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Enhanced-transmission metamaterials as anisotropic plates
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We present an original design of anisotropic metamaterial plates exhibiting extraordinary transmission through

perfectly conductor metallic screens perforated by a subwavelength double-pattern rectangular aperture array.

The polarization properties of the fundamental guided mode inside the apertures are at the origin of the anisotropy.

The metal thickness is a key parameter that is adjusted in order to get the desired value of the phase difference

between the two transversal electromagnetic field components. As an example, we treat the case of a half-wave

plate having 92% transmission coefficient. Such a study can be easily extended to design anisotropic plates

operating in terahertz or microwave domains.
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I. INTRODUCTION

Naturally birefringent materials, such as quartz, are usually

needed to design quarter- and half-wave plates. In the optical

domain such materials exhibit small index values (around

1.5), leading to an efficient transmission coefficient through

the plates. In addition, the ordinary and extraordinary indices

difference is very small and this leads to relatively thick plates

(a hundred or a thousand of wavelengths for a half-wave plate).

Contrarily, in the terahertz domain, the birefringence becomes

larger (5 × 10−2 at 1 THz for quartz1) but the average optical

index of the material is also increased (2.13 at 1 THz for

the same crystal). This obviously leads to a high reflection

coefficient and thus to very weak transmission signals.

The transmission is also decreased by intrinsic absorption

losses of the used materials1 in the corresponding spectral

range.

Recently, a quarter-wave plate for terahertz applications has

been proposed by Saha et al.. It is based on artificial anisotropy

between TE and TM polarizations created by diffraction

through a dielectric lamellar grating.2 Polarization properties

of hole arrays have been studied in many works. In 2004,

Gordon et al. have observed strong polarization dependence

in the transmission through elliptical nanohole arrays.3 More

recently, a similar phenomenon was demonstrated through

asymmetric C-shaped holes.4 Optical rotation was experimen-

tally demonstrated by using a metallic film perforated by an

array of chiral hole structures: Archimedean spiral slots that

induce polarization rotation in the far infrared region5 while

Bai et al.6 used gammadion-shaped cavities in the visible and

near infrared.

In Ref. 7, a polarization conversion was observed for

near-infrared wavelengths, in transmission mode through a

trilayer structure (metal/dielectric/metal) with L-shaped hole

arrays. More recently, an optical polarization manipulation has

been theoretically studied by a “stereo-plasmonic” structure

made of three metallic layers perforated with a periodic array

of rectangular holes.8 To obtain the polarization properties,

the rectangular apertures are differently orientated in each

layer.

The aim of our study is to present original design of

a half-wave plate (or a quarter-wave one) for the terahertz

domain. A geometrical anisotropy is caused by a grating

of rectangular subwavelength apertures engraved into a thin

perfectly conducting film. As it is well known, a monoperiodic

(1D) metallic lamellar grating with a period smaller than

λ behaves as a perfect polarizer (the transmitted plane

wave is perpendicularly polarized to the grating grooves).

Similar polarization properties are obtained for a metallic film

perforated by a biperiodic (2D) square array of rectangular

apertures: an electric field perpendicular to the longer side

of the apertures is totally transmitted while a field parallel to

this side is completely reflected.9 This is directly linked to

the excitation and the propagation, at a given frequency, of

a guided mode along the metal thickness. Nevertheless, one

notes that the transmission greatly depends on this thickness.10

In fact, interference harmonics of this guided mode lead to

additional peaks in the transmission spectrum. This property

is general for any structure where the transmission is based

on the excitation and the propagation of a guided mode. It

was already verified in the case of annular apertures11 and for

bowtie nanoapertures.12

As it will be seen in the following, these polarization and

propagation properties of the fundamental guided mode can be

exploited to conceive a structure where anisotropy is induced

by the presence of two different polarization sensitive patterns:

two perpendicular rectangular apertures of unequal lengths as

seen in Fig. 1. The idea is that each of the two transverse

components of the electric field is effectively transmitted by

only one aperture at the same wavelength. A phase difference

appears because the effective index of the guided mode differs

from one to the other aperture. Consequently, it is possible to

adjust the value of this phase difference by changing the metal

layer thickness.

In the following, we give a simple equation which ex-

plains the principle of the proposed structure, the way to

obtain a half-wave plate and how to design it through the

determination of its geometrical parameters. Then, more

realistic numerical simulations based on the finite difference

in the time domain (FDTD) algorithm are performed in

order to obtain more exact values of the parameters and to

verify that the desired polarization properties can be correctly

obtained.
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FIG. 1. Schematic of the proposed structure: a biperiodic grating

(px and py are the periods along x and y, respectively) with two

rectangular apertures per period (ax �= ay) engraved into a h-thick

metallic screen.

