in the map into local coordinates corre-
sponding to the current image:

Zt = h(Xt) + r (2)

r represents the time-independent zero-mean gaus-
sian noise associated with the feature extraction in
the images.

A covariance matrix Pt associated with the state
vector contains the uncertainties corresponding to the
quantities stored in Xt. In the EKF scheme, Xt and
Pt are estimated in a recursive two-step prediction-
update procedure:

1. Prediction step

X∗

t = f(Xt−1, Ut)
P ∗

t = FtPt−1F
T
t + Q

Z∗

t = h(X∗

t )

2. Update step

Kt = P ∗

t HT
t (HtP

∗

t HT
t + R)−1

Xt = X∗

t + Kt(Zt − Z∗

t )
Pt = P ∗

t − KtHtP
∗

t

Ft (respectively Ht) is the Jacobian matrix of f

(respectively h). Q (respectively R) is the noise co-
variance matrix associated with q (respectively r).
Intuitively, during the update step, the gain Kt is
designed so as to grant more confidence to the in-
formation with the lowest uncertainty. For further
details on the implementation of the EKF, the inter-
ested reader may refer to [Dissanayake et al., 2001].

3.1 The prediction model

The prediction model of the EKF tries to “guess” the
actual position of the MAV, taking advantage of the
displacement estimated by the visual odometry since
the last position estimate. The state prediction calls
upon the function f , while P is updated by F accord-
ing to the dynamic model of the MAV. Visual odom-
etry is obtained by feature-tracking between consecu-
tive images using the KLT algorithm [Shi and Tomasi,

1994]. Applying a LSE over all the tracked features
in two adjacent frames, we can compute the 2D com-
bination of rotation and translation representing the
MAV’s motion. However, for the KLT to perform
well, differences between adjacent images have to be
small, which implies a sufficient frame rate: 5 images
per second were used in our implementation to obtain
reliable estimates of 2D displacements.

3.2 The observation model

As previously mentioned, when flying over a previ-
ously hovered area, a MAV must be able to match
currently seen features with earlier stored landmarks.
This “matching event” is managed by the observa-
tion model of the EKF and a robust large baseline
matching procedure is needed. Therefore, the sim-
ple keypoint-tracking proposed by the KLT algorithm
cannot be trusted in this case, because it is adapted
to small baseline procedures and because the time-lag
separating the actual fly-over from the previous one
can be very long. This is why we associated a SIFT
descriptor to all the features extracted using the KLT
algorithm.

The SIFT descriptor [Lowe, 2004] is a vector of size
128 more or less invariant with changes in scale, rota-
tion, translation and illumination, which contains rel-
evant and stable information for large baseline match-
ing. It is very powerful when the differences between
two images are important, as it is insensitive to small
affine changes in the 3D viewpoint of the scene for
example. But, although the vector computation pro-
cedure of the SIFT algorithm is fast, the feature de-
tection is time consuming: local minima and maxima
are searched in differences of gaussians taken from
several sub-sampled versions of the original image.
Thus, the association proposed here is faster than
the SIFT algorithm alone, and provides more accu-
rate “long-time matchings” than the KLT algorithm
alone.

In the observation model, the function h is respon-
sible for the state correction, while P is updated by
H according to the sensor model. Since the SIFT de-
scriptors make our observation model robust for large
baseline matching, the frequency of the prediction-
update process can be lower than the visual odometry
rate: the loop of the EKF is then performed 5 times
slower than that of visual odometry, thus performing
SLAM at 1Hz.

3.3 Radial distortion

The radial distortion coefficient of the camera is re-
sponsible for deformations proportional to the dis-
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tance to the image centre: the further from the cen-
tre, the higher the distortion. This produces rounded
images that need to be unwrapped in order to en-
hance the precision in the position of the landmarks
stored in the map. This effect is quite important in
the case of the small camera we were using. Then, to
retrieve the original “flat” aspect of each image, the
value of this coefficient has to be determined. To this
end, we add to the Kalman filter a new unknown, C,
which corresponds to the radial distortion coefficient.
Since feature-matching based on the wrapped image
induces a measurement error due to the distortion,
we can update the value of C proportionally to the
induced error. This implies knowledge of the rela-
tion between a pixel’s position in the image and the
amount of error due to distortion. This relation is
given by:

x̂i =
xi√

1 + 2Cr2
ŷi =

yi√
1 + 2Cr2

where r =
√

x2

i + y2

i . x̂i and ŷi are the wrapped
coordinates of the point i, while xi and yi are the
unwrapped coordinates that are stored in the map.
Then, we can define a function g that unwraps the
pixel’s position based on this relation. The amount of
correction imputable to distortion can be computed
as the Jacobian matrix G of g. The previous obser-
vation function h must be updated to take advan-
tage of g. We then define a new observation function
w = g◦h and the corresponding Jacobian W = G×H.
Thus, C can be initialised to 0 before being incre-
mentally estimated, until it converges to the correct
value.

