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FABER POLYNOMIALS AND SPECTRUM LOCALISATION

OSCAR DEVYS

Abstract. Let K be a compact connected subset of the complex plane, of
non-void interior, and whose complement in the extended complex plane is
connected. Denote by Fn the n-th Faber polynomial associated with K. The
aim of this note is to find suitable Banach spaces of complex sequences, R,
such that statements of the following type hold true: if T is a bounded linear
operator acting on the Banach space X such that (〈Fn(T )x, x

∗〉)n≥1 ∈ R for
each pair (x, x∗) ∈ X ×X∗, then the spectrum of T is included in the interior
of K. Generalisations of some results due to W. Mlak, N. Nikolski and J. van
Neerven are thus obtained and several applications are given. An interesting
feature of these generalisations is the influence of the geometry of K and the
regularity of its boundary.

1. Introduction

Faber polynomials are now classical objects of study in complex analysis, func-
tion theory and approximation theory. We use in this paper Faber polynomials
as a basic tool to study the following “spectrum localisation problem” in oper-
ator theory: identify conditions under which the spectrum of a Banach space
bounded linear operator is included in a given domain of the complex plane.
Other instances of the use of Faber polynomials for various problems in operator
theory are [1, 2, 3, 15].

Computing or estimating the spectrum of a large matrix, or, more generally, of
a bounded linear operator acting on a complex Banach space is an important
problem in spectral theory, with possible applications in numerical analysis (see
for instance [10]). The classical spectral radius formula ([4])

r(T ) = lim
n→∞

‖T n‖1/n,

going back to Arne Beurling and Israel Gelfand, allows to find or estimate the
radius r(T ) of the smallest closed disc in the plane centered in the origin and
containing the spectrum σ(T ) of the given operator T . The condition r(T ) < 1,
corresponding to the exponential stability of T , is an important one for appli-
cations. In order to better localise the spectrum and to find inclusions of the
form σ(T ) ⊂ K or σ(T ) ⊂ int(K) for some simply connected compact K in the
complex plane, the right tool to consider is the behaviour of Fn(T ), where Fn

is the Faber polynomial of degree n associated with K. We are interested to
generalise in this vein (replacing the unit disc by more general domains) several
existing results in the literature [9, 17, 11, 12, 16]. An interesting feature of our
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study is the influence of the geometry of the domain and the regularity of its
boundary on the results obtained about the localisation of the spectrum.

The present paper is organized as follows. Section 2 is dedicated to the definition
and basic properties of Faber polynomials. We present the influence of the regu-
larity of the boundary of the domain on the behaviour of these polynomials and
present known applications in operator theory. In Sections 3 and 4 we present
two approaches leading to different criteria for the spectrum to be included in
an open domain. Some generalisations of results of Mlak ([9]), Weiss ([17]), van
Neerven ([16]) and Nikolski ([11, 12]) are given here. We give in Section 5 some
explicit estimates based upon the preceding criteria.

2. Preliminaries on Faber polynomials

2.1. Definition and examples. We present here some classical results about
Faber polynomials which will be used later on. We follow the setting of [14].
The reader is referred to [14] or [7] for more details about Faber polynomials and
related topics.

Let K be a compact connected subset of the complex plane C, different from
a singleton, and whose complement is connected. From the Riemann mapping
theorem, we know that there exists a unique conformal bijective map ψ : D

c −→
Kc such that

ψ(∞) = ∞ and ψ′(∞) > 0.

The map ψ has a Laurent expansion for |w| > 1 of the form

ψ(w) = βw + β0 + β1w
−1 + · · ·+ βkw

−k + . . .

where β > 0 is the transfinite diameter, or (logarithmic) capacity, of K.

Let φ be the inverse function of ψ. The map φ : Kc −→ D
c
has a Laurent

expansion in a neighborhood of infinity of the form

φ(z) =
1

β
z + b0 + b1z

−1 + · · ·+ bkz
−k + . . .

For n ∈ N, the polynomial part of the Laurent expansion of φ(z)n is called the
Faber polynomial of order n and is denoted by Fn. The Faber polynomial of
order n has degree n and principal coefficient 1/βn. We consider the function ωn

defined by the following equation

φ(z)n = Fn(z) + ωn(z), (z ∈ Kc).

Then z 7→ ωn(z) is an analytic bounded function on Kc which tends to 0 at
infinity.

For any R > 1, let ΓR be the analytic Jordan curve {ψ(w) : |w| = R}. Denote
by GR its interior. If z is in GR then we have

Fn(z) =
1

2iπ

∫

ΓR

φ(ζ)n

ζ − z
dζ =

1

2iπ

∫

|w|=R

wnψ′(w)

ψ(w)− z
dw.
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One can deduce from this relation that the Faber polynomials satisfy the follow-
ing asymptotic relations

lim
n→∞

|Fn(z)|1/n = |φ(z)| for all z /∈ K and lim
n→∞

|Fn(z)|1/n ≤ 1 for all z ∈ K.

It also implies that for any fixed z in GR, (Fn(z))n is the sequence of the Laurent
coefficients of the map

w 7→ ψ′(w)

ψ(w)− z
, |w| > R

in the neighborhood of the point w = ∞. Therefore the generating function of
the Faber polynomials is given by

(2.1)
ψ′(w)

ψ(w)− z
=

∞
∑

n=0

Fn(z)

wn+1
, (|w| > R, z ∈ GR).

We can deduce from this relation that Faber polynomials satisfy the following
recurrence formula. Setting β−1 := β, we have

(2.2) −kβk =
k+1
∑

s=0

βk−sFs(z)− zFk(z), (k ≥ 0).

The Faber polynomial of order n of the disk centered at z0 and of radius R are
given by the formula Fn(z) = ((z − z0)/R)

n. The series of Faber polynomials of
an analytic function in the neighborhood of the compact K is a generalisation
of the Taylor expansion of an analytic function in an open disc. More precisely,
we have the following theorem (cf [14, Theorem 3.2.2]).

