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The injection of a phase- and amplitude-shaped pulse into a photonic-crystal fiber provides additional degrees of 
freedom that can significantly influence the nature of nonlinear propagation and nonlinear and dispersive 

interactions. This strong sensitivity of nonlinear effects—particularly the Raman soliton self-frequency shift—
greatly extends the parameter space available to generate tailored output fields for applications such as micro-
scopic imaging. By numerical simulations, we identify the relevant interpulse interactions, and we experimentally 

demonstrate the additional capabilities of this nonlinear pulse-shaping method. 

1. INTRODUCTION

Nonlinear propagation and spectral broadening in photonic-

crystal fiber (PCF) has now been extensively studied and

applied for diverse applications including frequency metrol-

ogy, imaging, and spectroscopy [1,2]. For some applications,

the generation of broadband spectra is not itself a require-

ment, and what is more important is the generation of

high-brightness spectral components covering particular

wavelength ranges. In this case, the absolute bandwidth span

of the generated supercontinuum is less important than the

characteristics of the spectral components of interest. This

parameter regime can be referred to as a class of “nonlinear

pulse shaping” where the preshaping of an input pulse in

phase and amplitude can be used to exert control over the

PCF spectral output.

The general setup for nonlinear pulse shaping is sketched in

Fig. 1, where a comparison with conventional phase and am-

plitude shaping [3,4] is also given. This kind of setup, utilizing

a phase and amplitude shaper before an optical fiber, was

used in [5–8]. Of course, numerous examples of nonlinear

pulse shaping have been demonstrated, albeit under various

other names; common to all though is that the phase or am-

plitude of the PCF input is controlled in some way, though not

necessarily by a phase and amplitude shaper. Examples using

only a single input pulse are optical power control of the so-

liton self-frequency shift (SSFS) [9–11] and spectral compres-

sion by self-phase modulation of a negatively chirped pulse

[12–14], which have found application in nonlinear micro-

scopy [5,15–18]. SSFS in combination with progressive spec-

tral narrowing upon redshift in a dispersion-tailored PCF was

also demonstrated [19]. Finally, fiber-generated superconti-

nua have been controlled to some degree by the shape of

the input pulse [6,7,20–22].

Recently, the prospect of temporal compression based on

the addition of several femtosecond redshifted solitons pro-

duced in a PCF was raised [23]. Two different solitons with

different frequencies were coherently added to yield a broad-

er spectrum allowing temporal compression to a shorter dura-

tion relative to the constituent solitons. Reference [5] focused

purely on spectral shaping by addition of redshifted solitons;

several solitons with different frequencies were added to form

a broad PCF output spectrum. These papers underline the

clear and current interest in developing a more complete pic-

ture of how control of the nonlinear propagation can be used

to yield tailored output fields with characteristics specifically

suited to particular applications.

In this paper, our purpose is to explore in detail the non-

linear shaping processes relevant to experiments such as

those described in [5,23]. Here it is soliton formation and

the subsequent SSFS that are the primary nonlinear effects

taking place in the PCF. A particular aim is to expand the

previous, mainly theoretical, work on interactions between

solitons [24–39] to a predominately experimental and applied

regime. This topic has, as far as we can see, not yet been fully

treated in the literature on fiber solitons, which tends to

focus more on soliton collisions [33,40–49] or the so-called

bound pairs, bound states of solitons, or soliton molecules

[28,34,35,37–39]. In our case, we aim to focus specifically

on realistic conditions where the initial pulses are not perfect

solitons, in which case two new interactions must be consid-

ered, namely the interaction between a decelerating, leading

soliton and the dispersive residues shed by trailing solitons

and the interaction between the pulses before they have shed

a fundamental soliton. By numerical simulations and experi-

ments, we will consider in detail the possible interactions

involved in realistic experiments. Our results demonstrate

the additional frequency-conversion capabilities of nonlinear

1



pulse shaping compared to traditional phase and amplitude

shaping.

