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Introduction

Faber polynomials are now classical objects of study in complex analysis, function theory and approximation theory. We use in this paper Faber polynomials as a basic tool to study the following "spectrum localisation problem" in operator theory: identify conditions under which the spectrum of a Banach space bounded linear operator is included in the interior of a given compact of the complex plane. Other instances of the use of Faber polynomials for various problems in operator theory are [START_REF] Atzmon | Spectral inclusion and analytic continuation[END_REF][START_REF] Badea | Faber-hypercyclic operators[END_REF][START_REF] Badea | Size of the peripheral point spectrum under power or resolvent growth conditions[END_REF][START_REF] Beckermann | Image numérique, GMRES et polynômes de Faber[END_REF][START_REF] Toh | The Kreiss matrix theorem on a general complex domain[END_REF].

Computing or estimating the spectrum of a large matrix, or, more generally, of a bounded linear operator acting on a complex Banach space is an important problem in spectral theory, with possible applications in numerical analysis (see for instance [START_REF] Nevanlinna | Convergence of iterations for linear equations[END_REF]). The classical spectral radius formula ( [START_REF] Conway | A course in functional analysis[END_REF]) r(T ) = lim n→∞ T n 1/n , going back to Arne Beurling and Israel Gelfand, allows to find or estimate the radius r(T ) = sup{|λ| : λ ∈ σ(T )} of the smallest closed disc in the plane centered in the origin and containing the spectrum σ(T ) of the given operator T . The condition r(T ) < 1, corresponding to the exponential stability of T , is an important one for applications. In order to better localise the spectrum and to find inclusions of the form σ(T ) ⊂ K or σ(T ) ⊂ int(K) for some simply connected compact K in the complex plane, the right tool to consider is the asymptotic behaviour of the sequence (F n (T )) n≥0 , where F n is the Faber polynomial of degree n associated with K. We are interested to generalise in this vein (replacing the closed unit disc by more general compacts) several existing results in the literature [START_REF] Mlak | On a theorem of Lebow[END_REF][START_REF] Weiss | Weakly l p -stable linear operators are power stable[END_REF][START_REF] Nikolski | A Tauberian theorem for the spectral radius[END_REF][START_REF] Nikolski | Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics[END_REF][START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF]. An interesting feature of our study is the influence 1 of the geometry of the compact and the regularity of its boundary on the results obtained about the localisation of the spectrum.

The present paper is organized as follows. Section 2 is dedicated to the definition and basic properties of Faber polynomials. We present the influence of the regularity of the boundary of the compact on the behaviour of these polynomials and present known applications in operator theory. In Sections 3 and 4 we present two approaches leading to different criteria for the spectrum to be included in the interior of a compact. Some generalisations of results of Mlak ([11]), Weiss ([19]), van Neerven ( [START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF]) and Nikolski ([13, 14]) are given there. We give in Section 5 some explicit estimates based upon the preceding criteria.

Preliminaries on Faber polynomials

2.1. Definition and examples. We present here some classical results about Faber polynomials which will be used later on. We follow the setting of [START_REF] Suetin | Series of Faber polynomials[END_REF]. The reader is referred to [START_REF] Suetin | Series of Faber polynomials[END_REF] or [START_REF] Gaier | Lectures on complex approximation[END_REF] for more details about Faber polynomials and related topics.

Let K be a compact connected subset of the complex plane C, different from a singleton, and whose complement is connected. From the Riemann mapping theorem, we know that there exists a unique conformal map ψ : D

c -→ K c such that ψ(∞) = ∞ and ψ ′ (∞) > 0.
The map ψ has a Laurent expansion for |w| > 1 of the form

ψ(w) = βw + β 0 + β 1 w -1 + • • • + β k w -k + . . .
where β > 0 is the transfinite diameter, or (logarithmic) capacity, of K.

Let φ be the inverse function of ψ. The map φ : K c -→ D c has a Laurent expansion in a neighborhood of infinity of the form

φ(z) = 1 β z + b 0 + b 1 z -1 + • • • + b k z -k + . . .
For n ∈ N, the polynomial part of the Laurent expansion of φ(z) n is called the Faber polynomial of order n and is denoted by F n . The Faber polynomial of order n has degree n and leading coefficient 1/β n . We consider the function ω n defined by the following equation

φ(z) n = F n (z) + ω n (z), (z ∈ K c ).
Then z → ω n (z) is an analytic bounded function on K c which tends to 0 at infinity.

For any R > 1, let Γ R be the analytic Jordan curve {ψ(w

) : |w| = R}. Denote by G R its interior. If z is in G R then we have F n (z) = 1 2iπ Γ R φ(ζ) n ζ -z dζ = 1 2iπ |w|=R w n ψ ′ (w) ψ(w) -z dw.
One can deduce from this relation that the Faber polynomials satisfy the following asymptotic relations

lim n→∞ |F n (z)| 1/n = |φ(z)| for all z / ∈ K and lim n→∞ |F n (z)| 1/n ≤ 1 for all z ∈ K.
It also implies that for any fixed z in G R , (F n (z)) n≥0 is the sequence of the Laurent coefficients of the map

w → ψ ′ (w) ψ(w) -z , |w| > R,
in the neighborhood of the point w = ∞. Therefore the generating function of the Faber polynomials is given by

