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FABER POLYNOMIALS AND SPECTRUM LOCALISATION

OSCAR DEVYS

Abstract. Let K be a compact connected subset of the complex plane, of
non-void interior, and whose complement in the extended complex plane is
connected. Denote by Fn the n-th Faber polynomial associated with K. The
aim of this paper is to find suitable Banach spaces of complex sequences, R,
such that statements of the following type hold true: if T is a bounded linear
operator acting on the Banach space X such that (〈Fn(T )x, x

∗〉)n≥0 ∈ R for
each pair (x, x∗) ∈ X ×X ∗, then the spectrum of T is included in the interior
of K. Generalisations of some results due to W. Mlak, N. Nikolski and J. van
Neerven are thus obtained and several illustrating examples are given. An
interesting feature of these generalisations is the influence of the geometry of
K and the regularity of its boundary.

1. Introduction

Faber polynomials are now classical objects of study in complex analysis, function
theory and approximation theory. We use in this paper Faber polynomials as
a basic tool to study the following “spectrum localisation problem” in operator
theory: identify conditions under which the spectrum of a Banach space bounded
linear operator is included in the interior of a given compact of the complex plane.
Other instances of the use of Faber polynomials for various problems in operator
theory are [1, 2, 3, 4, 17].

Computing or estimating the spectrum of a large matrix, or, more generally, of
a bounded linear operator acting on a complex Banach space is an important
problem in spectral theory, with possible applications in numerical analysis (see
for instance [12]). The classical spectral radius formula ([5])

r(T ) = lim
n→∞

‖T n‖1/n,

going back to Arne Beurling and Israel Gelfand, allows to find or estimate the ra-
dius r(T ) = sup{|λ| : λ ∈ σ(T )} of the smallest closed disc in the plane centered
in the origin and containing the spectrum σ(T ) of the given operator T . The
condition r(T ) < 1, corresponding to the exponential stability of T , is an impor-
tant one for applications. In order to better localise the spectrum and to find
inclusions of the form σ(T ) ⊂ K or σ(T ) ⊂ int(K) for some simply connected
compact K in the complex plane, the right tool to consider is the asymptotic
behaviour of the sequence (Fn(T ))n≥0, where Fn is the Faber polynomial of de-
gree n associated with K. We are interested to generalise in this vein (replacing
the closed unit disc by more general compacts) several existing results in the
literature [11, 19, 13, 14, 18]. An interesting feature of our study is the influence
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2 OSCAR DEVYS

of the geometry of the compact and the regularity of its boundary on the results
obtained about the localisation of the spectrum.

The present paper is organized as follows. Section 2 is dedicated to the definition
and basic properties of Faber polynomials. We present the influence of the regu-
larity of the boundary of the compact on the behaviour of these polynomials and
present known applications in operator theory. In Sections 3 and 4 we present
two approaches leading to different criteria for the spectrum to be included in
the interior of a compact. Some generalisations of results of Mlak ([11]), Weiss
([19]), van Neerven ([18]) and Nikolski ([13, 14]) are given there. We give in
Section 5 some explicit estimates based upon the preceding criteria.

2. Preliminaries on Faber polynomials

2.1. Definition and examples. We present here some classical results about
Faber polynomials which will be used later on. We follow the setting of [16].
The reader is referred to [16] or [8] for more details about Faber polynomials and
related topics.

Let K be a compact connected subset of the complex plane C, different from
a singleton, and whose complement is connected. From the Riemann mapping
theorem, we know that there exists a unique conformal map ψ : D

c −→ Kc such
that

ψ(∞) = ∞ and ψ′(∞) > 0.

The map ψ has a Laurent expansion for |w| > 1 of the form

ψ(w) = βw + β0 + β1w
−1 + · · ·+ βkw

−k + . . .

where β > 0 is the transfinite diameter, or (logarithmic) capacity, of K.

Let φ be the inverse function of ψ. The map φ : Kc −→ D
c
has a Laurent

expansion in a neighborhood of infinity of the form

φ(z) =
1

β
z + b0 + b1z

−1 + · · ·+ bkz
−k + . . .

For n ∈ N, the polynomial part of the Laurent expansion of φ(z)n is called the
Faber polynomial of order n and is denoted by Fn. The Faber polynomial of
order n has degree n and leading coefficient 1/βn. We consider the function ωn

defined by the following equation

φ(z)n = Fn(z) + ωn(z), (z ∈ Kc).

Then z 7→ ωn(z) is an analytic bounded function on Kc which tends to 0 at
infinity.

For any R > 1, let ΓR be the analytic Jordan curve {ψ(w) : |w| = R}. Denote
by GR its interior. If z is in GR then we have

Fn(z) =
1

2iπ

∫

ΓR

φ(ζ)n

ζ − z
dζ =

1

2iπ

∫

|w|=R

wnψ′(w)

ψ(w)− z
dw.
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One can deduce from this relation that the Faber polynomials satisfy the follow-
ing asymptotic relations

lim
n→∞

|Fn(z)|1/n = |φ(z)| for all z /∈ K and lim
n→∞

|Fn(z)|1/n ≤ 1 for all z ∈ K.

It also implies that for any fixed z in GR, (Fn(z))n≥0 is the sequence of the
Laurent coefficients of the map

w 7→ ψ′(w)

ψ(w)− z
, |w| > R,

in the neighborhood of the point w = ∞. Therefore the generating function of
the Faber polynomials is given by

(2.1)
ψ′(w)

ψ(w)− z
=

∞
∑

n=0

Fn(z)

wn+1
, (|w| > R, z ∈ GR).

The Faber polynomial of order n of the disk centered at z0 and of radius R is
given by the formula Fn(z) = ((z − z0)/R)

n. The series of Faber polynomials of
an analytic function in the neighborhood of the compact K is a generalisation
of the Taylor expansion of an analytic function in an open disc. More precisely,
we have the following theorem (cf. [16, Theorem 3.2.2]).