2. MATERIALS AND METHODS

A. Numerical Code
The numerical simulations used a standard generalized non-

linear Schrödinger equation model [1,11]. Our aim was to rea-

listically describe the experiments performed using the setup

in Fig. 2; thus, we used the realistic Raman response and the

full dispersion curve of the fiber as detailed in Table 1. The

PCF has a single zero-dispersion wavelength at 745 nm.

We consider initial conditions of a pair of identical pulses

E0 separated in time by Δt and with relative phase Δϕ, i.e.,

EpairðtÞ ¼ E0ðtÞ þ E0ðt −ΔtÞeiΔϕ: ð1Þ

To model nonideal soliton input fields, we consider differ-

ent shapes of E0 and parameters as listed in Table 2; the table

also lists the corresponding section below where we present

the results. The soliton number N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðτ2γP0Þ=ð1:7632jβ2jÞ
p

is

chosen such that each E0 on its own approximately produces

the same output of a single soliton redshifted by Δλ ¼ 45nm

to 1080nm at the output of the PCF. The time frame was cho-

sen to be stationary at λ ¼ 1035nm and centered on E0ðtÞ.
From the PCF output field Eout resulting from the numerical

propagation of Epair, the solitonic part can be identified and

the relative delayΔTsol, defined as the peak–peak separation,

of the created soliton pair be found for different values ofΔϕ,

which we vary over the range 0 to 2π. The resulting ΔTsol

versus Δϕ will form the basis for the comparison of the simu-

lations with the experimental measurements.

B. Experimental Setup
A sketch of the experimental setup is shown in Fig. 2. The

laser used to do the experiments is a t-pulse SESAM-mode-

locked, diode-pumped ytterbium laser from Amplitude Sys-

tems (50MHz, 1035nm, 150 fs). The laser pulses are sent

through a Michelson interferometer, acting as the phase-

and amplitude-shaping device, to create from the laser pulse

E
ðexpÞ
pair . A mirror in one arm is mounted on a delay stage with a

piezoelectric transducer, allowing us to set the initial separa-

tion Δt as well as the initial relative phase Δϕ of the pulse

pair. The resulting pulse pair is then

E
ðexpÞ
pair ðtÞ ¼ E0ðtÞ þ E0

�

t −ΔtþΔϕλ

2πc

�

eiΔϕ: ð2Þ

A neutral-density filter in one arm allows to balance the

energy of the constituent pulses. E
ðexpÞ
pair is sent through a

72:5 cm long PCF (NL-2.0-745-02, Blaze Photonics) in which

the majority of the energy of each pulse goes to form a funda-

mental soliton with pulse energy of around 50pJ and duration

FWHM τsol ¼ 60 fs, which redshifts upon propagation due

to the SSFS. The PCF output E
ðexpÞ
out is characterized by a non-

collinear, background-free autocorrelator and a spectrum

analyzer (Ando AQ-6315A), allowing us to measure the

Fig. 1. (Color online) Schemes (top) for phase and amplitude
shaping and (bottom) for nonlinear pulse shaping.

Table 2. Initial Conditions Used in the Simulations

Subsection E0ðtÞ τ (fs) P0 (W) N

3.A
ffiffiffiffiffiffi

P0

p
sechð−1:763t=τÞ 44 1710 1.0

3.B
ffiffiffiffiffiffi

P0

p
expð−2 ln 2 t2=τ2Þ 140 600 -

3.C
ffiffiffiffiffiffi

P0

p
sechð−1:763t=τÞ 140 600 1.9

Table 1. PCF Parameters Used at

λ � 1035 nm

β2 −8:18299 · 104 fs2=m

β3 1:61038 · 105 fs3=m

β4 −1:95205 · 105 fs4=m

β5 2:07369 · 105 fs5=m

β6 6:05655 · 104 fs6=m

β7 1:34857 · 106 fs7=m

β8 −7:54952 · 106 fs8=m

β9 1:70524·107 fs9=m

β10 −4:71402 · 106 fs10=m

γ 0:079 ðW · mÞ−1

Fig. 2. (Color online) Sketch of the experimental setup. Inset graphs
show sketches of (left) the input pulse pair temporal envelope and
spectrum and (right) similar sketches for the output soliton pair.
BBO, β-barium borate; APD, avalanche photodiode; PC, personal
computer; LP, long-pass filter; ND, neutral density filter.
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dependent parameter ΔTsol. The independent parameters Δt