(2.1) ψ ′ (w) ψ(w) -z = ∞ n=0 F n (z) w n+1 , (|w| > R, z ∈ G R ).
The Faber polynomial of order n of the disk centered at z 0 and of radius R is given by the formula [START_REF] Suetin | Series of Faber polynomials[END_REF]). An analytic function f in a neighborhood of the compact K can be uniquely expanded in a series of Faber polynomials with uniform convergence on a neigborhood of K. That is to say, there exist a neighborhood V of K and complex numbers a n = a n (f ) such that for every z in V we have

F n (z) = ((z -z 0 )/R)
f (z) = ∞ n=0 a n F n (z).
Example 2.2. Let R > 1 and K be the compact delimited by the ellipse with the foci at the points 1 and -1 and semi-axes

a = 1 2 (R + 1/R) and b = 1 2 (R -1/R).
The equation of this ellipse can be written in the form

z = 1 2 Re iθ + 1 Re iθ , 0 ≤ θ < 2π.
Hence, the exterior conformal map associated with K is given by

ψ(w) = 1 2 Rw + 1 Rw .
The corresponding Faber polynomials are

F n (z) = 2 R n C n (z), (n ≥ 1)
, where C n is the Chebychev polynomial of order n, C n (t) = cos(n arccos(t)), (t ∈ [-1; 1]).

We also notice that, for any n ≥ 1, we have

F n (ψ(w)) = w n + 1 R 2n w n .
2.2. Consequences of the regularity of the boundary Γ. If Γ, the boundary of K, is a Jordan curve, its regularity influences the behaviour of the map ψ and the asymptotic behaviour of the sequence of Faber polynomials (F n ) n≥0 on Γ.

A function ρ : R + -→ R + is called a modulus of continuity if it satisfies:

(1) ρ is increasing;

(2) lim t→0 ρ(t) = 0;

(3) ρ is subadditive, i.e.,

ρ(t + s) ≤ ρ(t) + ρ(s).
A modulus of continuity is said to satisfy the Alper condition if

ε 0 ρ(x) x log 1 x dx < ∞,
for some ε > 0.

For a fixed modulus of continuity ρ, a Jordan curve Γ is said to be of class C ρ if it has a parametrization τ : [0; 1) -→ Γ that is differentiable, with τ ′ (x) = 0 of all x ∈ [0, 1) and τ ′ satisfying the continuity condition

|τ ′ (x 1 ) -τ ′ (x 2 )| ≤ ρ(|x 1 -x 2 |), x 1 , x 2 ∈ [0; 1). A Jordan arc is of class C ρ if it is a subarc of a Jordan curve of class C ρ .
The following theorem is a simplified version of [15, Theorem 1.1].

Theorem 2.3 ([15]

). Let Γ be a rectifiable Jordan curve. For z 0 ∈ Γ, assume that Γ has an exterior angle of opening απ at z 0 , with 0 < α ≤ 2, formed by C ρ arcs, where ρ is a modulus of continuity satisfying the Alper condition. Then,

F n (z 0 ) = αφ(z 0 ) n + o(1), as n → ∞.
Remark 2.4. In the above result, the case α = 1 corresponds to a point where the boundary form an arc of regularity C ρ , the (excluded) case α = 0 to an inside pointing cusp and the case α = 2 to an outside pointing cusp.

It is often sufficient to consider ρ(x) = x β for some β > 0. The class C ρ is then the Hölder class C 1,β .

The following definition will be used in the next sections as a basic geometric condition about the regularity of the boundary. We also record for further use the following classical result about analytic Jordan curves and an inequality of Kövari and Pommerenke [START_REF] Kövari | On Faber polynomials and Faber expansions[END_REF].

Theorem 2.7. Suppose that Γ is an analytic Jordan curve. Then ψ has an analytic univalent extension in rD c for some r ∈ (0; 1).

Theorem 2.8. [START_REF] Kövari | On Faber polynomials and Faber expansions[END_REF] If K is convex, then for all z ∈ Γ and for all n ≥ 0,

|F n (z) -φ(z) n | ≤ 1.
2.3. Faber polynomials and operators on a Banach space.

Notation. For a complex Banach space X , we denote by B(X ) the Banach algebra of the bounded linear operators from X into itself and by

I = I X the identity on X . The spectrum σ(T ) of T ∈ B(X ) is defined ([5]) by σ(T ) := {λ ∈ C; (T -λI) is not invertible in B(X )}. Lemma 2.9. Let X be a Banach space. Let T ∈ B(X ) be such that σ(T ) ⊂ K. Then, for λ ∈ C, |λ| > 1, we have (ψ(λ)I -T ) -1 = ψ ′ (λ) -1 ∞ n=0 λ -n-1 F n (T ). Proof. Let λ ∈ C, |λ| > 1. Let R = |λ|. Define f (z) = ψ ′ (λ) ψ(λ) -z , z ∈ G R .
It follows from (2.1) that for every z ∈ G R we have

f (z) = ∞ n=0 λ -n-1 F n (z).
As f is an analytic function on G R , we have from Theorem 2.1 the uniform convergence of the series in any compact subset of G R .

Using σ(T ) ⊂ K, the holomorphic functional calculus gives

(ψ(λ)I -T ) -1 = ψ ′ (λ) -1 ∞ n=0 λ -n-1 F n (T ).
In their article [START_REF] Atzmon | Spectral inclusion and analytic continuation[END_REF], A. Atzmon, A. Eremenko and M. Sodin have proved that for any compact set K ⊂ C with connected complement, there exists a sequence of polynomials (P n ) n≥0 and a positive number r such that if T is a bounded operator on X , its spectrum is included in K if and only if

lim sup n→∞ P n (T ) 1/n ≤ r.
If K is connected, this can be expressed in terms of Faber polynomials.