Theorem 2.1 ([16]). An analytic function f in a neighborhood of the compact
K can be uniquely expanded in a series of Faber polynomials with uniform con-
vergence on a neigborhood of K. That is to say, there exist a neighborhood V of
K and complex numbers an = an(f) such that for every z in V we have

f(z) =
∞
∑

n=0

anFn(z).

Example 2.2. Let R > 1 and K be the compact delimited by the ellipse with
the foci at the points 1 and -1 and semi-axes

a =
1

2
(R + 1/R) and b =

1

2
(R− 1/R).

The equation of this ellipse can be written in the form

z =
1

2

(

Reiθ +
1

Reiθ

)

, 0 ≤ θ < 2π.

Hence, the exterior conformal map associated with K is given by

ψ(w) =
1

2

(

Rw +
1

Rw

)

.

The corresponding Faber polynomials are

Fn(z) =
2

Rn
Cn(z), (n ≥ 1),

where Cn is the Chebychev polynomial of order n,

Cn(t) = cos(n arccos(t)), (t ∈ [−1; 1]).
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We also notice that, for any n ≥ 1, we have

Fn(ψ(w)) = wn +
1

R2nwn
.

2.2. Consequences of the regularity of the boundary Γ. If Γ, the boundary
of K, is a Jordan curve, its regularity influences the behaviour of the map ψ and
the asymptotic behaviour of the sequence of Faber polynomials (Fn)n≥0 on Γ.

A function ρ : R+ −→ R+ is called a modulus of continuity if it satisfies:

(1) ρ is increasing;
(2) limt→0 ρ(t) = 0;
(3) ρ is subadditive, i.e.,

ρ(t + s) ≤ ρ(t) + ρ(s).

A modulus of continuity is said to satisfy the Alper condition if
∫ ε

0

ρ(x)

x
log

(

1

x

)

dx <∞,

for some ε > 0.

For a fixed modulus of continuity ρ, a Jordan curve Γ is said to be of class Cρ if
it has a parametrization τ : [0; 1) −→ Γ that is differentiable, with τ ′(x) 6= 0 of
all x ∈ [0, 1) and τ ′ satisfying the continuity condition

|τ ′(x1)− τ ′(x2)| ≤ ρ(|x1 − x2|), x1, x2 ∈ [0; 1).

A Jordan arc is of class Cρ if it is a subarc of a Jordan curve of class Cρ.

The following theorem is a simplified version of [15, Theorem 1.1].

Theorem 2.3 ([15]). Let Γ be a rectifiable Jordan curve. For z0 ∈ Γ, assume
that Γ has an exterior angle of opening απ at z0, with 0 < α ≤ 2, formed by Cρ

arcs, where ρ is a modulus of continuity satisfying the Alper condition. Then,

Fn(z0) = αφ(z0)
n + o(1), as n→ ∞.

Remark 2.4. In the above result, the case α = 1 corresponds to a point where
the boundary form an arc of regularity Cρ, the (excluded) case α = 0 to an inside
pointing cusp and the case α = 2 to an outside pointing cusp.

It is often sufficient to consider ρ(x) = xβ for some β > 0. The class Cρ is then
the Hölder class C1,β.

The following definition will be used in the next sections as a basic geometric
condition about the regularity of the boundary.

Definition 2.5. A rectifiable Jordan curve C will be called an Alper curve with
(possible) angles if for all ζ ∈ C either C forms an arc of regularity Cρ in a
neighborhood of ζ , or C has an exterior angle of opening απ at ζ , 0 < α ≤ 2,
formed by Cρ arcs, where ρ is a modulus of continuity satisfying the Alper
condition.
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We want to stress here that Alper curves with angles do not have inside pointing
cusps.

Remark 2.6. According to Theorem 2.3, if Γ is an Alper curve with (possible)
angles, then for any ζ ∈ Γ, the sequence (|Fn(ζ)|)n≥0 is eventually bounded below
by a positive number.

We also record for further use the following classical result about analytic Jordan
curves and an inequality of Kövari and Pommerenke [10].

Theorem 2.7. Suppose that Γ is an analytic Jordan curve. Then ψ has an
analytic univalent extension in rD

c
for some r ∈ (0; 1).

Theorem 2.8. [10] If K is convex, then for all z ∈ Γ and for all n ≥ 0,

|Fn(z)− φ(z)n| ≤ 1.

2.3. Faber polynomials and operators on a Banach space.

Notation. For a complex Banach space X , we denote by B(X ) the Banach
algebra of the bounded linear operators from X into itself and by I = IX the
identity on X . The spectrum σ(T ) of T ∈ B(X ) is defined ([5]) by

σ(T ) := {λ ∈ C; (T − λI) is not invertible in B(X )}.

Lemma 2.9. Let X be a Banach space. Let T ∈ B(X ) be such that σ(T ) ⊂ K.
Then, for λ ∈ C, |λ| > 1, we have

(ψ(λ)I − T )−1 = ψ′(λ)−1
∞
∑

n=0

λ−n−1Fn(T ).

Proof. Let λ ∈ C, |λ| > 1. Let R = |λ|. Define

f(z) =
ψ′(λ)

ψ(λ)− z
, z ∈ GR.

It follows from (2.1) that for every z ∈ GR we have

f(z) =

∞
∑

n=0

λ−n−1Fn(z).

As f is an analytic function on GR, we have from Theorem 2.1 the uniform
convergence of the series in any compact subset of GR.

Using σ(T ) ⊂ K, the holomorphic functional calculus gives

(ψ(λ)I − T )−1 = ψ′(λ)−1
∞
∑

n=0

λ−n−1Fn(T ).

�
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In their article [1], A. Atzmon, A. Eremenko and M. Sodin have proved that for
any compact set K ⊂ C with connected complement, there exists a sequence
of polynomials (Pn)n≥0 and a positive number r such that if T is a bounded
operator on X , its spectrum is included in K if and only if

lim sup
n→∞

‖Pn(T )‖1/n ≤ r.