and Δϕ can be found by bypassing the PCF and sending the

PCF input directly into the spectrum analyzer.

3. RESULTS: SIMULATIONS

A. Soliton Pair
We now consider the case where a soliton pair is propagated

through the PCF. Initially, we set the Raman response of the

PCF to zero and ran the simulation. The obtained results

closely reproduced the analytical model of the soliton force

(strictly speaking, the Kerr-mediated interaction between in-

terfering solitons) in [24,25]. The simulation predicted attrac-

tion for Δϕ ¼ 0 and repulsion for Δϕ ¼ π. In this case, the

relative phase of the soliton pair does not change along the

length of the PCF, so that the integrated interaction observed

after the PCF (ΔTsol −Δt) is directly proportional to the so-

liton force. So the attractive soliton force forΔϕ ¼ 0 leads to a

ΔT sol-decreasing interaction and vice versa. The recorded

ΔT sol versus Δϕ curve is displayed in Fig. 3(e) and will be

used for comparison later.

We proceed to the case of realistic Raman response of the

PCF. If there were no interaction between the constituent so-

litons of Epair, Eout would still comprise identical solitons red-

shifted relative to the input, and there would be a correction to

the relative phase due to the phase accumulated by the

solitons while undergoing the SSFS, ΔΦsol ¼ ΔϕþΔΦSSFS,

ΔΦSSFS ¼ 2πcΔλΔt=λ2.

However, the redshifting solitons do interact, but there still

is a region where the solitons can be assumed to be noninter-

acting. This is the case in Figs. 3(a) and 3(b), where

Δt ¼ 500 fs. As can be seen in Fig. 3(a), ΔT sol is unchanged

when Δϕ is changed, and ΔΦsol (not shown) is a linear func-

tion ofΔϕ, completely analogous to the case of noninteracting

solitons.

The situation changes when Δt decreases. In Figs. 3(c) and

3(d) we present simulations of a soliton pair withΔt ¼ 300 fs.

As can be seen from Fig. 3(d), ΔT sol now varies with Δϕ,

min½ΔTsol� is at Δϕ ¼ 1:3π, and max½ΔTsol� is at Δϕ ¼ 0:2π.

For these parameters,ΔΦSSFS ≈ 3:6 · ð2πÞ, so the soliton force

changes sign repeatedly along the PCF, which means that

ðΔTsol −ΔtÞ is no longer proportional to the soliton force;

the local, instantaneous attraction or repulsion cannot be

taken as representative for the integrated interaction. This

was pointed out in [36].

We perform a series of simulations like the one above for a

number of Δt and Δϕ in the range 0 to 2π. The results are

summarized in Fig. 3(e). The points plotted are min½ΔTsol�
and max½ΔT sol� (when mentioning these, we assume fixed

Δt). The differences between the ΔTsol in the presence

and absence of SSFS are introduced by the SSFS. In presence

of SSFS, the interaction becomes ΔTsol-decreasing at

Δt < 270 fs. In addition, (max½ΔTsol� −min½ΔT sol�) is smaller

than was the case when the Raman response was set to zero.

These observations are consistent with the literature. As

pointed out in [49], the SSFS can force solitons into an attrac-

tive state. Also, in [36] it was shown that the Δϕ dependence

of the soliton force decreases with increasing group velocity

difference, eventually becoming attractive for all Δϕ.