Theorem 2.10 ( [START_REF] Atzmon | Spectral inclusion and analytic continuation[END_REF]). Let X be a Banach space and T ∈ B(X ). Then σ(T

) ⊂ K if and only if lim sup n→∞ F n (T ) 1/n ≤ 1.

Condition on the weak Faber orbits

Let K be a simply connected compact subset of the complex plane with a non empty interior. The aim of this section is to propose some conditions implying that σ(T ) is included in the interior of K. Such results have been proved in the case when K is the closed unit disc by Mlak [START_REF] Mlak | On a theorem of Lebow[END_REF], Weiss [START_REF] Weiss | Weakly l p -stable linear operators are power stable[END_REF], van Neerven [START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF] and Nikolski [START_REF] Nikolski | A Tauberian theorem for the spectral radius[END_REF][START_REF] Nikolski | Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics[END_REF].

Let (F n ) n≥0 be the sequence of Faber polynomials associated with K.

Notation. The set of finitely supported sequences will be denoted C (N) and (e n ) n≥0 will denote the canonical algebraic basis of C (N) . The characteristic function of a set A will be denoted by χ A .

Definition 3.1. A Banach space E ⊂ C N is said to be an admissible sequence space if it satisfies the following properties:

• if |a n | ≤ |b n | for all n ∈ N and (b n ) n≥0 ∈ E, then (a n ) n≥0 ∈ E and (a n ) n≥0 E ≤ (b n ) n≥0 E ; • for all k ∈ N there exists a sequence (a n ) n≥0 ∈ E such that a k = 0.
Proposition 3.2. Let E be an admissible sequence space. Then C (N) ⊂ E.

Proof. Let k ∈ N. There exists a sequence (a n ) n≥0 ∈ E such that a k = 0 by the second condition of admissibility. Then

|χ {k} (n)| ≤ |a k | -1 |a n | for all n ∈ N.
It follows then from the first condition of admissibility that χ {k} belongs to E. By taking finite linear combinations, we get that the finitely supported sequences belong to E.

The following definition extends the corresponding unit-disc analogue from [START_REF] Nikolski | Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics[END_REF]. Definition 3.3. Let E ⊂ C N be a Banach space and T ∈ B(X ). The operator T is said to be of weak type E if for every pair (x; x * ) ∈ X × X * we have

F n (T )x; x * n≥0 ∈ E.
Theorem 3.5 below, which is the main result of this section, is a generalisation of the following result of J. van Neerven [START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF].

Theorem 3.4 ( [START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF]). Let X be a Banach space, T ∈ B(X ) and E an admissible sequence space such that for any ζ ∈ T

(1, ζ, ζ 2 . . . , ζ N , 0, 0, . . . ) E -→ N →∞ ∞.
If T is of weak type E, then r(T ) < 1.

Theorem 3.5. Let X be a Banach space, T ∈ B(X ) and E an admissible sequence space such that for any ζ ∈ ∂K

(F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) E -→ N →∞ ∞.
If T is of weak type E, then σ(T ) ⊂ int(K).

Lemma 3.6. Let E ⊂ C N be a Banach space such that for any k ∈ N, the map

(a n ) n≥0 → a k is bounded. Suppose that T ∈ B(X ) is a weak type E operator. Then sup F n (T )x; x * n≥0 E ; x * ≤ 1, x ≤ 1 < ∞.
Proof. Let us prove that for any x ∈ X , the map

f x :X * → E x * → F n (T )x; x * n≥0 is bounded. Indeed, f x is well defined because T is a weak type E operator. Let (x * n ) n≥0 ⊂ X * , x * ∈ X * and r ∈ E be such that x * n → x * and f x (x * n ) E -→ r.
We infer from the boundedness of the maps (a n ) n≥0 → a k , that for any k ∈ N

[f x (x * n )] k -→ n→∞ r k , where [f x (x * n )] k denotes the k-th element of the sequence f x (x * n ). For any k ∈ N [f x (x * n )] k = F k (T )x; x * n -→ n→∞ F k (T )x; x * = [f x (x * )] k .
Thus f x (x * ) = r and, according to the closed graph theorem [START_REF] Conway | A course in functional analysis[END_REF], f x is bounded. In particular, for any x ∈ X

(3.1) sup F n (T )x; x * n≥0 E ; x * ≤ 1 < ∞.
For any x * ∈ X * let

g x * :X → E x → f x (x * ).
Then, in the same way as for f x , we can prove that, for every x * , the map g x * is bounded. Using (3.1) we obtain that sup

x * ≤1 g x * (x) < ∞,
for an arbitrary x ∈ X . Using the uniform boundedness principle [START_REF] Conway | A course in functional analysis[END_REF] we infer that {g

x * } x * ≤1 is a bounded set. Thus sup F n (T )x; x * n≥0 E ; x * ≤ 1, x ≤ 1 < ∞,
which completes the proof.