If K is connected, this can be expressed in terms of Faber polynomials.

Theorem 2.10 ([1]). Let X be a Banach space and T ∈ B(X ). Then σ(T ) ⊂ K
if and only if

lim sup
n→∞

‖Fn(T )‖1/n ≤ 1.

3. Condition on the weak Faber orbits

Let K be a simply connected compact subset of the complex plane with a non
empty interior. The aim of this section is to propose some conditions implying
that σ(T ) is included in the interior of K. Such results have been proved in the
case when K is the closed unit disc by Mlak [11], Weiss [19], van Neerven [18]
and Nikolski [13, 14].

Let (Fn)n≥0 be the sequence of Faber polynomials associated with K.

Notation. The set of finitely supported sequences will be denoted C(N) and
(en)n≥0 will denote the canonical algebraic basis of C(N). The characteristic
function of a set A will be denoted by χA.

Definition 3.1. A Banach space E ⊂ CN is said to be an admissible sequence
space if it satisfies the following properties:

• if |an| ≤ |bn| for all n ∈ N and (bn)n≥0 ∈ E , then (an)n≥0 ∈ E and
‖(an)n≥0‖E ≤ ‖(bn)n≥0‖E ;

• for all k ∈ N there exists a sequence (an)n≥0 ∈ E such that ak 6= 0.

Proposition 3.2. Let E be an admissible sequence space. Then C(N) ⊂ E .

Proof. Let k ∈ N. There exists a sequence (an)n≥0 ∈ E such that ak 6= 0 by the
second condition of admissibility. Then |χ{k}(n)| ≤ |ak|−1|an| for all n ∈ N. It
follows then from the first condition of admissibility that χ{k} belongs to E . By
taking finite linear combinations, we get that the finitely supported sequences
belong to E . �

The following definition extends the corresponding unit-disc analogue from [14].

Definition 3.3. Let E ⊂ CN be a Banach space and T ∈ B(X ). The operator
T is said to be of weak type E if for every pair (x; x∗) ∈ X ×X ∗ we have

(

〈Fn(T )x; x
∗〉
)

n≥0
∈ E .

Theorem 3.5 below, which is the main result of this section, is a generalisation
of the following result of J. van Neerven [18].



FABER POLYNOMIALS AND SPECTRUM LOCALISATION 7

Theorem 3.4 ([18]). Let X be a Banach space, T ∈ B(X ) and E an admissible
sequence space such that for any ζ ∈ T

‖(1, ζ, ζ2 . . . , ζN , 0, 0, . . . )‖E −→
N→∞

∞.

If T is of weak type E , then
r(T ) < 1.

Theorem 3.5. Let X be a Banach space, T ∈ B(X ) and E an admissible se-
quence space such that for any ζ ∈ ∂K

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖E −→
N→∞

∞.

If T is of weak type E , then
σ(T ) ⊂ int(K).

Lemma 3.6. Let E ⊂ CN be a Banach space such that for any k ∈ N, the map
(an)n≥0 7→ ak is bounded. Suppose that T ∈ B(X ) is a weak type E operator.
Then

sup
{
∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

E
; ‖x∗‖ ≤ 1, ‖x‖ ≤ 1

}

<∞.

Proof. Let us prove that for any x ∈ X , the map

fx :X ∗ → E
x∗ 7→

(

〈Fn(T )x; x
∗〉
)

n≥0

is bounded.
Indeed, fx is well defined because T is a weak type E operator. Let (x∗n)n≥0 ⊂
X ∗, x∗ ∈ X ∗ and r ∈ E be such that

x∗n → x∗ and fx(x
∗
n)

E−→ r.

We infer from the boundedness of the maps (an)n≥0 7→ ak, that for any k ∈ N

[fx(x
∗
n)]k −→

n→∞
rk,

where [fx(x
∗
n)]k denotes the k-th element of the sequence fx(x

∗
n). For any k ∈ N

[fx(x
∗
n)]k = 〈Fk(T )x; x

∗
n〉 −→

n→∞
〈Fk(T )x; x

∗〉 = [fx(x
∗)]k.

Thus fx(x
∗) = r and, according to the closed graph theorem [5], fx is bounded.

In particular, for any x ∈ X
(3.1) sup

{
∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

E
; ‖x∗‖ ≤ 1

}

<∞.

For any x∗ ∈ X ∗ let

gx∗ :X → E
x 7→ fx(x

∗).

Then, in the same way as for fx, we can prove that, for every x∗, the map gx∗ is
bounded. Using (3.1) we obtain that

sup
‖x∗‖≤1

‖gx∗(x)‖ <∞,
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for an arbitrary x ∈ X . Using the uniform boundedness principle [5] we infer
that {gx∗}‖x∗‖≤1 is a bounded set. Thus

sup
{
∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

E
; ‖x∗‖ ≤ 1, ‖x‖ ≤ 1

}

<∞,

which completes the proof. �

Lemma 3.7. Let T ∈ B(X ) be a linear operator acting on the Banach space X .
For all λ ∈ ∂σ(T ), all ε > 0 and all N ∈ N there exist xN ∈ X and x∗N ∈ X ∗

satisfying ‖xN‖ = 1, ‖x∗N‖ = 1 and

|〈Fn(T )xN ; x
∗
N 〉| > |Fn(λ)| − ε, n = 0, 1, . . .N.

Proof. Let λ ∈ ∂σ(T ), ε > 0 and N ∈ N. As λ ∈ ∂σ(T ), we have that λ
belongs to σapp(T ), the approximate point spectrum of T (cf. [5, Chapter 7.6]).
By definition, this means that there exists a sequence (yn)n≥0 in X such that
‖yn‖ = 1 for all n ∈ N and

‖Tyn − λyn‖ −→
n→∞

0.

Thus, for each fixed k ∈ N,

lim
n→∞

‖Fk(T )yn − Fk(λ)yn‖ = 0.