Theorem 2.1 ([14]). An analytic function f in a neighborhood of the compact
K can be uniquely expanded in a series of Faber polynomials with uniform con-
vergenceon V a neigborhood of K. That is to say, there exist complex numbers
an = an(f) such that for every z in V we have

f(z) =
∞
∑

n=0

anFn(z).

Examples. (1) If K = [−1; 1], the map ψ is given by

ψ(w) =
1

2
(w + 1/w).

From (2.2), it follows that the sequence of Faber polynomials satisfies the 3-term
recurrence formula

2zFn+1(z) = Fn+2(z) + Fn(z), (n ≥ 1),

with F0(z) = 1, F1(z) = 2z and F2(z) = 2(2z2 − 1). We can deduce that for any
n ≥ 1, we have Fn = 2Cn, where Cn is the Chebychev polynomial of order n,

Cn(t) = cos(n arccos(t)), (t ∈ [−1; 1]).
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(2) Let m ∈ N with m ≥ 2. We consider the m-cusped hypocycloid included
in D, denoted by Hm and delimited by the parametric curve of equation

z =
m− 1

m
exp(iθ) +

1

m
exp(−i(m− 1)θ), 0 ≤ θ < 2π.

The exterior conformal map associated with Hm is

ψ(w) =
m− 1

m
w +

1

m
w−m+1.

The sequence of Faber polynomials is given by the recurrence formula

Fn+m(z) =
m

m− 1
zFn+m−1(z)−

1

m− 1
Fn(z), (n ≥ 1),

and

Fk(z) =

(

m

m− 1
z

)k

, k = 1, . . .m− 1 and Fm =

(

m

m− 1
z

)m

− m

m− 1
.

We refer to [8] and [6] for more information about the Faber polynomials of
m-cusped hypocycloids.

(3) We consider now the ellipse with the foci at the points 1 and -1 and semi-
axes

a =
1

2
(R + 1/R) and b =

1

2
(R− 1/R),

where R > 1. The equation of this ellipse can be written in the form

z =
1

2

(

Reiθ +
1

Reiθ

)

, 0 ≤ θ < 2π.

Hence, the exterior conformal map associated with this ellipse is given by

ψ(w) =
1

2

(

Rw +
1

Rw

)

.

The corresponding Faber polynomials are

Fn(z) =
2

Rn
Cn(z), (n ≥ 1).

2.2. Consequences of the regularity of the boundary Γ. If Γ, the boundary
of K, is a Jordan curve, its regularity has influence on the behaviour of the map
ψ and on the asymptotic behaviour of the sequence of Faber polynomials (Fn)
on Γ.

A function ρ : R+ −→ R+ is called a modulus of continuity if it satisfies:

(1) ρ is increasing;
(2) limt→0 ρ(t) = 0;
(3) ρ is subadditive, i.e.,

ρ(t+ s) ≤ ρ(t) + ρ(s).
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A modulus of continuity is said to satisfy the Alper condition if
∫ ε

0

ρ(x)

x
log(

1

x
)dx <∞,

for some ε.

A Jordan curve Γ is said to be of class Cρ if it has a parametrization τ : [0; 1) −→
Γ that is differentiable, with τ ′(x) 6= 0 of all x ∈ [0, 1) and τ ′ satisfying a
continuity condition

|τ ′(x1)− τ ′(x2)| ≤ ρ(|x1 − x2|), x1, x2 ∈ [0; 1).

A Jordan arc is of class Cρ if it is a subarc of a Jordan curve of class Cρ.

The following theorem is a simplified version of [13, Theorem 1.1].

Theorem 2.2 ([13]). Let Γ be a rectifiable Jordan curve. For z0 ∈ Γ, assume
that Γ has an exterior angle of opening απ at z0, with 0 < α ≤ 2, formed by Cρ

arcs, where ρ is a modulus of continuity satisfying the Alper condition. Then,

Fn(z0) = αφ(z0)
n + o(1), as n→ ∞.

Remark. The case α = 1 corresponds to a point where the boundary form an arc
of regularity Cρ, the case α = 0 to an inside pointing cusp and the case α = 2
to an outside pointing cusp.

It is often sufficient to consider ρ(x) = xβ for some β > 0. The class Cρ is then
the Hölder class C1,β.

The following definition will be used in the next sections as a basic geometric
condition about the regularity of the boundary.

Definition. A subset T of the plan C will be called a Cρ curve with angles if it
is a rectifiable Jordan curve and for any ζ ∈ T , T either form an arc of regularity
Cρ at ζ, or has an exterior angle of opening απ at ζ, 0 < α ≤ 2, formed by Cρ

arcs, where ρ is a modulus of continuity satisfying the Alper condition.

We want to stress here that Cρ curves with angles do not have inside pointing
cusps.

We also record for further use the following result about analytic Jordan curves.

Theorem 2.3 ([14]). Suppose that Γ is an analytic Jordan curve. Then ψ has
an analytic univalent extension in rD

c
for some r ∈ (0; 1).

2.3. Faber polynomials and operators on a Banach space.

Notation. For X a complex Banach space, we denote by B(X) the Banach
algebra of the bounded linear operators from X into itself and by I = IX the
identity on X. The spectrum of T ∈ B(X) will be denoted by

σ(T ) := {λ ∈ C; (T − λI) is not invertible }.
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Lemma 2.4. Let X be a Banach space. Let T ∈ B(X) be such that σ(T ) ⊂ K.
Then, for λ ∈ C, |λ| > 1, we have

(ψ(λ)I − T )−1 = ψ′(λ)−1

∞
∑

n=0

λ−n−1Fn(T ).

Proof. Let λ ∈ C, |λ| > 1. Let R = |λ|. Define

f(z) =
ψ′(λ)

ψ(λ)− z
, z ∈ GR.

It follows from (2.1) that for every z ∈ GR we have

f(z) =
∞
∑

n=0

λ−n−1Fn(z).

As f is an analytic function on GR, we have from Theorem 2.1 the uniform
convergence of the series in any compact subset of GR.

Using σ(T ) ⊂ K, the functional calculus gives

(ψ(λ)I − T )−1 = ψ′(λ)−1

∞
∑

n=0

λ−n−1Fn(T ).