Lemma 3.7. Let T ∈ B(X ) be a linear operator acting on the Banach space X . For all λ ∈ ∂σ(T ), all ε > 0 and all N ∈ N there exist x N ∈ X and

x * N ∈ X * satisfying x N = 1, x * N = 1 and | F n (T )x N ; x * N | > |F n (λ)| -ε, n = 0, 1, . . . N.
Proof. Let λ ∈ ∂σ(T ), ε > 0 and N ∈ N. As λ ∈ ∂σ(T ), we have that λ belongs to σ app (T ), the approximate point spectrum of T (cf. [START_REF] Conway | A course in functional analysis[END_REF]Chapter 7.6]). By definition, this means that there exists a sequence (y n ) n≥0 in X such that y n = 1 for all n ∈ N and

T y n -λy n -→ n→∞ 0.
Thus, for each fixed k ∈ N,

lim n→∞ F k (T )y n -F k (λ)y n = 0.
Let n 1 be such that

F k (T )y n 1 -F k (λ)y n 1 < ε, ∀k = 0, 1, . . . N. Let x N = y n 1 and x * N ∈ X * be such that x * N = 1 and x * N ; x N = 1. Then for k ∈ {0, 1, . . . N}, we have | F k (T )x N ; x * N | ≥ | F k (λ)x N ; x * N | -| F k (T )x N -F k (λ)x N ; x * N | > |F k (λ)| -ε.
Proof of Theorem 3.5. From Lemma 3.6 we know that there exists M ≥ 0 such that for any x ∈ X , x * ∈ X * , with x = 1 and x * = 1, we have

F n (T )x; x * n≥0 E ≤ M.
Suppose that σ(T ) int(K), then there exists λ ∈ ∂σ(T )\int(K). From Lemma 3.7 we get that for every ε > 0 and N ∈ N there exist x N ∈ X and

x * N ∈ X * satisfying x N ≤ 1, x * N ≤ 1 and | F n (T )x N ; x * N | > |F n (λ)| -ε, n = 0, 1, . . . N. Therefore, | F n (T )x N ; x * N | ≥ |F n (λ)|χ {0,...N } (n) -εχ {0,...N } (n) for all n. Thus F n (T )x N ; x * N n≥0 E ≥ (F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) E -ε χ {0,...N } E .
We obtain that for any ε > 0 and N ∈ N

(F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) E -ε χ {0,...N } E ≤ M.
Hence, for every N ∈ N we have

(F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) E ≤ M, which gives the desired contradiction if λ ∈ ∂K. If λ / ∈ K, then |F n (λ)| 1/n -→ n→∞ R > 1.
But we know that for any ζ ∈ ∂K, lim sup n→∞ |F n (ζ)| 1/n ≤ 1, and

(F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) E -→ N →∞ ∞.
Thus, if λ / ∈ K we get from the first condition of admissibility that

(F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) E -→ N →∞ ∞,
which gives a contradiction.

We now give some illustrating examples; we start with one based on weighted l p spaces.

Corollary 3.8. Let 1 ≤ p < ∞ and let (ω n ) n≥0 be a sequence of non negative numbers. We suppose that for any ζ ∈ ∂K,

∞ n=0 ω n |F n (ζ)| p = ∞.
Let X be a Banach space. Let T ∈ B(X ) be such that for every (x, x * ) ∈ X × X * we have

∞ n=0 ω n | F n (T )x; x * | p < ∞.
Then σ(T ) ⊂ int(K).

Corollary 3.9. Let (ω n ) n≥0 be a sequence of non negative numbers. We suppose that for any ζ ∈ ∂K, lim sup

n→∞ ω n |F n (ζ)| = ∞.
Let X be a Banach space. Let T ∈ B(X ) be such that for every (x, x * ) ∈ X × X * we have sup

n≥0 ω n | F n (T )x; x * | < ∞.
Then σ(T ) ⊂ int(K). Proof of Corollaries 3.8 and 3.9. We have that

lim |z|→∞ |φ(z)| = ∞.
Therefore, there exists a R > 1 such that

σ(T ) ∩ {z : |φ(z)| ≥ R} = ∅.
Thus, we get from Theorem 2.10 that lim sup n→∞ F n (T ) 1/n < R.

Let (ω n ) n≥0 be the positive sequence defined by

ωn = ω n if ω n = 0, R -np if ω n = 0. For every (x, x * ) ∈ X × X * we have ∞ n=0 ωn | F n (T )x; x * | p < ∞.
If p < ∞, then the space

l p (ω) := (a n ) n≥0 ; ∞ n=0 ωn |a n | p < ∞ with the norm: (a n ) n≥0 l p (ω) = ∞ n=0 ωn |a n | p 1/p
is an admissible sequence space and the condition (F 0 (ζ), . . . , F N (ζ), 0, 0, . . .

) l p (ω) -→ N →∞ ∞ is equivalent to ∞ n=0 ωn |F n (ζ)| p = ∞. If p = ∞, then the space l ∞ (ω) = (a n ) n≥0 ; sup n≥0 ωn |a n | < ∞ with the norm (a n ) n≥0 l ∞ (ω) = sup n≥0 ωn |a n |
is an admissible sequence space and the condition

(F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) l p (ω) -→ N →∞ ∞ is equivalent to lim sup n→∞ ωn |F n (ζ)| = ∞.
It is then sufficient to apply Theorem 3.5 with the space E = l p (ω) to conclude.

We give now another application of Theorem 3.5 based on Orlicz spaces.

Definition 3.11. A function Φ : [0; ∞) -→ [0; ∞) is a Young function if it is convex and it satisfies Φ(x) x -→ x→0 0 and Φ(x) x -→ x→∞ ∞.
For any complex sequence (x n ) n≥0 we set

M Φ (x) = ∞ n=0 Φ(|x n |).
The Orlicz space L Φ is the space of all sequences (x n ) n≥0 such that there exists k > 0 such that M Φ (kx) < ∞.