In Figs. 4(a) and 4(b) we show jEoutðtÞj2 and the instanta-

neous angular frequency when Δt ¼ 500 fs for two different

Δϕ separated by π. Here the result is independent of Δϕ,

as expected, as the soliton force is negligible at this Δt.

In Figs. 4(c) and 4(d), Δt ¼ 260 fs, and curves are given for

Δϕ ¼ 1:6π and Δϕ ¼ 0:5π, corresponding to min½ΔT sol� and
max½ΔTsol�, respectively. These show that the two solitons,
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Fig. 4. Simulation; soliton pair with τ ¼ 44 fs, λ ¼ 1035nm, and
P0 ¼ 1710W. Output temporal envelopes and instantaneous angular
frequencies for (a), (b) Δt ¼ 500 fs, (c), (d) Δt ¼ 260 fs. Δϕ ¼ 1:3π
(gray), corresponding to min½ΔTsol�; Δϕ ¼ 0:2π (black), correspond-
ing tomax½ΔTsol�. Soliton positions in the noninteracting case (vertical
dashed) and instantaneous angular frequency in the noninteracting
case (horizontal dashed), for reference.
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Fig. 3. Simulation; soliton pair with τ ¼ 44 fs, λ ¼ 1035nm, and
P0 ¼ 1710W. Sample output spectra and output relative delay
ΔTsol versus initial relative phase Δϕ for initial relative delay (a),
(b) Δt ¼ 500 fs, (c), (d) Δt ¼ 300 fs, (e) min½ΔTsol� (dots) and
max½ΔTsol� (crosses) versus Δt, min½ΔTsol� (solid) and max½ΔT sol�
(dotted) for Raman response set to zero, and the noninteracting case
(dashed).
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though initialized as identical, do not stay identical. Rather,

the leading soliton slows down and frequency downshifts re-

lative to the trailing pulse with the frequency difference being

slightly larger when ΔT sol ¼ min½ΔT sol�.

B. Pair of Imperfect Solitons
One additional effect becomes significant when E0 is not a so-

liton, in which case the initial steps of propagation involve the

splitting of the pulse into a soliton and a dispersive residue,

the former redshifting due to the SSFS and slowing down

due to dispersion and the latter staying around the initial

wavelength. The leading soliton will then cross the residue

of the trailing pulse. For this series of simulations, we initialize

E0 as Gaussians with duration FWHM 140 fs. A few descriptive

results are presented in Figs. 5(a)–5(d). We see from Figs. 5(b)

and 5(d) that the interaction is now in general ΔT sol-

decreasing. This is due to interaction through stimulated-

Raman scattering (SRS); when the leading soliton passes

through the residue, they are close enough in frequency that

they can interact through the Raman response of the PCF. Be-

cause the soliton is at lower frequency, it will act as the Raman

Stokes, being amplified while the residue acts as Raman pump,

being depleted. This causes an increase in the leading soliton’s

energy, leading to a frequency downshift through the SSFS and

deceleration, and hence, in effect, it is a ΔTsol-decreasing in-

teraction. Only whenΔTsol gets close to 300 fs, which happens

for Δt ¼ 500 fs, Figs. 5(c) and 5(d), the Δϕ-dependent soliton

force is significant in the last part of the propagation in thePCF.

Wenote thatmin½ΔTsol�occurs atΔϕ ¼ 0:3π andmax½ΔT sol� at
Δϕ ¼ 1:3π. That min½ΔT sol� does not occur atΔϕ ¼ 0was also

seen in Subsection 3.A for perfect solitons. Here there could

also be contribution from a small phase shift that happens

due to the frequency shift the soliton acquires in crossing

the residue. We summarize the results of several simulations

for different values of Δt in Fig. 5(e).

Figures 6(a) and 6(b) show jEoutðtÞj2 and the instantaneous

angular frequency for a Δt ¼ 600 fs where the soliton force is

negligible. Nevertheless, although the two pulses were identi-

cal at the onset, when leaving the PCF, the leading pulse has

acquired an increase in peak power and a frequency down-

shift. This is compatible with the explanation that it has gained

energy from interacting with the residue of the trailing soliton.