�

In their article [1], A. Atzmon, A. Eremenko and M. Sodin have proved that for
any compact set K ⊂ C with connected complement, there exists a sequence
of polynomials (Pn)n∈N and a positive number r such that if T is a bounded
operator on X, its spectrum is included in K if and only if

lim sup
n→∞

‖Pn(T )‖1/n ≤ r.

If K is connected, this can be expressed in terms of Faber polynomials. For the
convenience of the reader we give a simple proof.

Theorem 2.5 ([1]). Let X be a Banach space and T ∈ B(X). Then σ(T ) ⊂ K
if and only if

lim sup
n→∞

‖Fn(T )‖1/n ≤ 1.

Proof. We have that

lim
|z|→∞

|φ(z)| = +∞,

so there exists a real R > 0 such that

σ(T ) ⊂ GR.

Then φ/R is the unique conformal representation of GR
c
onto D

c
such that

(φ/R)(∞) = ∞ and (φ/R)′(∞) > 0.
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We deduce that the sequence of Faber polynomials associated with the compact
GR is (Fn/R

n)n≥0. Lemma 2.4 implies that

Rψ′(Rz) (ψ(Rz)I − T )−1 =
∞
∑

n=0

Fn(T )

Rnzn+1
·

Therefore, for every |z| > R,

ψ′(z) (ψ(z)I − T )−1 =
∞
∑

n=0

Fn(T )

zn+1
·

If lim supn→∞ ‖Fn(T )‖1/n ≤ 1, we get that the function g defined by

g(z) =
∞
∑

n=0

Fn(T )

zn+1

is analytic on D
c
. The maps

z 7→ (ψ(z)I − T )
g(z)

ψ′(z)

and

z 7→ g(z)

ψ′(z)
(ψ(z)I − T )

are analytic on D
c
and equal to I on {z; |z| > R}. Thus they are constant and

equal to I on D
c
.

Therefore, for every z with |z| > 1 we have

(ψ(z)I − T )
g(z)

ψ′(z)
=

g(z)

ψ′(z)
(ψ(z)I − T ) = I.

Thus ψ(z) /∈ σ(T ) if |z| > 1 and σ(T ) ⊂ K.

If σ(T ) ⊂ K, then the Laurent expansion of the function g holomorphic on D
c
,

g(z) =
∞
∑

n=0

Fn(T )

zn+1

gives lim supn→∞ ‖Fn(T )‖1/n ≤ 1.

�

3. Condition on the weak Faber orbit of an operator

Suppose that the spectrum σ(T ) of an operator T is included in the closure of a
given domain G. The aim of this section is to propose some conditions, in the
spirit of the Tauberian conditions of [11, 12], implying that σ(T ) is included in
G. Such results have been proved in the case when G is the open unit disc by
Mlak [9], Weiss [17], van Neerven [16] and Nikolski [11, 12].

In this section we consider K, a compact and simply connected subset of C with
non empty interior G. Let (Fn) be the sequence of Faber polynomials associated
with K.
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Let R ⊂ CN be a Banach space such that

(1) For any k ∈ N, the map (an) 7→ ak is bounded.
(2) The set of finitely supported sequences, denoted by C(N), is a dense subset

of R.
(3) lim supn→∞ ‖en‖1/nR ≤ 1, where (en) denotes the canonical algebraic basis

of C(N).

As C(N) is dense in R, each element ϕ in R∗ is characterized by the sequence
(ϕn)n≥0, where

ϕn = 〈en;ϕ〉R.
This allows us to identify R∗ with a subset of CN. Furthermore, for any finitely
supported sequence (an), we get from (1) that there exists an element ϕ ∈ R∗

such that ϕ̂(n) = an for any n ∈ N. We shall consider C(N) included in R∗ via
this identification.

Proposition 3.1. • The condition (3) is equivalent to the following one:
(an) ∈ R as soon as lim supn→∞ |an|1/n < 1.

• if ϕ ∈ R∗ and f ∈ C(N), the duality mapping is given by

〈f ;ϕ〉R =
∑

n

fnϕn.

If f ∈ R and ϕ ∈ C(N) ⊂ R∗, this equality still holds.

Proof. Let ϕ ∈ R∗ be finitely supported and let n0 be such that 〈en;ϕ〉 = 0
whenever n ≥ n0. From (2), we know that there exists a sequence (fk) of
elements in C(N) such that

fk −→
k→∞

f in R.
Hence,

〈f ;ϕ〉R = lim
k→∞

〈fk;ϕ〉R.
We also have 〈fk;ϕ〉R =

∑n0

n=0 fk(n)ϕn. Therefore, using the hypothesis (1), we
get that fk(n) −→

k→∞
f(n), for every n.

We obtain
〈f ;ϕ〉R = lim

k→∞
〈fk;ϕ〉R =

∑

n

f(n)ϕn.

�

The crucial axiom needed for our Tauberian conditions is the following one.

(4) For any ζ ∈ ∂K, the map Vζ , defined in C(N) ⊂ R∗ by

Vζ : ϕ 7→
∑

n≥0

ϕnFn(ζ)

is not bounded.

The following definition extends the corresponding unit-disc analogue from [12].
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Definition. Let R ⊂ CN be a Banach space and T ∈ B(X). The operator T is
said to be of weak type R if for every pair (x; y) ∈ X ×X∗ we have

(

〈Fn(T )x; y〉
)

n∈N
∈ R.

Theorem 3.2. Let R ⊂ CN be a Banach space satisfying conditions (1) to (4)
for K. Let T ∈ B(X) be a weak type R operator with σ(T ) ⊂ K. Then, in fact,

σ(T ) ⊂ G.

Lemma 3.3. Let R ⊂ CN be a Banach space satisfying the condition (1). Sup-
pose that T ∈ B(X) is a weak type R operator. Then

sup
{∥

∥

∥

(

〈Fn(T )x; y〉
)

n∈N

∥

∥

∥

R
; ‖y‖ ≤ 1, ‖x‖ ≤ 1

}

<∞.