Theorem 3.12. Let Φ be a Young function, the Orlicz space L φ with the norm

(x n ) n≥0 L Φ = inf{k; M Φ 1 k x ≤ 1}
is a Banach space and if Φ(t) > 0 for all t > 0, then

χ {0,...,n-1} L Φ -→ n→∞ ∞.
For the proof we use the following useful result.

Lemma 3.13 ([18]

). Let ϕ : R + -→ R + be non-decreasing with ϕ(t) > 0 for all t > 0. Then there exists a Young function Φ such that the Orlicz space L Φ contains every sequence (a n ) n≥0 such that Proof. Replacing ϕ by a multiple of ϕ we may assume that ϕ(1) = 1. Let Φ be defined by

Φ(t) = t 0 ϕ(s)ds.
Then Φ is a Young function and if (a

n ) n≥0 is such that n≥0 ϕ(|a n |) < ∞, then the set of indexes n such that |a n | > 1 is finite and if |a n | ≤ 1, then Φ(|a n |) ≤ ϕ(|a n |). Thus we get n≥0 Φ(|a n |) < ∞, so (a n ) n≥0 ∈ L Φ .
But Φ is strictly positive and increasing on (0; ∞), therefore we obtain

χ {0,...,n-1} L Φ = inf k; n-1 k=0 Φ(1/k) ≤ 1 -→ n→∞ ∞.
As Orlicz spaces of sequences are admissible sequence spaces we obtain the following result.

Corollary 3.14. We suppose that (|F n (ζ)|) n≥0 is eventually bounded below by a positive number for every ζ ∈ ∂K. Let T ∈ B(X ) and let ϕ : R + -→ R + be a non-decreasing function with ϕ(t) > 0 for all t > 0. If for every x ∈ X and

x * ∈ X * ∞ n=0 ϕ | F n (T )x; x * | < ∞, then σ(T ) ⊂ int(K).
Remark 3.15. According to Remark 2.6, the above condition about the sequence (|F n (ζ)|) n≥0 is automaticaly satisfied whenever ∂K is an Alper curve with (possible) angles.

Definition 3.16. The function ϕ is said to satisfy the ∆ 2 -condition at 0 if there exist ε > 0 and K > 0 such that for any x ∈ [0; ε], we have ϕ(t/2) ≥ Kϕ(t).

Corollary 3.17. We suppose that (|F n (ζ)|) n≥0 is eventually bounded below by a positive number for every ζ ∈ ∂K. Let T ∈ B(X ), let ϕ : R + -→ R + be a non-decreasing function satisfying the ∆ 2 -condition at 0 with ϕ(t) > 0 for t > 0, and let (ω n ) n≥0 be a sequence of non negative numbers such that

∞ n=0 ω n ϕ(ω n ) = ∞.
If for every x ∈ X and

x * ∈ X * ∞ n=0 ϕ ω n | F n (T )x; x * | < ∞, then σ(T ) ⊂ int(K).
Proof. Adapting the proof of Corollary 3.8, we may suppose ω n to be positive for every n. Replacing if necessary ω n by min(ω n , ε), we may also assume that ω n ∈ (0; ε] for each n. Let Φ be as in Lemma 3.13 and let E be the space

E = (x n ) n≥0 ; (ω n x n ) n≥0 ∈ L Φ , with the norm (x n ) n≥0 E = (ω n x n ) n≥0 L Φ .
The ∆ 2 condition gives that for any t ∈ (0; ε],

Φ(t) = t 0 ϕ(s)ds ≥ t 2 ϕ(t/2) ≥ Kt 2 ϕ(t).
Let k > 1, and m be the integer part of (ln(k)/ ln(2) + 1). Then

n-1 j=0 Φ(ω j /k) ≥ K m 2 m n-1 j=0 ω j ϕ(ω j ).
This proves that χ {0,...,n-1} E -→ n→∞ ∞.

An application of Theorem 3.5 completes the proof. 

ϕ(r) (r n F n (T )x; x * ) n≥0 2 -→ r→1 0,
for every x ∈ X and every x * ∈ X * . Then

σ(T ) ⊂ int(K).
Lemma 3.19. Let ϕ be a positive function on [0; 1) such that ϕ(r) tends to infinity and √ 1 -r ϕ(r) tends to 0 as r tends to 1. Then the space E defined by

E = (x n ) n≥0 ; 1 ϕ(r) (r n x n ) n≥0 2 -→ r→1 0 ,
with the norm

(x n ) n≥0 E = sup r∈(0;1) 1 ϕ(r) (r n x n ) n≥0 2 ,
is an admissible Banach function space over N such that

χ {0,...,n} E -→ n→∞ ∞.
Proof. It is easy to see that E is an admissible sequence space. Furthermore, we have

χ {0,...,n-1} E = sup r∈(0;1) 1 ϕ(r) (1, r, r 2 , . . . , r n-1 , 0, 0, . . . ) 2 ,

and

(1, r, r 2 , . . . , r n-1 , 0, 0, . . .

) 2 2 = n-1 k=0 r 2k = 1 -r 2n 1 -r 2 .
Therefore, 1 ϕ(r)

(1, r, r 2 , . . . , r n-1 , 0, 0, . . .