Let n1 be such that

‖Fk(T )yn1
− Fk(λ)yn1

‖ < ε, ∀k = 0, 1, . . .N.

Let xN = yn1
and x∗N ∈ X ∗ be such that ‖x∗N‖ = 1 and 〈x∗N ; xN〉 = 1. Then for

k ∈ {0, 1, . . .N}, we have

|〈Fk(T )xN ; x
∗
N〉| ≥ |〈Fk(λ)xN ; x

∗
N 〉| − |〈Fk(T )xN − Fk(λ)xN ; x

∗
N 〉|

> |Fk(λ)| − ε.

�

Proof of Theorem 3.5. From Lemma 3.6 we know that there exists M ≥ 0 such
that for any x ∈ X , x∗ ∈ X ∗, with ‖x‖ = 1 and ‖x∗‖ = 1, we have

∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

E
≤M.

Suppose that σ(T ) * int(K), then there exists λ ∈ ∂σ(T )\int(K). From Lemma
3.7 we get that for every ε > 0 and N ∈ N there exist xN ∈ X and x∗N ∈ X ∗

satisfying ‖xN‖ ≤ 1, ‖x∗N‖ ≤ 1 and

|〈Fn(T )xN ; x
∗
N 〉| > |Fn(λ)| − ε, n = 0, 1, . . .N.

Therefore, |〈Fn(T )xN ; x
∗
N〉| ≥ |Fn(λ)|χ{0,...N}(n)− εχ{0,...N}(n) for all n. Thus

∥

∥

∥

(

〈Fn(T )xN ; x
∗
N〉
)

n≥0

∥

∥

∥

E
≥ ‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖E − ε‖χ{0,...N}‖E .

We obtain that for any ε > 0 and N ∈ N

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖E − ε‖χ{0,...N}‖E ≤M.
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Hence, for every N ∈ N we have

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖E ≤M,

which gives the desired contradiction if λ ∈ ∂K. If λ /∈ K, then

|Fn(λ)|1/n −→
n→∞

R > 1.

But we know that for any ζ ∈ ∂K, lim supn→∞ |Fn(ζ)|1/n ≤ 1, and

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖E −→
N→∞

∞.

Thus, if λ /∈ K we get from the first condition of admissibility that

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖E −→
N→∞

∞,

which gives a contradiction. �

We now give some illustrating examples; we start with one based on weighted lp

spaces.

Corollary 3.8. Let 1 ≤ p < ∞ and let (ωn)n≥0 be a sequence of non negative
numbers. We suppose that for any ζ ∈ ∂K,

∞
∑

n=0

ωn|Fn(ζ)|p = ∞.

Let X be a Banach space. Let T ∈ B(X ) be such that for every (x, x∗) ∈ X ×X ∗

we have
∞
∑

n=0

ωn|〈Fn(T )x; x
∗〉|p <∞.

Then σ(T ) ⊂ int(K).

Corollary 3.9. Let (ωn)n≥0 be a sequence of non negative numbers. We suppose
that for any ζ ∈ ∂K,

lim sup
n→∞

ωn|Fn(ζ)| = ∞.

Let X be a Banach space. Let T ∈ B(X ) be such that for every (x, x∗) ∈ X ×X ∗

we have
sup
n≥0

ωn|〈Fn(T )x; x
∗〉| <∞.

Then σ(T ) ⊂ int(K).

Remark 3.10. According to Remark 2.6, if ∂K is an Alper curve with (possible)
angles, the conditions on the sequence (ωn)n≥0 can be replaced by

∞
∑

n=0

ωn = ∞,

in Corollary 3.8 and by
lim sup
n→∞

ωn = ∞

in Corollary 3.9.
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Proof of Corollaries 3.8 and 3.9. We have that

lim
|z|→∞

|φ(z)| = ∞.

Therefore, there exists a R > 1 such that

σ(T ) ∩ {z : |φ(z)| ≥ R} = ∅.

Thus, we get from Theorem 2.10 that

lim sup
n→∞

‖Fn(T )‖1/n < R.

Let (ω̃n)n≥0 be the positive sequence defined by

ω̃n =

{

ωn if ωn 6= 0,

R−np if ωn = 0.

For every (x, x∗) ∈ X ×X ∗ we have
∞
∑

n=0

ω̃n|〈Fn(T )x; x
∗〉|p <∞.

If p <∞, then the space

lp(ω̃) :=

{

(an)n≥0;
∞
∑

n=0

ω̃n|an|p <∞
}

with the norm:

‖(an)n≥0‖lp(ω̃) =
(

∞
∑

n=0

ω̃n|an|p
)1/p

is an admissible sequence space and the condition

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖lp(ω̃) −→
N→∞

∞

is equivalent to
∞
∑

n=0

ω̃n|Fn(ζ)|p = ∞.

If p = ∞, then the space

l∞(ω̃) =

{

(an)n≥0; sup
n≥0

ω̃n|an| <∞
}

with the norm
‖(an)n≥0‖l∞(ω̃) = sup

n≥0
ω̃n|an|

is an admissible sequence space and the condition

‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )‖lp(ω̃) −→
N→∞

∞

is equivalent to
lim sup
n→∞

ω̃n|Fn(ζ)| = ∞.
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It is then sufficient to apply Theorem 3.5 with the space E = lp(ω̃) to conclude.
�

We give now another application of Theorem 3.5 based on Orlicz spaces.

Definition 3.11. A function Φ : [0;∞) −→ [0;∞) is a Young function if it is
convex and it satisfies

Φ(x)

x
−→
x→0

0 and
Φ(x)

x
−→
x→∞

∞.

For any complex sequence (xn)n≥0 we set

MΦ(x) =

∞
∑

n=0

Φ(|xn|).

The Orlicz space LΦ is the space of all sequences (xn)n≥0 such that there exists
k > 0 such that MΦ(kx) <∞.