Proof. Let us prove that for any x ∈ X, the map

fx :X∗ → R
y 7→

(

〈Fn(T )x; y〉
)

n∈N

is bounded.
Indeed, fx is well defined because T is a weak type R operator. Let (yn)n∈N ⊂
X∗, y ∈ X∗ and r ∈ R be such that

yn → y and fx(yn)
R−→ r.

We infer from condition (1) that for any k ∈ N

fx(yn)(k) −→
n→∞

r(k).

For any k ∈ N

fx(yn)(k) = 〈Fk(T )x; yn〉 −→
n→∞

〈Fk(T )x; y〉 = fx(y)(k).

Thus fx(y) = r and, using the closed graph theorem, fx is bounded. In particular,
for any x ∈ X

(3.1) sup
{∥

∥

∥

(

〈Fn(T )x; y〉
)

n∈N

∥

∥

∥

R
; ‖y‖ ≤ 1

}

<∞.

For any y ∈ X∗ let

gy :X → R
x 7→ fx(y).

Then, in the same way as for fx, we can prove that, for every y, the map gy is
bounded. Using (3.1) we obtain that

sup
‖y‖≤1

‖gy(x)‖ <∞,

for an arbitrary x ∈ X. Using the Banach-Steinhaus theorem we infer that
{gy}‖y‖≤1 is a bounded set. Thus

sup
{∥

∥

∥

(

〈Fn(T )x; y〉
)

n∈N

∥

∥

∥

R
; ‖y‖ ≤ 1, ‖x‖ ≤ 1

}

<∞,

which completes the proof. �
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Proof of Theorem 3.2. Lemma 3.3 implies that

C := sup
{
∥

∥

∥

(

〈Fn(T )x; y〉
)

n∈N

∥

∥

∥

R
; ‖y‖ ≤ 1, ‖x‖ ≤ 1

}

<∞.

Thus for any ϕ ∈ C(N) ⊂ R∗, using Proposition 3.1
∥

∥

∥

∥

∥

∑

n≥0

ϕnFn(T )

∥

∥

∥

∥

∥

= sup

{∣

∣

∣

∣

∣

∑

n≥0

ϕn〈Fn(T )x; y〉
∣

∣

∣

∣

∣

; ‖x‖ ≤ 1, ‖y‖ ≤ 1

}

≤ sup
{∥

∥

∥

(

〈Fn(T )x; y〉
)

n∈N

∥

∥

∥

R
; ‖x‖ ≤ 1, ‖y‖ ≤ 1

}

‖ϕ‖R∗

≤ C‖ϕ‖R∗ .

If ζ ∈ σ(T ), we have
∣

∣

∣

∣

∣

∑

n≥0

ϕnFn(ζ)

∣

∣

∣

∣

∣

≤ r

(

∑

n≥0

ϕnFn(T )

)

≤
∥

∥

∥

∥

∥

∑

n≥0

ϕnFn(T )

∥

∥

∥

∥

∥

≤ C‖ϕ‖R∗ .

Hence for any ζ ∈ σ(T ), the map Vζ is bounded in C(N) ⊂ R∗.

This gives us
∂K ∩ σ(T ) = ∅.

�

Example (1). Let 1 ≤ p <∞ and (ωn) be a bounded sequence of positive numbers
such that

|ωn|1/n −→
n→∞

1 and
∞
∑

n=0

ωn = ∞.

We suppose that K is such that for any ζ ∈ ∂K,
∞
∑

n=0

ωn|Fn(ζ)|p = ∞.

Then the space

lp(ω) :=

{

(an);
∞
∑

n=0

ωn|an|p <∞
}

with the norm:

‖(an)‖lp(ω) =
(

∞
∑

n=0

ωn|an|p
)1/p

.

satisfies conditions (1) to (4).

Proof. It is easy to check that conditions (1) to (3) are satisfied. Let us prove
that the condition (4) is also satisfied.

Let ζ ∈ ∂K. We argue by contradiction. Suppose that Vζ is bounded. Then Vζ
has a continuous extension to (lp(w))∗, that is to say that Vζ ∈ lp(ω)∗∗. In the
case of p ∈ (1; +∞) we get Vζ ∈ lp(ω), which gives a contradiction. Thus Vζ is
unbounded. The same holds true for p = 1. �
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We deduce the following result from Theorems 3.2 and 2.2.

Theorem 3.4. Let 1 ≤ p < ∞ and let (ωn) be a bounded sequence of positive
numbers such that |ωn|1/n −→

n→∞
1. Suppose either that ∂K is a Cρ curve with

angles and
∞
∑

n=0

ωn = ∞,

or that for any ζ ∈ ∂K,
∞
∑

n=0

ωn|Fn(ζ)|p = ∞.

Let X be a Banach space. Let T ∈ B(X) be such that for every (x, y) ∈ X ×X∗

we have
∞
∑

n=0

ωn|〈Fn(T )x; y〉|p <∞.

Then σ(T ) ⊂ G.

Example (2). For p ∈ [1; +∞], let Hp(D) be the Hardy space on the unit disk.
We suppose that for no ζ ∈ ∂K, we have limn |Fn(ζ)| = 0. Then the space

hp :=

{

(xn); f(z) =
∞
∑

n=0

xnz
n ∈ Hp(D)

}

,

with the norm

‖(xn)‖ =

∥

∥

∥

∥

∥

∞
∑

n=0

xnz
n

∥

∥

∥

∥

∥

Hp(D)

satisfies conditions (1) to (4).

Proof. It is easy to check that conditions (1) to (3) are satisfied. Let us prove
that the condition (4) is also satisfied.

Suppose on the contrary that condition (4) does not hold. Then there exists
ζ ∈ ∂K such that Vζ is bounded in C(N) ⊂ R∗. Let an = Fn(ζ) for every n.

According to the Hahn-Banach theorem, there exists a bounded extension of
Vζ to (hp)∗ still denoted Vζ . Hence there exists M ≥ 0 such that for every
(x∗n) ∈ (hp)∗,

|Vζ(x∗n)| ≤M‖(x∗n)‖.