) 2 = 1 ϕ(r) √ 1 -r n √ 1 -r √ 1 + r n √ 1 + r ≥ 1 2 √ 1 -r n ϕ(r) √ 1 -r .
Let M > 0. As √ 1 -rϕ(r) tends to 0 as r tends to 1, there exists

r 0 < 1 such that 1 ϕ(r 0 ) √ 1 -r 0 > 4M.
Let N be such that 1 -r N 0 > 1/2. We get that for each n ≥ N we have χ {0,...,n-1} E ≥ M.

The proof is complete.

Proof of Corollary 3.18. Replacing, if necessary, ϕ(r) by max(ϕ(r); (1 -r) -1/4 ), we may assume that ϕ(r) -→ r→1 ∞. We can then apply Lemma 3.19 and Theorem 3.5 to obtain the inclusion σ(T ) ⊂ int(K).

Condition on the weak resolvent

The purpose of this section is, as in the previous one, to find conditions assuring spectral inclusion in the interior of a given simply connected compact set K. We suppose here that the spectrum of the bounded linear operator under consideration is included in the compact set K. Nikolski [START_REF] Nikolski | A Tauberian theorem for the spectral radius[END_REF] called conditions of this type Tauberian conditions for the spectral radius. The main interest of this approach is that it is well adapted to conditions expressed in terms of the weak resolvent, that is to say on the functions

z / ∈ K → (zI -T ) -1 x; x * ,
where x ∈ X and x * ∈ X * .

We recall that (F n ) n≥0 denotes the sequence of Faber polynomials associated with K and (e n ) n≥0 will denote the canonical algebraic basis of C (N) .

Let R ⊂ C N be a Banach space such that (1) For any k ∈ N, the map (a n ) n≥0 → a k is bounded.

(2) The set of finitely supported sequences

C (N) is dense in R. As C (N) is dense in R, each element ϕ in R * is characterized by the sequence (ϕ n ) n≥0 , where ϕ n = e n ; ϕ R .
This allows us to identify R * with a subset of C N . Via this identification, we can translate the condition (1) as "

C (N) is included in R * ". Proposition 4.1. If ϕ ∈ R * and f ∈ C (N)
, the duality mapping is given by

f ; ϕ R = ∞ n=0 f n ϕ n .
If f ∈ R and ϕ ∈ C (N) ⊂ R * , this equality still holds.

Proof. Let ϕ ∈ R * be finitely supported and let n 0 be such that e n ; ϕ = 0 whenever n ≥ n 0 . From (2), we know that there exists a sequence (g k ) k≥0 of elements in

C (N) such that g k -→ k→∞ f in R.
To prevent any confusion, we will denote by [g k ] n the n-th element of the sequence

g k . Hence, f ; ϕ R = lim k→∞ g k ; ϕ R .
We also have

g k ; ϕ R = n 0 n=0 [g k ] n ϕ n .
Therefore, using the hypothesis (1), we get that [g k ] n -→ k→∞ f n , for every n.

We obtain

f ; ϕ R = lim k→∞ g k ; ϕ R = ∞ n=0 f n ϕ n .
The crucial condition needed for our Tauberian conditions is the following one.

(3) For any ζ ∈ ∂K, the map

V ζ , defined in C (N) ⊂ R * by V ζ : ϕ → n≥0 ϕ n F n (ζ)
is not bounded. Theorem 4.2. Let R ⊂ C N be a Banach space satisfying conditions (1) to (3) for K. Let T ∈ B(X ) be a weak type R operator with σ(T ) ⊂ K. Then, in fact, σ(T ) ⊂ int(K).

Proof. Lemma 3.6 implies that

C := sup F n (T )x; x * n≥0 R ; x * ≤ 1, x ≤ 1 < ∞.
Using Proposition 4.1 we get, for every

ϕ ∈ C (N) ⊂ R * , n≥0 ϕ n F n (T ) = sup n≥0 ϕ n F n (T )x; x * ; x ≤ 1, x * ≤ 1 ≤ sup F n (T )x; x * n≥0 R ; x ≤ 1, x * ≤ 1 ϕ R * ≤ C ϕ R * .
Recall that, according to the spectral mapping theorem [START_REF] Conway | A course in functional analysis[END_REF], we have σ(P (A)) = P (σ(A)) for every polynomial P . Hence if ζ ∈ σ(T ), we have

n≥0 ϕ n F n (ζ) ≤ r n≥0 ϕ n F n (T ) ≤ n≥0 ϕ n F n (T ) ≤ C ϕ R * ,
where r(T ) = sup{|λ|; λ ∈ σ(T )} is the spectral radius of T . We deduce from this inequality that for any ζ ∈ σ(T ), the map V ζ is bounded in C (N) ⊂ R * . This gives us ∂K ∩ σ(T ) = ∅.

Remark 4.3. A weaker version of Corollary 3.8 can be deduced from Theorem 4.2 (one has to suppose that σ(T ) ⊂ K). One can notice that Corollary 3.9 cannot be deduced from Theorem 4.2.

A novelty of the approach of this section is that we can get a generalisation of the following result due to Mlak [START_REF] Mlak | On a theorem of Lebow[END_REF]. [START_REF] Mlak | On a theorem of Lebow[END_REF]). Let H be a Hilbert space and T ∈ B(H). Suppose that r(T ) ≤ 1 and that for any (x, y) ∈ H × H, z → (zI -T ) -1 x; y ∈ H 1 (D).

Theorem 4.4 ([
Then r(T ) < 1.