3.4 Map management

The o(N2) complexity of the Kalman filter (N be-
ing the dimension of the state vector) does not allow
large environments to be mapped, limiting the total
number of landmarks that can be stored in the map.
Beyond this upper limit, real-time processing is no
longer possible. To prevent the state vector from a
too rapid growth that would dramatically limit the
mapping capacity of our SLAM system, we intro-
duced a landmark notation that makes the substi-
tution of some elements of the state vector possible:
each time a feature is recognized, its “recognition-
score” is increased. Then, when including new land-
marks to the map, we do not add all of them at
the end of the current state vector. Some new fea-
tures will replace older ones whose recognition-score
are small, implying that they are not suitable for
robust matching. Thereby, we empirically set the

size increase of the map to one landmark every sec-
ond, while the number of feature-replacements has
been set to 4 every second. Such tuning affords a
good compromise: in case of too many substitutions,
matching may fail (in particular when closing the
loop), whereas, in case of too scarce updates, real-
time is only possible during a short time-span.

4 Experimental results

In this section we will describe the results obtained
using our 2D vision-based SLAM system. A first
subsection will present results obtained with the Pa-
parazzi MAV, while a second section will concentrate
on loop-closure detection using a blimp. Finally, a
third subsection will comment on the effects of some
tuning parameters affecting the visual odometry.

4.1 Mapping results

An example of a mosaic automatically generated us-
ing the MAV trajectory estimated by the EKF is
given in the figure 3. The corresponding map and
EKF trajectory, as well as the visual odometry, are
shown in the figure 4.

As we can see, the visual odometry is precise in
this case and the EKF-filtered trajectory is close to it.
Additionally, it appears that the corrections made on
the point positions are relatively small, although they
increase as time elapses. This is due to the increasing
drift in the MAV’s position over time, which leads to
noisy predictions of landmarks’ positions.

4.2 Loop closing

Figure 5 corresponds to data generated by a blimp
following a simple loop trajectory. It shows the cor-
responding map and the estimates of the blimp’s po-
sition.

As demonstrated by the red trajectory of figure
5, simply integrating visual odometry over time di-
verges, and loop-closure is not detected: this is caused
by error accumulation over the consecutive displace-
ment estimations, giving a more and more noisy ap-
proximation of the real position. Instead, the EKF
filter (whose trajectory is shown in green) can cope
with the noise associated with visual odometry and
with the perception of the landmarks so as to de-
crease the positioning error. Additional evidence of
this phenomenon is provided by the evolution of the
aircraft’s position uncertainty depicted on figure 6.

This evolution may be decomposed in two steps: a
first constant growth in a saw-toothed manner, fol-
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Figure 3: Mosaic obtained using images sent by the
Paparazzi MAV.

lowed by a dramatic drop around t ≃ 170s, i.e., when
loop closure is detected. The saw-toothed shape of
the first phase is due to the predict-update process
of the Kalman filter. During the prediction step, a
new state is estimated from the previously computed

Figure 4: Paparazzi’s EKF trajectory (green), visual
odometry (red) and map (blue crosses) obtained with
a 5Hz visual odometry and a 1Hz SLAM.

Figure 5: A blimp’s loop trajectory generated by a
5Hz visual odometry and a 1Hz SLAM. The trajec-
tory resulting of the integration of visual odometry
over time is show in red while the EKF-filtered tra-
jectory is shown in green. The landmarks are repre-
sented by blue crosses.

Figure 6: Evolution of the blimp’s position uncer-
tainty over time.
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one by taking the displacements computed from the
visual odometry into account. The uncertainty on
the position of the aircraft is thus increased accord-
ing to the error associated with the prediction model.
Then, during the update step, matching local fea-
tures with map landmarks refines the predicted es-
timate, making it more reliable and decreasing its
uncertainty. After the loop closure detection, a series
of smaller drops occurs that decrease the uncertainty
value down to a level of 5 to 10 pixels.

The steep fall corresponding to loop detection is
due to the very small uncertainty associated with
old landmarks that are recognised when closing the
loop. In the video sequence, when new features are
added to the map, they are generally “seen” again
in several consecutive images just after having been
added. Then, the corresponding uncertainties have
often been decreased, converging to a lower limit
around 0.7 pixels. This can be seen in figure 7, which
represents the evolution of the uncertainty associated
with a specific feature over time, this feature being
chosen as representative of the issue at odds. Turns
out that the corresponding uncertainty rapidly con-
verges to a value between 0.6 and 0.8 pixels at first.
Then, since in the video sequence this feature is not
seen again until loop-closure around time t ≃ 170s,
its uncertainty remains constant, before decreasing
to a near-zero level when it is detected again during
loop-closure.

Figure 7: Time evolution of the position uncertainty
attached to a specific landmark.

Finally, the figure 8 shows both the evolution of
the radial distortion coefficient of the camera and the
associated uncertainty. The coefficient converges to a
near-zero value, and its initial strong corrections are
imputable to its high uncertainty. As time elapses,
the estimated value is becoming more and more pre-
cise, as shown by the decrease on the uncertainty
graph, thus producing smaller corrections.