But ‖f(r.)‖Hp ≤ ‖f‖Hp for any r ∈ (0; 1) and every f ∈ Hp. Thus, for every
(x∗n) ∈ (hp)∗,

‖(rnx∗n)‖ = sup{|〈rnx∗n; xn〉|; ‖(xn)‖hp ≤ 1}
= sup{|〈x∗n; rnxn〉|; ‖(xn)‖hp ≤ 1}
≤ ‖(x∗n)‖.



12 OSCAR DEVYS

So, for every r ∈ (0; 1) and for every (x∗n) ∈ (hp)∗,
∣

∣

∣

∣

∣

∞
∑

n=0

x∗nr
nan

∣

∣

∣

∣

∣

≤M‖(x∗n)‖.

Consequently, ‖(rnan)‖ ≤M for each r ∈ (0; 1), and thus (an) is in h
p. We have

f(eiθ) =
∑

ane
inθ ∈ Hp(T) and an −→

n→∞
0. This contradiction completes the

proof. �

Definition ([5]). For p ∈ [1;∞), a function f analytic in C\K is said to be of
class Ep(C\K) if there exists a sequence of rectifiable Jordan curves C1, C2, . . .
in C\K such that Cn eventually surrounds each compact subset of C\K, and
such that

sup
n

∫

Cn

|f(z)|p|dz| <∞.

Theorem 3.5 ([5] Theorem 10.1). A function f is of class Ep(C\K) if and only
if,

sup
r∈(1;2)

∫

|φ(z)|=r

|f(z)|p|dz| <∞.

We deduce the following result which extends Mlak’s result from [9].

Theorem 3.6. We suppose either that ∂K is a Cρ curve with angles or that for
no ζ ∈ ∂K, we have limn |Fn(ζ)| = 0. Let T ∈ B(X) be such that σ(T ) ⊂ K.

If for any x ∈ X and x∗ ∈ X∗ we have

z 7→ 〈(zI − T )−1x; x∗〉 ∈ E1(C\K),

then σ(T ) ⊂ int(K).

Proof. We get from example (2) and Theorem 3.2 that it is sufficient to prove
that for any x ∈ X and x∗ ∈ X∗ we have

(〈Fn(T )x; x
∗〉)n ∈ h1.

From lemma 2.4 we get that for any r > 1,
∫

|φ(z)|=r

|〈(zI − T )−1x; x∗〉||dz| =
∫

z∈rT
|〈(ψ(z)I − T )−1x; x∗〉||ψ′(z)||dz|

=

∫

z∈rT

∣

∣

∣

∣

∣

∞
∑

n=0

z−n−1〈Fn(T )x; x
∗〉
∣

∣

∣

∣

∣

|dz|

=

∫

z∈r−1T

∣

∣

∣

∣

∣

∞
∑

n=0

zn〈Fn(T )x; x
∗〉
∣

∣

∣

∣

∣

r|dz|.

This proves that

z 7→
∣

∣

∣

∣

∣

∞
∑

n=0

zn〈Fn(T )x; x
∗〉
∣

∣

∣

∣

∣

∈ H1(D).

�
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4. Admissible Banach function spaces

In this section, we consider K a simply connected compact set with a non empty
interior G.

Definition. A Banach space E ⊂ CN is said to be an admissible Banach function
space over N if it satisfies the following properties:

• if |an| ≤ |bn| for all n ∈ N and (bn) ∈ E, then (an) ∈ E and ‖(an)‖E ≤
‖(bn)‖E;

• for all k ∈ N there exists a sequence (an) ∈ E such that ak 6= 0.

Proposition 4.1. Let E be an admissible Banach function space over N. Then
for any finite set F ⊂ N, the characteristic function of F , denoted χF , belongs
to E.

Proof. Let k ∈ N. There exists a sequence (an) ∈ E such that ak 6= 0 by the
second axiom of admissibility. Then |χ{k}(n)| ≤ |ak|−1|an| for all n ∈ N. It
follows then from the first axiom of admissibility that χ{k} belongs to E. By
taking finite sums, we get that the characteristic functions of finite sets belong
to E. �

The main result of this section is the following one, generalising a result from
[16].

Theorem 4.2. Let X be a Banach space, T ∈ B(X) and E an admissible Banach
function space over N such that for any ζ ∈ ∂K

‖(Fn(ζ)χ{0,...,N}(n))n‖E −→
N→∞

∞.

If T is of weak type E, then
σ(T ) ⊂ G.

Lemma 4.3. Let T ∈ B(X) be a linear operator acting on the Banach space X.
Suppose that σ(T ) * G. Then there exists λ /∈ G such that for any ε > 0 and
any N ∈ N there exist xN ∈ X and x∗N ∈ X∗ satisfying ‖xN‖ = 1, ‖x∗N‖ = 1 and

|〈Fn(T )xN ; x
∗
N〉| > |Fn(λ)| − ε, n = 0, 1, . . . N − 1.

Proof. Let λ ∈ ∂σ(T )\G.
Let ε > 0 and N ∈ N. As λ ∈ ∂σ(T ), we have that λ belongs to σapp(T ), the
approximate point spectrum of T . Hence, there exists a sequence (yn) in X such
that ‖yn‖ = 1 for all n ∈ N and

‖Tyn − λyn‖ −→
n→∞

0.

Thus, for each k ∈ N,

lim
n→∞

‖Fk(T )yn − Fk(λ)yn‖ = 0.

Let n1 be such that

‖Fk(T )yn1
− Fk(λ)yn1

‖ < ε, ∀k = 0, 1, . . . N − 1.
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Let xN = yn1
and x∗N ∈ X∗ be such that ‖x∗N‖ = 1 and |〈x∗N ; xN〉| = 1. Then for

k ∈ {0, 1, . . . N − 1}, we have

|〈Fk(T )xN ; x
∗
N〉| ≥ |〈Fk(λ)xN ; x

∗
N〉| − |〈Fk(T )xN − Fk(λ)xN ; x

∗
N〉|

> |Fk(λ)| − ε.

�

Proof of Theorem 4.2. From Lemma 3.3 we know that there exists M ≥ 0 such
that for any x ∈ X, x∗ ∈ X∗, with ‖x‖ = 1 and ‖x∗‖ = 1, we have

∥

∥

∥

(

〈Fn(T )x; x
∗〉
)

n∈N

∥

∥

∥

E
≤M.