Theorem 3.12. Let Φ be a Young function, the Orlicz space Lφ with the norm

‖(xn)n≥0‖LΦ = inf{k;MΦ

(

1

k
x

)

≤ 1}

is a Banach space and if Φ(t) > 0 for all t > 0, then

‖χ{0,...,n−1}‖LΦ −→
n→∞

∞.

For the proof we use the following useful result.

Lemma 3.13 ([18]). Let ϕ : R+ −→ R+ be non-decreasing with ϕ(t) > 0 for
all t > 0. Then there exists a Young function Φ such that the Orlicz space LΦ

contains every sequence (an)n≥0 such that
∑

n≥0

ϕ(|an|) <∞,

and satisfies
‖χ{0,...,n−1}‖LΦ −→

n→∞
∞.

Proof. Replacing ϕ by a multiple of ϕ we may assume that ϕ(1) = 1. Let Φ be
defined by

Φ(t) =

∫ t

0

ϕ(s)ds.

Then Φ is a Young function and if (an)n≥0 is such that
∑

n≥0

ϕ(|an|) <∞,

then the set of indexes n such that |an| > 1 is finite and if |an| ≤ 1, then
Φ(|an|) ≤ ϕ(|an|). Thus we get

∑

n≥0

Φ(|an|) <∞,
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so (an)n≥0 ∈ LΦ.

But Φ is strictly positive and increasing on (0;∞), therefore we obtain

‖χ{0,...,n−1}‖LΦ = inf

{

k;
n−1
∑

k=0

Φ(1/k) ≤ 1

}

−→
n→∞

∞.

�

As Orlicz spaces of sequences are admissible sequence spaces we obtain the fol-
lowing result.

Corollary 3.14. We suppose that (|Fn(ζ)|)n≥0 is eventually bounded below by a
positive number for every ζ ∈ ∂K. Let T ∈ B(X ) and let ϕ : R+ −→ R+ be
a non-decreasing function with ϕ(t) > 0 for all t > 0. If for every x ∈ X and
x∗ ∈ X ∗

∞
∑

n=0

ϕ
(

|〈Fn(T )x; x
∗〉|
)

<∞,

then
σ(T ) ⊂ int(K).

Remark 3.15. According to Remark 2.6, the above condition about the se-
quence (|Fn(ζ)|)n≥0 is automaticaly satisfied whenever ∂K is an Alper curve
with (possible) angles.

Definition 3.16. The function ϕ is said to satisfy the ∆2-condition at 0 if there
exist ε > 0 and K > 0 such that for any x ∈ [0; ε], we have ϕ(t/2) ≥ Kϕ(t).

Corollary 3.17. We suppose that (|Fn(ζ)|)n≥0 is eventually bounded below by
a positive number for every ζ ∈ ∂K. Let T ∈ B(X ), let ϕ : R+ −→ R+ be a
non-decreasing function satisfying the ∆2-condition at 0 with ϕ(t) > 0 for t > 0,
and let (ωn)n≥0 be a sequence of non negative numbers such that

∞
∑

n=0

ωnϕ(ωn) = ∞.

If for every x ∈ X and x∗ ∈ X ∗

∞
∑

n=0

ϕ
(

ωn|〈Fn(T )x; x
∗〉|
)

<∞,

then
σ(T ) ⊂ int(K).

Proof. Adapting the proof of Corollary 3.8, we may suppose ωn to be positive
for every n. Replacing if necessary ωn by min(ωn, ε), we may also assume that
ωn ∈ (0; ε] for each n. Let Φ be as in Lemma 3.13 and let E be the space

E =
{

(xn)n≥0; (ωnxn)n≥0 ∈ LΦ
}

,

with the norm
‖(xn)n≥0‖E = ‖(ωnxn)n≥0‖LΦ.
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The ∆2 condition gives that for any t ∈ (0; ε],

Φ(t) =

∫ t

0

ϕ(s)ds ≥ t

2
ϕ(t/2) ≥ Kt

2
ϕ(t).

Let k > 1, and m be the integer part of (ln(k)/ ln(2) + 1). Then

n−1
∑

j=0

Φ(ωj/k) ≥
Km

2m

n−1
∑

j=0

ωjϕ(ωj).

This proves that

‖χ{0,...,n−1}‖E −→
n→∞

∞.

An application of Theorem 3.5 completes the proof. �

Corollary 3.18. We suppose that (|Fn(ζ)|)n≥0 is eventually bounded below by a
positive number for every ζ ∈ ∂K. Let T ∈ B(X ). Suppose there exists a positive
function ϕ on [0; 1) such that

√
1− r ϕ(r) −→

r→1
0

and such that
1

ϕ(r)
‖(rn〈Fn(T )x; x

∗〉)n≥0‖2 −→
r→1

0,

for every x ∈ X and every x∗ ∈ X ∗. Then

σ(T ) ⊂ int(K).

Lemma 3.19. Let ϕ be a positive function on [0; 1) such that ϕ(r) tends to
infinity and

√
1− r ϕ(r) tends to 0 as r tends to 1. Then the space E defined by

E =

{

(xn)n≥0;
1

ϕ(r)
‖(rnxn)n≥0‖2 −→

r→1
0

}

,

with the norm

‖(xn)n≥0‖E = sup
r∈(0;1)

1

ϕ(r)
‖(rnxn)n≥0‖2,

is an admissible Banach function space over N such that

‖χ{0,...,n}‖E −→
n→∞

∞.

Proof. It is easy to see that E is an admissible sequence space. Furthermore, we
have

‖χ{0,...,n−1}‖E = sup
r∈(0;1)

1

ϕ(r)
‖(1, r, r2, . . . , rn−1, 0, 0, . . . )‖2,

and

‖(1, r, r2, . . . , rn−1, 0, 0, . . . )‖22 =
n−1
∑

k=0

r2k =
1− r2n

1− r2
.
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Therefore,

1

ϕ(r)
‖(1, r, r2, . . . , rn−1, 0, 0, . . . )‖2 =

1

ϕ(r)

√
1− rn√
1− r

√
1 + rn√
1 + r

≥ 1

2

√
1− rn

ϕ(r)
√
1− r

.