Traces for Δϕ ¼ 0:3π as well as for Δϕ ¼ 1:3π are presented

in Fig. 6, demonstrating that this contribution to the integrated

interaction is phase independent. The trailing soliton is unaf-

fected, which is expected because it never crosses any other

pulse. In Figs. 6(c) and 6(d) are shown jEoutðtÞj2 and the in-

stantaneous angular frequency for Δt ¼ 500 fs, where the so-

liton force is significant. (max½ΔT sol� −min½ΔTsol�) is less

than in Subsection 3.A. Whereas in the previous case, the in-

teraction is sufficient at Δt ¼ 250 fs to induce collision, in the

present case, no collision takes place atΔTsol ¼ 200 fs (which

happens for Δt ¼ 500 fs). This be seen by comparing Fig. 5(e)

with Fig. 3(e) or Fig. 6(c) with Fig. 4(c). We ascribe this to the

increased difference in soliton group velocities caused by the

soliton–residue crossing; as pointed out in [36], theΔϕ depen-

dence of the soliton force diminishes with increasing group

velocity difference, eventually becoming attractive for all Δϕ.

C. Pair of Overlapping Pulses
If there is significant temporal overlap between the two input

pulses, the interference will significantly influence the energy

deposed into each formed soliton. To simulate this effect, we

initialize the simulation with a pair of pulses with sech2 envel-

opes and FWHM 140 fs. Sech2 pulses are characterized by ap-

proaching zero slower with t than do Gaussians, which is why

we chose this shape to highlight the effect of interference

between the initial pulses. The FWHM and peak power were

set equal to those used in the previous case, facilitating
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Fig. 5. Simulation; Gaussian pulse pair with τ ¼ 140 fs at
λ ¼ 1035nm, P0 ¼ 600W. Sample output spectra and output relative
delay ΔTsol versus initial relative phase Δϕ for initial relative delay
(a), (b) Δt ¼ 600 fs, (c), (d) Δt ¼ 500 fs, (e) min½ΔT sol� (dots) and
max½ΔTsol� (crosses) versusΔt, and the noninteracting case (dashed).
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Fig. 6. Simulation; Gaussian pulse pair with τ ¼ 140 fs at
λ ¼ 1035nm, P0 ¼ 600W. Output temporal envelopes and instanta-
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500 fs. Δϕ ¼ 0:3π (gray), corresponding to min½ΔT sol�; Δϕ ¼ 1:3π
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teracting case (vertical dashed) and instantaneous angular frequency
in the noninteracting case (horizontal dashed), for reference.
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comparison. Representative results in similar form as pre-

vious are given in Figs. 7(a)–7(d), and the outcomes of simu-

lations for a range of Δt are summarized in Fig. 7(e). The

conclusions to be drawn here are generally the same as for the

Gaussian case; the soliton–residue crossing also here leads to

a ΔTsol-decreasing interaction. Here on the other hand,

(max½ΔT sol� −min½ΔTsol�) is larger than in Subsections 3.A

and 3.B, as seen from the increased separation of dots and

crosses in Fig. 7(e) compared to Figs. 3(e) and 5(e). Thus,

there is an additional contribution to the Δϕ-dependent inter-

action. This contribution stems from the interference of the

constituent pulses in EpairðtÞ in interplay with the nonlinear

dynamics leading up to soliton formation. The interference be-

tween the two pulses leads to two symmetrically perturbed

pulse envelopes that are mirror images of each other, their

shape dependent on Δϕ. Because the SSFS is not symmetric

in frequency and time, the nonlinear evolutions of the two

pulses are different and the perturbed pulses form solitons

with different energies.