Suppose that σ(T ) * G. Then, using Lemma 4.3, there exist λ /∈ G such that for
every ε > 0 and N ∈ N there exist xN ∈ X and x∗N ∈ X∗ satisfying ‖xN‖ ≤ 1,
‖x∗N‖ ≤ 1 and

|〈Fn(T )xN ; x
∗
N〉| > |Fn(λ)| − ε, n = 0, 1, . . . N − 1.

Therefore, |〈Fn(T )xN ; x
∗
N〉| ≥ |Fn(λ)|χ{0,...N−1} − εχ{0,...N−1}(n) for all n. Thus

∥

∥

∥

(

〈Fn(T )xN ; x
∗
N〉
)

n∈N

∥

∥

∥

E
≥ ‖(Fn(ζ)χ{0,...,N}(n))n‖E − ε‖χ{0,...N−1}‖E.

We obtain that for any ε > 0 and N ∈ N

‖(Fn(ζ)χ{0,...,N}(n))n‖E − ε‖χ{0,...N−1}‖E ≤M.

Hence, for every N ∈ N we have

‖(Fn(ζ)χ{0,...,N}(n))n‖E ≤M,

which gives the desired contradiction if λ ∈ ∂K. If λ /∈ K, then

|Fn(λ)|1/n −→
n→∞

R > 1.

But we know that for any λ ∈ ∂K, lim supn→∞ |Fn(λ)|1/n ≤ 1, and

‖(Fn(ζ)χ{0,...,N}(n))n‖E −→
n→∞

∞.

Thus, if λ /∈ K we get from the first axiom of admissibility that

‖(Fn(ζ)χ{0,...,N}(n))n‖E −→
N→∞

∞,

which gives a contradiction. �

Remark. It is easy to verify that lp(ω) (cf. Example 1 in Section 3) is an admis-
sible Banach function space over N and the condition

‖(Fn(ζ)χ{0,...,N−1}(n))‖lp(ω) −→
N→∞

∞

is equivalent to
∞
∑

n=0

ωn|Fn(ζ)|p = ∞.
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Theorem 4.4. Let 1 ≤ p < ∞ and let (ωn) be a sequence of non negative
numbers. We suppose either that ∂K is a Cρ curve with angles and

∞
∑

n=0

ωn = ∞,

or that for any ζ ∈ ∂K,
∞
∑

n=0

ωn|Fn(ζ)|p = ∞.

Let X be a Banach space. Let T ∈ B(X) be such that for every (x, x∗) ∈ X×X∗

we have
∞
∑

n=0

ωn|〈Fn(T )x; x
∗〉|p <∞.

Then σ(T ) ⊂ G.

Remark. Contrarily to Theorem 3.4 we do not need to suppose here that

|ωn|1/n −→
n→∞

1.

Proof of Theorem 4.4. We have that

lim
|z|→∞

|φ(z)| = ∞.

Therefore, there exists a real R > 0 such that

σ(T ) ∩ {z : φ(z) ≥ R} = ∅.

Thus, we get from Theorem 2.5 that

lim sup
n→∞

‖Fn(T )‖1/n < R.

Let (ω̃n) be the positive sequence defined by

ω̃n =

{

ωn if ωn 6= 0,

R−n if ωn = 0.

For every (x, y) ∈ X ×X∗ we have

∞
∑

n=0

ω̃n|〈Fn(T )x; y〉|p <∞.

It is then sufficient to apply Theorem 4.2 with the space lp(ω̃) to conclude. �

We give now other applications of Theorem 4.2.

Definition. A function Φ : [0;∞) −→ [0;∞) is a Young function if it is convex
and such that

Φ(x)

x
−→
x→∞

∞ and
Φ(x)

x
−→
x→0

0.
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For any complexe sequence (xn) let

MΦ(x) =
∞
∑

n=0

Φ(|xn|).

The Orlicz space LΦ is the space of all sequences (xn) such that there exists a
k > 0 such that MΦ(kx) <∞.

Theorem 4.5. Let Φ be a Young function, the Orlicz space Lφ with the norm

‖(xn)‖ = inf{k;MΦ(
1

k
x) ≤ 1}

is a Banach space and if Φ(t) > 0 for all t > 0, then

‖χ{0,...,n−1}‖LΦ −→
n→∞

∞.

Lemma 4.6 ([16]). Let ϕ : R+ −→ R+ be non-decreasing with ϕ(t) > 0 for
all t > 0. Then there exists a Young function Φ such that the Orlicz space LΦ

contains every sequence (an) such that
∑

n∈N

ϕ(|an|) <∞,

and satisfies
‖χ{0,...,n−1}‖LΦ −→

n→∞
∞.

Proof. Replacing ϕ by a multiple of ϕ we may assume that ϕ(1) = 1. Let Φ be
defined by

Φ(t) =

∫ t

0

ϕ(s)ds.

Then Φ is a Young function and if (an) is such that
∑

n∈N

ϕ(|an|) <∞,

then the set of indices n such that |an| > 1 is finite and if |an| ≤ 1, then
Φ(|an|) ≤ ϕ(|an|). Thus we get

∑

n∈N

Φ(|an|) <∞,

so (an) ∈ LΦ.

And as Φ is strictly positive and increasing on (0;∞), we get

‖χ{0,...,n−1}‖LΦ = inf

{

k;
n−1
∑

k=0

Φ(1/k) ≤ 1

}

−→
n→∞

∞.

�

As Orlicz spaces of sequences are admissible Banach function spaces over N, we
obtain the following result.
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Theorem 4.7. We suppose either that ∂K is a Cρ curve with angles or that
(|Fn(ζ)|) is eventually bounded below by a positive number for every ζ ∈ ∂K. Let
T ∈ B(X) and let ϕ : R+ −→ R+ be a non-decreasing function with ϕ(t) > 0 for
all t > 0. If for every x ∈ X and x∗ ∈ X∗

∞
∑

n=0

ϕ
(

|〈Fn(T )x; x
∗〉|
)

<∞,

then
σ(T ) ⊂ G.