Let M > 0. As
√
1− rϕ(r) tends to 0 as r tends to 1, there exists r0 < 1 such

that
1

ϕ(r0)
√
1− r0

> 4M.

Let N be such that
√

1− rN0 > 1/2. We get that for each n ≥ N we have

‖χ{0,...,n−1}‖E ≥M.

The proof is complete. �

Proof of Corollary 3.18. Replacing, if necessary, ϕ(r) by max(ϕ(r); (1− r)−1/4),
we may assume that ϕ(r) −→

r→1
∞. We can then apply Lemma 3.19 and Theorem

3.5 to obtain the inclusion σ(T ) ⊂ int(K). �

4. Condition on the weak resolvent

The purpose of this section is, as in the previous one, to find conditions assuring
spectral inclusion in the interior of a given simply connected compact set K. We
suppose here that the spectrum of the bounded linear operator under considera-
tion is included in the compact set K. Nikolski [13] called conditions of this type
Tauberian conditions for the spectral radius. The main interest of this approach
is that it is well adapted to conditions expressed in terms of the weak resolvent,
that is to say on the functions

z /∈ K 7→ 〈(zI − T )−1x; x∗〉,
where x ∈ X and x∗ ∈ X ∗.

We recall that (Fn)n≥0 denotes the sequence of Faber polynomials associated
with K and (en)n≥0 will denote the canonical algebraic basis of C(N).

Let R ⊂ CN be a Banach space such that

(1) For any k ∈ N, the map (an)n≥0 7→ ak is bounded.
(2) The set of finitely supported sequences C(N) is dense in R.

As C(N) is dense in R, each element ϕ in R∗ is characterized by the sequence
(ϕn)n≥0, where

ϕn = 〈en;ϕ〉R.
This allows us to identify R∗ with a subset of CN. Via this identification, we can
translate the condition (1) as “ C(N) is included in R∗ ”.
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Proposition 4.1. If ϕ ∈ R∗ and f ∈ C(N), the duality mapping is given by

〈f ;ϕ〉R =

∞
∑

n=0

fnϕn.

If f ∈ R and ϕ ∈ C(N) ⊂ R∗, this equality still holds.

Proof. Let ϕ ∈ R∗ be finitely supported and let n0 be such that 〈en;ϕ〉 = 0
whenever n ≥ n0. From (2), we know that there exists a sequence (gk)k≥0 of
elements in C(N) such that

gk −→
k→∞

f in R.
To prevent any confusion, we will denote by [gk]n the n-th element of the sequence
gk. Hence,

〈f ;ϕ〉R = lim
k→∞

〈gk;ϕ〉R.
We also have 〈gk;ϕ〉R =

∑n0

n=0[gk]nϕn. Therefore, using the hypothesis (1), we
get that [gk]n −→

k→∞
fn, for every n.

We obtain

〈f ;ϕ〉R = lim
k→∞

〈gk;ϕ〉R =
∞
∑

n=0

fnϕn.

�

The crucial condition needed for our Tauberian conditions is the following one.

(3) For any ζ ∈ ∂K, the map Vζ, defined in C(N) ⊂ R∗ by

Vζ : ϕ 7→
∑

n≥0

ϕnFn(ζ)

is not bounded.

Theorem 4.2. Let R ⊂ CN be a Banach space satisfying conditions (1) to (3)
for K. Let T ∈ B(X ) be a weak type R operator with σ(T ) ⊂ K. Then, in fact,

σ(T ) ⊂ int(K).

Proof. Lemma 3.6 implies that

C := sup
{
∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

R
; ‖x∗‖ ≤ 1, ‖x‖ ≤ 1

}

<∞.

Using Proposition 4.1 we get, for every ϕ ∈ C(N) ⊂ R∗,
∥

∥

∥

∥

∥

∑

n≥0

ϕnFn(T )

∥

∥

∥

∥

∥

= sup

{
∣

∣

∣

∣

∣

∑

n≥0

ϕn〈Fn(T )x; x
∗〉
∣

∣

∣

∣

∣

; ‖x‖ ≤ 1, ‖x∗‖ ≤ 1

}

≤ sup
{
∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

R
; ‖x‖ ≤ 1, ‖x∗‖ ≤ 1

}

‖ϕ‖R∗

≤ C‖ϕ‖R∗ .
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Recall that, according to the spectral mapping theorem [5], we have σ(P (A)) =
P (σ(A)) for every polynomial P . Hence if ζ ∈ σ(T ), we have

∣

∣

∣

∣

∣

∑

n≥0

ϕnFn(ζ)

∣

∣

∣

∣

∣

≤ r

(

∑

n≥0

ϕnFn(T )

)

≤
∥

∥

∥

∥

∥

∑

n≥0

ϕnFn(T )

∥

∥

∥

∥

∥

≤ C‖ϕ‖R∗ ,

where r(T ) = sup{|λ|;λ ∈ σ(T )} is the spectral radius of T . We deduce from
this inequality that for any ζ ∈ σ(T ), the map Vζ is bounded in C(N) ⊂ R∗.

This gives us
∂K ∩ σ(T ) = ∅.

�

Remark 4.3. A weaker version of Corollary 3.8 can be deduced from Theorem
4.2 (one has to suppose that σ(T ) ⊂ K). One can notice that Corollary 3.9
cannot be deduced from Theorem 4.2.

A novelty of the approach of this section is that we can get a generalisation of
the following result due to Mlak [11].

Theorem 4.4 ([11]). Let H be a Hilbert space and T ∈ B(H). Suppose that
r(T ) ≤ 1 and that for any (x, y) ∈ H ×H,

z 7→ 〈(zI − T )−1x; y〉 ∈ H1(D).

Then r(T ) < 1.

To extend Mlak’s result, we need a generalisation of Hardy spaces of the disc to
more general domains. We follow the setting of [6].