To extend Mlak's result, we need a generalisation of Hardy spaces of the disc to more general domains. We follow the setting of [START_REF] Duren | Theory of H p spaces[END_REF]. 

p := (x n ) n≥0 ; f (z) = ∞ n=0
x n z n ∈ H p (D) , with the norm

(x n ) n≥0 = ∞ n=0 x n z n H p (D)
satisfies conditions (1) to (3).

Proof. It is easy to check that conditions (1) and ( 2) are satisfied. Let us prove that the condition (3) is also satisfied.

Suppose on the contrary that condition (3) does not hold. Then there exists

ζ ∈ ∂K such that V ζ is bounded in C (N) ⊂ R * . Let a n = F n (ζ) for every n.
According to the Hahn-Banach theorem, there exists a bounded extension of V ζ to (h p ) * still denoted V ζ . Hence there exists M ≥ 0 such that for every

x * = (x * n ) n≥0 ∈ (h p ) * , |V ζ x * )| ≤ M (x * ) (h p ) * .
But f (r.) H p ≤ f H p for every r ∈ (0; 1) and every f ∈ H p . Thus, for every

(x * n ) n≥0 ∈ (h p ) * , (r n x * n ) n≥0 (h p ) * = sup (r n x * n ) n≥0 ; (x n ) n≥0 ; (x n ) n≥0 h p ≤ 1 = sup (x * n ) n≥0 ; (r n x n ) n≥0 ; (x n ) n≥0 h p ≤ 1 ≤ (x * n ) n≥0 (h p ) * .
So, for every r ∈ (0; 1) and for every (

x * n ) n≥0 ∈ (h p ) * , ∞ n=0 x * n r n a n ≤ M (x * n ) n≥0 (h p ) * .
Consequently, (r n a n ) n≥0 h p ≤ M for each r ∈ (0; 1), and thus (a n ) n≥0 is in h p . We have f (e iθ ) = a n e inθ ∈ H p (T) and a n = F n (ζ) -→ n→∞ 0. This contradiction completes the proof.

Proof of Corollary 4.7. We get from Lemma 4.9 and Theorem 4.2 that it is sufficient to prove that for any x ∈ X and x * ∈ X * we have

( F n (T )x; x * ) n≥0 ∈ h 1 .
From Lemma 2.9 we get that for any r > 1,

|φ(z)|=r | (zI -T ) -1 x; x * ||dz| = z∈rT | (ψ(z)I -T ) -1 x; x * ||ψ ′ (z)||dz| = z∈rT ∞ n=0 z -n-1 F n (T )x; x * |dz| = z∈r -1 T ∞ n=0 z n F n (T )x; x * r|dz|. This proves that z → ∞ n=0 z n F n (T )x; x * ∈ H 1 (D).
Remark 4.10. The space h 1 is not an admissible sequence space, thus Corollary 4.7 cannot be deduced from Theorem 3.5.

Explicit estimates

5.1. General case. We suppose in this section that Γ is an analytic Jordan curve. Let E be a Banach function space over N containing (r n ) n≥0 for any r ∈ (0; 1) and satisfying the condition

χ {0,...,n-1} E -→ n→∞ ∞.
Let T ∈ B(X ) be a weak type E operator.

As we have supposed Γ to be analytic, we get from Theorem 2.7 that the map ψ : D c -→ K c has an analytic extension to r 0 D c for some r 0 < 1.

Notation. For any r ∈ (r 0 ; 1), let Γ r be the analytic Jordan curve defined by Γ r = {ψ(z); |z| = r} and let K r be the simply connected compact delimited by Γ r .

We know from Theorem 3.5 that the spectrum of T is included in int(K). Having in mind possible applications in numerical analysis, it is the aim of this section to give an estimate of the "shrinking radius" r ∈ (r 0 ; 1) such σ(T ) ⊂ K r . In the case of the disc, this was done by N. Nikolski in [START_REF] Nikolski | Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics[END_REF]. Our estimate of the "shrinking radius" is given in terms of the constant C(T, E) defined by

C(T, E) = sup F n (T )x; x * n≥0 E ; x * ≤ 1, x ≤ 1 .
Notation. For r ∈ (r 0 ; 1) we denote

p(r) = inf r≤|φ(ζ)|<1 (F n (ζ)) n≥0 E
and, for M > 0 p -1 (M) = r 0 if {r ∈ (r 0 ; 1); p(r) ≤ M} = ∅, sup{r ∈ (r 0 ; 1); p(r) ≤ M} otherwise. Theorem 5.1. Let T be a weak type E operator for the compact K and set r = p -1 (C(T, E)). Then σ(T ) ⊂ K r .

Proof. We argue by contradiction. Suppose that σ(T ) K r ; then there exists λ ∈ ∂σ(T )\K r . From Lemma 3.7 we get that for any ε > 0 and any N ∈ N, there exist x N ∈ X and This contradiction completes the proof.

Concrete examples.

In case of some concrete compacts, the previously described quantities can be explicitly estimated. We begin with the case of a compact K such that K r 0 is convex. The following proof has been kindly suggested to the author by a referee.