Definition. The function ϕ is said to satisfy the ∆2-condition at 0 if there exist
ε > 0 and K > 0 such that for any x ∈ [0; ε], we have ϕ(t/2) ≥ Kϕ(t).

Theorem 4.8. We suppose either that ∂K is a Cρ curve with angles or that
(|Fn(ζ)|) is eventually bounded below by a positive number for every ζ ∈ ∂K.
Let T ∈ B(X), let ϕ : R+ −→ R+ be a non-decreasing function satisfying the
∆2-condition at 0 with ϕ(t) > 0 for all t > 0, and let (ωn) be a sequence of non
negative numbers such that

∞
∑

n=0

ωnϕ(ωn) = ∞.

If for every x ∈ X and x∗ ∈ X∗

∞
∑

n=0

ϕ
(

ωn|〈Fn(T )x; x
∗〉|
)

<∞,

then
σ(T ) ⊂ G.

Proof. Adapting the proof of Theorem 4.4, we may suppose wn to be positive
for every n. Replacing if necessary ωn by min(ωn, ε), we may also assume that
ωn ∈ (0; ε] for each n. Let Φ be as in Lemma 4.6 and let E be the space

E =
{

(xn); (ωnxn) ∈ LΦ
}

,

with the norm
‖(xn)‖E = ‖(ωnxn)‖LΦ .

The ∆2 condition gives that for any t ∈ (0; ε],

Φ(t) =

∫ t

0

ϕ(s)ds ≥ t

2
ϕ(t/2) ≥ Kt

2
ϕ(t).

Let k > 1, and m = E(ln(k)/ ln(2)) + 1. Then

n−1
∑

j=0

Φ(ωj/k) ≥
Km

2m

n−1
∑

j=0

ωjϕ(ωj).

This proves that
‖χ{0,...,n−1}‖E −→

n→∞
∞

allowing the application of Theorem 4.2. �
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Lemma 4.9. Let ϕ be a positive function on [0; 1) such that ϕ(r) tends to infinity
and

√
1− rϕ(r) tends to 0 as r tends to 1. Then the space E defined by

E =

{

(xn);
1

ϕ(r)
‖(rnxn)‖2 −→

r→1
0

}

,

with the norm

‖(xn)‖E = sup
r∈(0;1)

1

ϕ(r)
‖(rnxn)‖2,

is a Banach function space over N such that

‖χ{0,...,n−1}‖E −→
n→∞

∞.

Proof. It is easy to see that E is an admissible Banach function space over N.
Furthermore, we have

‖χ{0,...,n−1}‖E = sup
r∈(0;1)

1

ϕ(r)
‖(rkχ{0,...,n−1}(k))k∈N‖2,

and

‖(rkχ{0,...,n−1}(k))‖22 =
n−1
∑

k=0

r2k =
1− r2n

1− r2
.

Therefore,

1

ϕ(r)
‖(rkχ{0,...,n−1}(k))k∈N‖2 =

1

ϕ(r)

√
1− rn√
1− r

√
1 + rn√
1 + r

≥ 1

2

√
1− rn

ϕ(r)
√
1− r

.

Let M > 0. As
√
1− rϕ(r) tends to 0 as r tends to 1, there exists r0 < 1 such

that
1

ϕ(r0)
√
1− r0

> 4M.

Let N be such that
√

1− rN0 > 1/2. We get that for each n ≥ N we have

‖χ{0,...,n−1}‖E ≥M.

The proof is complete. �

Theorem 4.10. We suppose either that ∂K is a Cρ curve with angles or that
(|Fn(ζ)|) is eventually bounded below by a positive number for every ζ ∈ ∂K. Let
T ∈ B(X). Suppose there exists a positive function ϕ on [0; 1) such that

√
1− rϕ(r) −→

r→1
0

and such that
1

ϕ(r)
‖(rn〈Fn(T )x; x

∗〉)n∈N‖2 −→
r→1

0,

for every x ∈ X and every x∗ ∈ X∗. Then

σ(T ) ⊂ G.
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Proof. Replacing, if necessary, ϕ(r) by max(ϕ(r); (1 − r)−1/4), we may assume
that ϕ(r) −→

r→1
∞. We can then apply Lemma 4.9 and Theorem 4.2 to obtain the

inclusion σ(T ) ⊂ G. �

5. Explicit estimates

5.1. General domains. We suppose in this section that Γ is an analytic Jordan
curve. Let E be a Banach function space over N containing (rn)n for any r ∈ (0; 1)
and satisfying the condition

‖χ{0,...,n−1}‖E −→
n→∞

∞.

Let T ∈ B(X) be a weak type E operator.

As we have supposed Γ to be analytic, we get from Theorem 2.3 that the map
ψ has an analytic extension to r0D

c
for some r0 < 1.

Notation. For any r ∈ (r0; 1), let Γr be the analytic Jordan curve defined by

Γr = {ψ(z); |z| = r}
and let Gr be the interior of Γr.

We know from Theorem 4.2 that the spectrum of T is included in G. Having
in mind possible applications in numerical analysis, it is the aim of this section
to give an estimate of the “shrinking radius” r ∈ (r0; 1) such σ(T ) ⊂ Gr. In
the case of the disc, this was done by N. Nikolski in [12]. Our estimate of the
“shrinking radius” is given in terms of the constant C(T,E) defined by

C(T,E) = sup

{

∥

∥

∥

(

〈Fn(T )x; y〉
)

n∈N

∥

∥

∥

E
; ‖y‖ ≤ 1, ‖x‖ ≤ 1

}

.

Notation. For r ∈ (r0; 1) we denote

p(r) = inf
r≤|φ(ζ)|<1

‖(Fn(ζ))n∈N‖E

and, for t > 0

p−1(t) =

{

r0 if {r ∈ (r0; 1); p(r) ≤ t} = ∅,

sup{r ∈ (r0; 1); p(r) ≤ t} otherwise.