Definition 4.5 ([6]). For p ∈ [1;∞), a function f analytic in C\K is said to be
of class Ep(C\K) if there exists a sequence of rectifiable Jordan curves C1, C2, . . .
in C\K such that Cn eventually surrounds each compact subset of C\K, and
such that

sup
n

∫

Cn

|f(z)|p|dz| <∞.

The following characterization ([6, Theorem 10.1]) of the functions in Ep(C\K)
is well adapted here as it uses the conformal representation φ.

Theorem 4.6 ([6]). An analytic function f is of class Ep(C\K) if and only if,

sup
r∈(1;2)

∫

|φ(z)|=r

|f(z)|p|dz| <∞.

We can now state the generalisation of Mlak’s result [11] as a corollary to The-
orem 4.2.

Corollary 4.7. Suppose that limn |Fn(ζ)| = 0 for no ζ ∈ ∂K. Let T ∈ B(X ) be
such that σ(T ) ⊂ K.

If for any x ∈ X and x∗ ∈ X ∗ we have

z 7→ 〈(zI − T )−1x; x∗〉 ∈ E1(C\K),

then σ(T ) ⊂ int(K).
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Remark 4.8. According to Remark 2.6, if ∂K is an Alper curve with (possible)
angles, the condition on the sequence (|Fn(ζ)|)n≥0 is automaticaly satisfied.

Lemma 4.9. Suppose that limn |Fn(ζ)| = 0 for no ζ ∈ ∂K. Then the space

hp :=

{

(xn)n≥0; f(z) =
∞
∑

n=0

xnz
n ∈ Hp(D)

}

,

with the norm

‖(xn)n≥0‖ =

∥

∥

∥

∥

∥

∞
∑

n=0

xnz
n

∥

∥

∥

∥

∥

Hp(D)

satisfies conditions (1) to (3).

Proof. It is easy to check that conditions (1) and (2) are satisfied. Let us prove
that the condition (3) is also satisfied.

Suppose on the contrary that condition (3) does not hold. Then there exists
ζ ∈ ∂K such that Vζ is bounded in C(N) ⊂ R∗. Let an = Fn(ζ) for every n.

According to the Hahn-Banach theorem, there exists a bounded extension of
Vζ to (hp)∗ still denoted Vζ . Hence there exists M ≥ 0 such that for every
x∗ = (x∗n)n≥0 ∈ (hp)∗,

|Vζ
(

x∗)| ≤ M‖(x∗)‖(hp)∗ .

But ‖f(r.)‖Hp ≤ ‖f‖Hp for every r ∈ (0; 1) and every f ∈ Hp. Thus, for every
(x∗n)n≥0 ∈ (hp)∗,

‖(rnx∗n)n≥0‖(hp)∗ = sup
{

∣

∣

〈

(rnx∗n)n≥0; (xn)n≥0

〉
∣

∣; ‖(xn)n≥0‖hp ≤ 1
}

= sup
{

∣

∣

〈

(x∗n)n≥0; (r
nxn)n≥0

〉
∣

∣; ‖(xn)n≥0‖hp ≤ 1
}

≤ ‖(x∗n)n≥0‖(hp)∗ .

So, for every r ∈ (0; 1) and for every (x∗n)n≥0 ∈ (hp)∗,
∣

∣

∣

∣

∣

∞
∑

n=0

x∗nr
nan

∣

∣

∣

∣

∣

≤ M‖(x∗n)n≥0‖(hp)∗ .

Consequently, ‖(rnan)n≥0‖hp ≤ M for each r ∈ (0; 1), and thus (an)n≥0 is in hp.
We have f(eiθ) =

∑

ane
inθ ∈ Hp(T) and an = Fn(ζ) −→

n→∞
0. This contradiction

completes the proof. �

Proof of Corollary 4.7. We get from Lemma 4.9 and Theorem 4.2 that it is suf-
ficient to prove that for any x ∈ X and x∗ ∈ X ∗ we have

(〈Fn(T )x; x
∗〉)n≥0 ∈ h1.
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From Lemma 2.9 we get that for any r > 1,
∫

|φ(z)|=r

|〈(zI − T )−1x; x∗〉||dz| =
∫

z∈rT
|〈(ψ(z)I − T )−1x; x∗〉||ψ′(z)||dz|

=

∫

z∈rT

∣

∣

∣

∣

∣

∞
∑

n=0

z−n−1〈Fn(T )x; x
∗〉
∣

∣

∣

∣

∣

|dz|

=

∫

z∈r−1T

∣

∣

∣

∣

∣

∞
∑

n=0

zn〈Fn(T )x; x
∗〉
∣

∣

∣

∣

∣

r|dz|.

This proves that

z 7→
∞
∑

n=0

zn〈Fn(T )x; x
∗〉 ∈ H1(D).

�

Remark 4.10. The space h1 is not an admissible sequence space, thus Corollary
4.7 cannot be deduced from Theorem 3.5.

5. Explicit estimates

5.1. General case. We suppose in this section that Γ is an analytic Jordan
curve. Let E be a Banach function space over N containing (rn)n≥0 for any
r ∈ (0; 1) and satisfying the condition

‖χ{0,...,n−1}‖E −→
n→∞

∞.

Let T ∈ B(X ) be a weak type E operator.

As we have supposed Γ to be analytic, we get from Theorem 2.7 that the map
ψ : D

c −→ Kc has an analytic extension to r0D
c
for some r0 < 1.

Notation. For any r ∈ (r0; 1), let Γr be the analytic Jordan curve defined by

Γr = {ψ(z); |z| = r}
and let Kr be the simply connected compact delimited by Γr.

We know from Theorem 3.5 that the spectrum of T is included in int(K). Having
in mind possible applications in numerical analysis, it is the aim of this section
to give an estimate of the “shrinking radius” r ∈ (r0; 1) such σ(T ) ⊂ Kr. In
the case of the disc, this was done by N. Nikolski in [14]. Our estimate of the
“shrinking radius” is given in terms of the constant C(T, E) defined by

C(T, E) = sup

{
∥

∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n≥0

∥

∥

∥

∥

E

; ‖x∗‖ ≤ 1, ‖x‖ ≤ 1

}

.