4.3 Effects of visual odometry

The main parameters we need to adjust for the
Kalman filter are the uncertainties associated with

Figure 8: Evolution of the distortion coefficient of the
camera together with the associated uncertainty.

each of the models, as well as the frame rates used for
the visual odometry and the SLAM predict-update
process. As explained in sections 3.1 and 3.2, these
frame-rates may be different. For the experiences just
described, they were set to 5 images per second for
odometry, and to 1Hz for the SLAM loop.

However, we can see from the EKF trajectory of
figure 5 that the corrections made by the Kalman
filter are sometimes huge, producing an irregular tra-
jectory: this is due to the large differences between
images processed by the EKF, causing important up-
dates. This can be dangerous if the noises associated
with the two models of the EKF are not precisely
evaluated. To obtain smoother trajectory estimates
and to avoid drastic corrections, we can increase the
frame rates, so as to limit the differences between
consecutive images, but with the unfortunate conse-
quence of making real-time computation impossible.
For instance, figure 9 shows a blimp’s reconstructed
trajectory using a 25Hz visual odometry and a 5Hz
SLAM.

As we can see, the estimated trajectory is more
precise and reliable, and loop-closure is correctly de-
tected. Interestingly, in spite of the higher frequency,
we can see that visual odometry still performs poorly.
In particular, it is very noisy when rotations are
not small in comparison with translations, as already
mentioned in [Saeedi et al., 2006]. Such observation
can be exploited to simplify the prediction model of
the EKF by taking only rotations into account, and
simply adding noise to the X − Y position without
modifying it. Since the frame rate is high, the ob-
servation model should be able to correctly update
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Figure 9: A blimp’s loop trajectory obtained with a
25Hz visual odometry and a 5Hz SLAM. The trajec-
tory resulting from the integration of visual odome-
try over time is shown in red, while the EKF-filtered
trajectory is shown in green. The landmarks are rep-
resented by blue crosses.

the predicted position. Accordingly, the noise associ-
ated with the prediction model can be set to a lower
value, thus slowing the saw-toothed growth over time
in the position uncertainty. When tuned this way, our
SLAM system becomes closer to the SfM approach
described in the state of the art than to the voSLAM
approach originally chosen.

Nevertheless, when rotations have a low amplitude
and when as textured images as possible are used, the
visual odometry is very precise. In figure 10 a loop
trajectory is shown that was obtained with trans-
lations only (the camera orientation is kept nearly
constant) and with low frame rates (5Hz for visual
odometry and 1Hz for SLAM).

5 Discussion

The results presented in the previous section showed
successful loop-closure detection, with an associated
uncertainty decrease in both the aircraft and the
landmarks’ parameters. At the end of a given run,
the positions estimated are particularly reliable: the
MAV’s uncertainties are between 5 and 10 pixels,
while the landmarks’ uncertainties are around 1 pixel.
Such small position error is crucial for further use, like
precise navigation or trajectory-planning. The on-
line estimate of the camera’s radial distortion turns
out to be of particular interest to improve the map’s
precision, specially in the case of a wide-angle cam-
era, where distortion is very strong near the edges of

Figure 10: A constant orientation loop trajectory ob-
tained with a 5Hz visual odometry and a 1Hz SLAM.
The trajectory resulting of the integration of visual
odometry over time is show in red, while the EKF-
filtered trajectory is shown in green. The landmarks
are represented by blue crosses.

Figure 11: Uncertainty evolution over time for con-
stant orientation loop trajectory obtained with 5Hz
for visual odometry and 1Hz for SLAM.

the image.

However, several features of the proposed system
need to be investigated more deeply. First, we did not
completely solve the data-association problem men-
tioned in section 2. We added a precise and robust
SIFT descriptor to reinforce the matching conditions,
but false-positive matching may still trigger the di-
vergence of the Kalman filter. In order to deal with
such outliers, we could try to match groups of interest
points like in [Jung, 2004] using the Joint Compati-
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bility Test defined in [Neira and Tardós, 2001]. In-
stead, we used the Mahalannobis distance to discard
dangerous features. Furthermore, we are limited by
the o(N2) complexity of the Kalman filter that does
not allow large environments to be mapped. In spite
of our map management method using landmark no-
tation, it turns out that our system cannot manage
more than 150 features if real-time processing is a
mandatory constraint. Possibly, this size limitation
issue could be addressed by combining global topo-
logical localization and precise metrical mapping, as
done in [Bosse et al., 2003] or [Kouzoubov and Austin,
2004]. Finally, in order for the Robur MAV to ex-
hibit other behaviors entailing a 6-degree of freedom
navigation, the vision-based SLAM system presented
must be extended to cope with a 3D-space.

6 Conclusion

In this paper, we presented a vision-centred 2D-
SLAM system that affords reliable estimates of the
aircraft position and orientation, as well as a map
calling upon landmarks whose coordinates are pre-
cisely estimated. We demonstrated loop-closure de-
tection capabilities, entailing a decrease in the uncer-
tainties on the aircraft and landmarks’ positions when
closing the loop. In the future, contextual informa-
tion about the landmarks could be recorded in the
map, making it possible to encode dangerous, energy
sparing or recharging areas. Such information would
be of particular interest for trajectory planning.
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