Lemma 5.1. Let r ∈ (r0; 1). If σ(T ) * Gr, then there exists λ ∈ (Gr)
c such that

for every N ∈ N and every ε > 0, there exist xN ∈ X and x∗N ∈ X∗ satisfying
‖xN‖ = 1, ‖x∗N‖ = 1 such that

|〈x∗N ;Fk(T )xN〉| > |Fk(λ)| − ε, k = 0, 1, . . . N − 1.

Proof. As σ(T ) * Gr, there exist λ ∈ (Gr)
c ∩ ∂σ(T ). In particular λ belongs to

the approximate point spectrum σapp(T ) of T . Thus, for every N ∈ N and every
ε > 0, there exists xN ∈ X such that ‖xN‖ = 1 and

‖Fk(T )xN − Fk(λ)xN‖ < ε, (k ∈ {0, 1, . . . N − 1}).
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Let x∗N ∈ X∗ be such that ‖x∗N‖ = 1 and |〈x∗N ; xN〉| = 1. Then, for every
k ∈ {0, 1, . . . N − 1}, we have

|〈x∗N ;Fk(T )xN〉| ≥ |〈x∗N ;Fk(λ)xN〉| − |〈x∗N ;Fk(T )xN − Fk(λ)xN〉|
≥ |Fk(λ)| − ε.

�

We deduce the following result.

Theorem 5.2. Let T be a weak type E operator for the compact K and set
r = p−1(C(T,E)). Then

σ(T ) ⊂ Gr.

Proof. We argue by contradiction. Suppose that σ(T ) * Gr. Let λ be the
complex number satisfying the proprerties described in Lemma 5.1. For every
N ∈ N and every ε > 0, there exist xN ∈ X and x∗N ∈ X∗ satisfying ‖xN‖ = 1,
‖x∗N‖ = 1 and

|〈x∗N ;Fk(T )xN〉| > |Fk(λ)| − ε, (k ∈ {0, 1, . . . N − 1}).
By definition of C(T,E), we have

C(T,E) ≥
∥

∥

(

〈Fn(T )xN ; x
∗
N〉
)

n

∥

∥

E
≥
∥

∥

(

(Fn(λ)− ε)χ{0,1,...N−1}(n)
)

n

∥

∥

E
.

Thus, for every N ∈ N,
∥

∥

(

F0(λ), F1(λ), . . . , FN−1(λ), 0, . . .
)

n

∥

∥

E
≤ C(T,E).

But Fn(λ) ∼ φ(λ)n, n→ ∞, and |φ(λ)| < 1. Therefore (Fn(λ))n ∈ E and
∥

∥

(

Fn(λ)
)

n

∥

∥

E
≤ C(T,E).

Using λ /∈ Gr, and taking into account the definition of r as r = p−1(C(T,E)),
we have

∥

∥

(

Fn(λ)
)

n

∥

∥

E
> C(T,E).

This contradiction completes the proof. �

5.2. Case of an ellipse. In case of some concrete domains, the previously de-
scribed quantities can be explicitly estimated. We present here the case of an
ellipse.

Consider the compact K1 = [−1; 1]. In this case the conformal map ψ is given
by the formula

ψ(z) =
1

2

(

z +
1

z

)

.

The contour lines of this function are the ellipses ΓR with the foci -1 and 1, and
semi-axes

a =
1

2

(

R +
1

R

)

and b =
1

2

(

R− 1

R

)

.

Let KR the convex hull of ΓR.
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Theorem 5.3. Let R > r > 1 and 1 ≤ p <∞. Let T be a weak type lp operator
for K = KR. Suppose that

C(T, lp) <

(

1

1− (r/R)p

)1/p

− 2

π(r + 1/r − 2)(1−R−p)1/p
.

Then
σ(T ) ⊂ Kr.

Proof. Let 1 < t < ρ < R. From the Cauchy formula in the Riemann sphere, we
have for n ∈ N and z ∈ Γρ,

|Fn(z)− φn(z)| =
∣

∣

∣

∣

1

2iπ

∫

Γt

φn(ζ)

ζ − z
dζ

∣

∣

∣

∣

≤ 1

2π

∫

Γt

|φn(ζ)|
|ζ − z| |dζ|

≤ (t/R)n

2π dist(Γρ,Γt)
ℓ(Γt).

Here dist(Γρ,Γt) denotes the distance between the curves Γρ and Γt, and ℓ(Γt)
denotes the length of the curve Γt.

We have

ℓ(Γt) −→
t→1

2 and dist(Γt,Γρ) −→
t→1

1

2
(ρ+

1

ρ
)− 1.

Hence, for every n ∈ N,

γn(ρ) := sup
z∈Γρ

|Fn(z)− φn(z)| ≤ 2

πRn
(ρ+

1

ρ
− 2)−1.

Let ζ ∈ Γρ. Then

M(ζ) =

∥

∥

∥

∥

∥

∞
∑

n=0

Fn(ζ)z
−n

∥

∥

∥

∥

∥

lpA

=

(

∞
∑

n=0

|Fn(ζ)|p
)1/p

≥
(

∞
∑

n=0

(

(ρ/R)n − γn(ρ)
)p

)1/p

.

Thus

p(r) ≥
(

∞
∑

n=0

(

(r/R)n − γn(r)
)p

)1/p

≥
(

∞
∑

n=0

(r/R)np

)1/p

− 2

π
(r +

1

r
− 2)−1

(

∞
∑

n=0

R−np

)1/p

≥
(

1

1− (r/R)p

)1/p

− 2

π(r + 1/r − 2)(1−R−p)1/p
.

The conclusion follows now from Theorem 5.2. �
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McLaughlin. Birkhäuser Boston, Inc., Boston, MA, 1987. xvi+196 pp. ISBN: 0-8176-
3147-X

[8] M. X. He ; E. B. Saff, The zeros of Faber polynomials for an m-cusped hypocycloid. J.
Approx. Theory 78 (1994), no. 3, 410–432.

[9] W. Mlak, On a theorem of Lebow. Ann. Polon. Math. 35 (1977/78), no. 1, 107–109.
[10] O. Nevanlinna, Convergence of iterations for linear equations. Lectures in Mathematics
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