Corollary 5.2. Suppose r < 1 and 1 ≤ p < ∞. Let T be a weak type l p operator for a compact K delimited by an analytic Jordan curve. Suppose that K r 0 is convex and As F n -φ n is an analytic function on C\K 0 and vanishes at ∞, the maximum principle gives us that for any z / ∈ K r 0 ,

C(T, l p ) ≤ 1 1 -r p 1/p - 1 1 -r p
|F n (z) -φ(z) n | ≤ r n 0 . Let w ∈ C be such that |w| > r 0 . Then F n (ψ(w)) n≥0 l p = (w n + (F n (ψ(w)) -w n )) n≥0 l p ≥ (w n ) n≥0 l p -(r n 0 ) n≥0 l p . Thus, for every t ∈ (r 0 ; 1), we have

p(t) ≥ ∞ n=0 t np 1/p - ∞ n=0 (r 0 ) np 1/p ≥ 1 1 -t p 1/p - 1 1 -(r 0 ) p 1/p .
The conclusion follows now from Theorem 5.1.

We now turn to the more specific case of an ellipse. Let K be the compact delimited by the ellipse with the foci -1 and 1, and semi-axes

a = 1 2 R + 1 R and b = 1 2 R - 1 R ,
with R > 1. Then (cf. Section 2) the function ψ is given by

ψ(w) = 1 2 Rw + 1 Rw
and the sequence of Faber polynomials is given by

F n (z) = 2
R n C n (z), n ≥ 1, where (C n ) n∈N is the sequence of Chebychev polynomials. We also have F n (ψ(w)) = w n + 1 R 2n w n (n ≥ 1). Corollary 5.3. Let K be the elliptic compact set described above. Suppose r < 1 and 1 ≤ p < ∞. Let T ∈ B(X ) be a weak type l p operator for K. Suppose that

C(T, l p ) ≤ 1 1 -r p 1/p - 1 1 -1 rR 2 p 1/p . Then σ(T ) ⊂ K r .
Remark 5.4. This estimate is better than the one given in Corollary 5.2 as r 0 = 1/R > 1/rR 2 for r > r 0 .

Remark 3 . 10 .

 310 According to Remark 2.6, if ∂K is an Alper curve with (possible) angles, the conditions on the sequence (ω n ) n≥0 can be replaced by

n≥0ϕ(

  |a n |) < ∞, and satisfies χ {0,...,n-1} L Φ -→ n→∞ ∞.

Corollary 3 . 18 .

 318 We suppose that (|F n (ζ)|) n≥0 is eventually bounded below by a positive number for every ζ ∈ ∂K. Let T ∈ B(X ). Suppose there exists a positive function ϕ on [0; 1) such that √ 1 -r ϕ(r) -→ r→1 0 and such that 1

  x * N ∈ X * satisfying x N = 1, x * N = 1 and | x * N ; F k (T )x N | > |F k (λ)| -ε, k ∈ {0, 1, . . . N}. By definition of C(T, E), we have C(T, E) ≥ F n (T )x N ; x * N n≥0 E ≥ (F 0 (ζ), . . . , F N (ζ), 0, 0, . . . ) -εχ {0,...,N } E .Thus, for every N ∈ N,F 0 (λ), F 1 (λ), . . . , F N (λ), 0, 0, . . . E ≤ C(T, E). But F n (λ) ∼ φ(λ) n , n → ∞, and |φ(λ)| < 1. Therefore (F n (λ)) n≥0 ∈ E and F n (λ) n≥0 E ≤ C(T, E).Using λ / ∈ K r , and taking into account the definition of r as r = p -1 (C(T, E)), we have F n (λ) n≥0 E > C(T, E).

  ) ⊂ K r .Proof. One can get from the inequality of Kövari and Pommerenke[START_REF] Kövari | On Faber polynomials and Faber expansions[END_REF] (cf. Theorem 2.8) and a change of variable that for any z ∈ Γ r 0 and any n ∈ N, we have |F n (z) -φ(z) n | ≤ r n 0 .

  Definition 4.5 ([6]). For p ∈ [1; ∞), a function f analytic in C\K is said to be of class E p (C\K) if there exists a sequence of rectifiable Jordan curves C 1 , C 2 , . . . in C\K such that C n eventually surrounds each compact subset of C\K, and such that sup Suppose that lim n |F n (ζ)| = 0 for no ζ ∈ ∂K. Let T ∈ B(X ) be such that σ(T ) ⊂ K. If for any x ∈ X and x * ∈ X * we have z → (zI -T ) -1 x; x * ∈ E 1 (C\K), According to Remark 2.6, if ∂K is an Alper curve with (possible) angles, the condition on the sequence (|F n (ζ)|) n≥0 is automaticaly satisfied. Lemma 4.9. Suppose that lim n |F n (ζ)| = 0 for no ζ ∈ ∂K. Then the space h

	Remark 4.8.		
	n	Cn	|f (z)| p |dz| < ∞.
	The following characterization ([6, Theorem 10.1]) of the functions in E p (C\K)
	is well adapted here as it uses the conformal representation φ.
	Theorem 4.6 ([6]). An analytic function f is of class E p (C\K) if and only if,
	sup r∈(1;2) |φ(z)|=r	|f (z)| p |dz| < ∞.
	We can now state the generalisation of Mlak's result [11] as a corollary to The-
	orem 4.2.		
	Corollary 4.7. then σ(T ) ⊂ int(K).		

Acknowledgement: I would like to express my sincere gratitude to my advisor Catalin Badea for proposing the topic of this paper and for his guidance and support.

I would also like to thank the two referees for their constructive remarks, critical reading and suggestions for improvements.

Proof. It is easy to verify that r 0 = 1/R. Let w ∈ C be such that |w| > 1/R. Then

Thus, for every t ∈ (1/R; 1),

The conclusion follows now from Theorem 5.1.