Notation. For r ∈ (r0; 1) we denote

p(r) = inf
r≤|φ(ζ)|<1

‖(Fn(ζ))n≥0‖E
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and, for M > 0

p−1(M) =

{

r0 if {r ∈ (r0; 1); p(r) ≤M} = ∅,

sup{r ∈ (r0; 1); p(r) ≤M} otherwise.

Theorem 5.1. Let T be a weak type E operator for the compact K and set
r = p−1(C(T, E)). Then

σ(T ) ⊂ Kr.

Proof. We argue by contradiction. Suppose that σ(T ) * Kr; then there exists
λ ∈ ∂σ(T )\Kr. From Lemma 3.7 we get that for any ε > 0 and any N ∈ N,
there exist xN ∈ X and x∗N ∈ X ∗ satisfying ‖xN‖ = 1, ‖x∗N‖ = 1 and

|〈x∗N ;Fk(T )xN〉| > |Fk(λ)| − ε, k ∈ {0, 1, . . .N}.
By definition of C(T, E), we have

C(T, E) ≥
∥

∥

∥

(

〈Fn(T )xN ; x
∗
N 〉
)

n≥0

∥

∥

∥

E
≥ ‖(F0(ζ), . . . , FN(ζ), 0, 0, . . . )− εχ{0,...,N}‖E .

Thus, for every N ∈ N,
∥

∥

(

F0(λ), F1(λ), . . . , FN(λ), 0, 0, . . .
)
∥

∥

E
≤ C(T, E).

But Fn(λ) ∼ φ(λ)n, n→ ∞, and |φ(λ)| < 1. Therefore (Fn(λ))n≥0 ∈ E and
∥

∥

∥

(

Fn(λ)
)

n≥0

∥

∥

∥

E
≤ C(T, E).

Using λ /∈ Kr, and taking into account the definition of r as r = p−1(C(T, E)),
we have

∥

∥

∥

(

Fn(λ)
)

n≥0

∥

∥

∥

E
> C(T, E).

This contradiction completes the proof. �

5.2. Concrete examples. In case of some concrete compacts, the previously
described quantities can be explicitly estimated. We begin with the case of
a compact K such that Kr0 is convex. The following proof has been kindly
suggested to the author by a referee.

Corollary 5.2. Suppose r < 1 and 1 ≤ p <∞. Let T be a weak type lp operator
for a compact K delimited by an analytic Jordan curve. Suppose that Kr0 is
convex and

C(T, lp) ≤
(

1

1− rp

)1/p

−
(

1

1− rp0

)1/p

.

Then

σ(T ) ⊂ Kr.

Proof. One can get from the inequality of Kövari and Pommerenke [10] (cf. The-
orem 2.8) and a change of variable that for any z ∈ Γr0 and any n ∈ N, we
have

|Fn(z)− φ(z)n| ≤ rn0 .
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As Fn − φn is an analytic function on C\K0 and vanishes at ∞, the maximum
principle gives us that for any z /∈ Kr0 ,

|Fn(z)− φ(z)n| ≤ rn0 .

Let w ∈ C be such that |w| > r0. Then
∥

∥

∥

(

Fn(ψ(w))
)

n≥0

∥

∥

∥

lp
=
∥

∥(wn + (Fn(ψ(w))− wn))n≥0

∥

∥

lp

≥ ‖(wn)n≥0‖lp −
∥

∥(rn0 )n≥0

∥

∥

lp
.

Thus, for every t ∈ (r0; 1), we have

p(t) ≥
(

∞
∑

n=0

tnp

)1/p

−
(

∞
∑

n=0

(r0)
np

)1/p

≥
(

1

1− tp

)1/p

−
(

1

1− (r0)
p

)1/p

.

The conclusion follows now from Theorem 5.1.

�

We now turn to the more specific case of an ellipse. Let K be the compact
delimited by the ellipse with the foci -1 and 1, and semi-axes

a =
1

2

(

R +
1

R

)

and b =
1

2

(

R− 1

R

)

,

with R > 1. Then (cf. Section 2) the function ψ is given by

ψ(w) =
1

2

(

Rw +
1

Rw

)

and the sequence of Faber polynomials is given by

Fn(z) =
2

Rn
Cn(z), n ≥ 1,

where (Cn)n∈N is the sequence of Chebychev polynomials. We also have

Fn(ψ(w)) = wn +
1

R2nwn
(n ≥ 1).

Corollary 5.3. Let K be the elliptic compact set described above. Suppose r < 1
and 1 ≤ p <∞. Let T ∈ B(X ) be a weak type lp operator for K. Suppose that

C(T, lp) ≤
(

1

1− rp

)1/p

−
(

1

1−
(

1
rR2

)p

)1/p

.

Then

σ(T ) ⊂ Kr.

Remark 5.4. This estimate is better than the one given in Corollary 5.2 as
r0 = 1/R > 1/rR2 for r > r0.
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Proof. It is easy to verify that r0 = 1/R. Let w ∈ C be such that |w| > 1/R.
Then

∥

∥

∥

(

Fn(ψ(w))
)

n≥0

∥

∥

∥

lp
=

∥

∥

∥

∥

∥

(

wn +
1

R2nwn

)

n≥0

∥

∥

∥

∥

∥

lp

≥ ‖(wn)n≥0‖lp −
∥

∥

∥

∥

∥

(

1

R2nwn

)

n≥0

∥

∥

∥

∥

∥

lp

.

Thus, for every t ∈ (1/R; 1),

p(t) ≥
(

∞
∑

n=0

tnp

)1/p

−
(

∞
∑

n=0

(

1

tR2

)np
)1/p

≥
(

1

1− tp

)1/p

−
(

1

1−
(

1
tR2

)p

)1/p

.

The conclusion follows now from Theorem 5.1. �
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