In Figs. 8(a) and 8(b) are plotted jEoutðtÞj2 and instanta-

neous angular frequency for Δt ¼ 800 fs, which are qualita-

tively similar to Figs. 6(a) and 6(b). For Δt ¼ 500 fs,

however, Figs. 8(c) and 8(d), there is a difference compared

to Figs. 6(c) and 6(d) in that the two solitons are not equally

and oppositely affected by the Δϕ dependence. We take this

as confirmation that our explanation above is correct; the so-

liton force alone is not responsible for the Δϕ dependence in

the case of significantly overlapping input pulses; interference

in interplay with nonlinear dynamics gives a contribution to

the Δϕ dependence as well.

4. EXPERIMENTAL RESULTS

A. Δϕ and Δt Dependence
Initially, we will attempt to establish a link between the simu-

lations and the experiments. To this end, we present the set of

experiments that the simulations described above were meant

to describe, launching E
ðexpÞ
pair into the PCF, keeping Δt fixed

while scanning Δϕ. A representative PCF output spectrum

is given in Fig. 9(a), the intensity autocorrelation of the laser

used is shown in Fig. 9(b), and the summary of the experimen-

tal results is presented in Fig. 9(c). It is seen that the interac-

tion is in general ΔTsol-decreasing, a manifestation of the

interaction through SRS between the leading soliton with

the dispersive residue from the trailing pulse, in accordance

with the simulations. In comparing with the simulations, the

best

qualitative agreement is thus with Fig. 7(e), the most general

case treated. That (max½ΔT sol� −min½ΔTsol�) stays nonzero

until Δt ≈ 1000 fs indicates that the temporal envelope of

the laser is not completely Gaussian but has small tails.

(max½ΔT sol� −min½ΔT sol�) can be aggravated when we, as

in Fig. 10, intentionally misalign the laser. The misalignment

leads to the appearance of a narrow Kelly sideband in the la-

ser spectrum and a quasi-cw component in the time domain.

As such, this experiment is reminiscent of [27]. As seen in

Fig. 10(b), although the FWHM is now slightly smaller, large

wings of the order of some per mille in relative inten-

sity extend way beyond the FWHM. As seen in Fig. 10(c),

these small wings are sufficient to significantly increase

(max½ΔT sol� −min½ΔT sol�).

B. Spectral Brightness Increase
Even though many effects contribute to the interaction be-

tween pulses and solitons in the PCF, this has only a limited

negative impact on the applicability of multisoliton superposi-
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Fig. 7. Simulation; sech2 pulse pair with τ ¼ 140 fs at λ ¼ 1035nm,
P0 ¼ 600W. Sample output spectra and output relative delay ΔTsol

versus initial relative phase Δϕ for initial relative delay (a),
(b) Δt ¼ 800 fs, (c), (d) Δt ¼ 500 fs, (e) min½ΔTsol� (dots) and
max½ΔTsol� (crosses) versusΔt, and the noninteracting case (dashed).
Note that, in (d), the flatness of the curve aroundΔϕ ¼ 0 is due to the
solitons colliding, which is also why the spectrum in (c) does not look
like the superposition of two soliton spectra.
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tion for tailoring jEðexpÞ
out j2 in time and frequency. To this end,

we now present some results of nonlinear pulse shaping,

employing the aforementioned laser, for which all the dis-

cussed interactions are at play simultaneously. Figure 11(a)

shows the resulting jEðexpÞ
out ðωÞj2 when launching E

ðexpÞ
pair with

Δt ¼ 640 fs. The spectrum changes from the thick black to

the thin black by changing Δϕ by an uneven integer multiple

of π. First, we emphasize that this is an example of a bright-

ness increase of almost 4 compared to the constituent solitons

(gray spectra), or a factor of 2 compared to the incoherent

sum. This is due to interference between the two solitons,

and in a way, the SSFS has shifted the initial interference

pattern at the laser wavelength to longer wavelengths. By ex-

tension, if n solitons had been launched, brightness increases

compared to the fundamental soliton of n2 would be attain-

able. The comparison to the brightness of a fundamental

soliton is justified because its brightness is inherently limited

by the fiber parameters; this limited its usefulness when used

as Stokes pulse in coherent anti-Stokes Raman scattering

(CARS) microspectroscopy [15]. Figure 11(b) shows the de-

pendence of ΔT sol upon Δϕ as was expected, detailing the

qualitative agreement with Figs. 5(d) and 7(d). In the experi-

ment, min½ΔT sol� is found at Δϕ ¼ 0:7π due to the effects de-

scribed in Section 3. Though all the effects so far discussed

play a role in the interaction, the Δϕ dependence is still be-

nign; the soliton–residue interaction contributes a negative

offset to ΔT sol and decreases (max½ΔTsol� −min½ΔT sol�),
which is counteracted by the initial interference of the consti-

tuent pulses, which increases (max½ΔT sol� −min½ΔTsol�).

C. Phase Stability
The solitons in the PCF add coherently, by which we mean

coherent from one laser shot to the next, i.e., the phase stays

unchanged from shot to shot and the output relative phase is

thus a function of the input relative phase. To do this, it is suf-

ficient to examine Fig. 11(a) and take notice of the visibility of

the spectral interference fringes, which is close to 100%. Now,

these spectra are acquired over many millions of laser shots

(seconds), so if there were any phase fluctuation from shot to

shot, the visibility would be decreased. This is in line with

what the simulations showed, that, in the case of correlated

P0 fluctuations, the spectral interference fringes stay where

they are.

5. CONCLUSION

We have investigated the impact of interpulse interactions

between pulse pairs Epair propagating in a PCF with general

nonlinear response. When Epair is composed of solitons at the
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are magnified to better show the quasi-cw component arising from a
Kelly sideband. (c) Output relative delay ΔTsol versus input relative
delay Δt for the attractive branch (dots), the repulsive branch
(crosses), and the noninteracting case (dashed).
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onset of propagation, a departure from the simplified

analytical expression of [25] is observed due to the SSFS,

which leads to a ΔT sol-decreasing interaction at small Δt.

When Epair is not initially composed of solitons, the constitu-

ent pulses first evolve into solitons in shedding a dispersive

residue; the interaction through SRS between the leading so-

liton and the trailing residue leads to a net decrease of ΔTsol.

If, in addition, the constituent pulses initially overlap, this

gives rise to an interaction that can increase or decrease

ΔT sol, depending on Δϕ. In our experiments, all of the men-

tioned effects were found to be significant. It is thus apparent

from our treatment that, in order to access the most simple

domain treated in Section 3.A, Epair must be preshaped with

a phase and amplitude shaper.

As an experimental example, we demonstrated how the co-

herent addition of solitons in a PCF can simultaneously red-

shift an input pulse pair and through interference increase the

spectral brightness by a factor of 2 compared to the incoher-

ent sum. The same example demonstrated how a small differ-

ence in the relative delay at the PCF input can translate into a

large change at the PCF output. Or, quoting the simulations, a

change in the relative phase without any change in the tem-

poral envelope could produce similar results, thus facilitating

nonmechanical scanning of a delay over hundreds of femto-

seconds.

We note the fundamental feature of the present approach to

controlling the nonlinear interaction in optical fibers: in add-

ing solitons, which are stable under propagation regardless of

the magnitude of the GVD, this is a universal approach, which

is not dependent on the exact fiber parameters as long as the

fiber has anomalous dispersion and is sufficiently nonlinear.

Besides the obvious prospects of extending the described

method to more general input pulse trains containing more

than two pulses with unbalanced intensities, an interesting fu-

ture potential for nonlinear pulse shaping by superposition of

fundamental solitons could be to experimentally synthesize

the soliton trains predicted in [37,39] to propagate as a single

entity.

We believe that nonlinear pulse shaping has potential

applications in nonlinear microscopy where high spectral

brightness is required, such as CARS microscopy, SRS micro-

scopy, and two-photon fluorescence microscopy.
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