II. MONOMODAL MODAL METHOD (MMM)

The structure is a thin metallic film (thickness h) perforated

by a square 2D grating (period px = py = p) of rectangular

apertures (see Fig. 1). For simplicity, all the considered

structures are supposed to be free standing in vacuum and

there is no dielectric media in the cavities (apertures). The

grating period is supposed to be smaller than all the incident

wavelengths (p < λ) and the angle of incidence is always

equal to zero (normal incidence). Consequently, there is only

one homogeneous transmitted wave, the zero-order diffracted

one which propagates perpendicular to the plate. All the

other transmitted diffracted orders are evanescent and are not

far-field detected.

In the following, the metal is supposed to be perfectly

conducting so no absorption losses are considered. This

assumption is justified in the terahertz frequency domain and it

is reinforced by the fact that involved propagation distances are

small compared to the wavelength (h < λ).13 The transmission

properties of such apertured metallic structures are directly

connected to the electromagnetic modes which can propagate

in the cavities. In our case, the rectangular apertures are smaller

than the incident wavelength and only the fundamental cavity

mode can be efficiently excited.

For a rectangular aperture of length a and width b (b <

a/2), the fundamental mode is the TE10 mode which is

polarized perpendicular to the longer side of the aperture. This

mode has a cut-off wavelength of λc = 2a, which leads to a

dispersive effective index verifying the equation:

ñ(a) =

√
1 −

λ2

λ2
c(a)

. (1)

In the proposed structure, there are two perpendicular

rectangular cavities. The polarization directions of the modes

are perpendicular and the effective index depends on the cavity

parameters (the lengths ax and ay in our case). Therefore, by

adjusting the length of the two apertures, it is possible to get

a geometrical birefringence. Nevertheless, the transmission

through each aperture should be maximum for the same value

of the wavelength (working point). This last condition is then

fulfilled by adjusting the metal thickness.

The transmission properties of apertured metallic structures

can be theoretically studied by several methods. The finite

elements method and FDTD are very efficient tools but they

lead only to numerical calculations. On the contrary, many

papers have used the modal method to study the diffraction of

electromagnetic waves by periodic structures made in a perfect

metal. It is impossible to give an exhaustive bibliography

on this subject; however, the formalism is clearly exposed

for inductive grids in Ref. 15. The same method is used to

study the transmission by an annular apertures array made in

perfect conductor.16 More recently, in the context of enhanced

transmission by small apertures, a review paper by Garcı́a-

Vidal et al. describes the method, gives a bibliography, and

shows many interesting applications.17

In the regions above and below the metal, the incident and

diffracted fields are expressed as a series of Rayleigh waves.

In the cavities, the field is generally written as a superposition

of infinite series of the waveguide modes. Each waveguide

mode satisfies both the Helmholtz equation and the appropriate

boundary conditions along the vertical walls of the cavities.

The tangential components of the electric and magnetic fields

are then matched at the grating free space boundaries (z = 0

and z = h) which leads to a system of linear equations of

infinite dimension.

When the transversal spatial dimensions of the apertures

are small, only the fundamental mode of the waveguides has

a significant contribution to the diffracted amplitudes. In this

case, the linear system can be drastically simplified and a very

simple analytical expression for the diffracted field amplitudes

can be extracted. This approach, named the monomodal modal

method approximation, was presented many years ago in

several papers, for instance, in Ref. 15. In the context of

enhanced transmission, the monomodal approximation was

firstly used for the study of lamellar grating.18–20

Within the single-mode approximation, the zero-order

complex transmitted amplitude can be written:

t0 =
4YincYm|Sinc|2 exp(i�)

(Ym + Ỹ )2 − exp(i2�)(Ym − Ỹ )2
. (2)

In this equation, i =
√

−1, � is a phase angle created by

wave propagation in the cavity. It depends on the effective

index ñ of the cavity mode and on the metal thickness h:

� = h
2π

λ
ñ. (3)

Ym and Yinc are the admittances of the cavity mode and of

the incident wave, respectively. Let us define Sd as an overlap

integral. It is an integral over one aperture of the product of

the transversal electric fields of the mode and of a Rayleigh

wave “d”:

Sd =
∫∫

Aperture

E
T
m

(
E

T
d

)∗
dxdy. (4)

Sinc becomes the corresponding integral Sd for the incident

wave. Ỹ is an effective admittance in which all the diffraction

effects are incorporated: Ỹ =
∑

d Yd |Sd |2.
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In the expression of Ỹ , the summation runs over all the

diffractive orders (p,q ∈ Z) and over the polarization index

(σ = 1,TE Rayleigh mode, σ = 2,TM),

Ỹ =
∑

σ=1,2

+∞∑

p=−∞

+∞∑

q=−∞
Yp,q |Sp,q |2 = Yinc|Sinc|2

+
∑

σ=1,2

∑

p �=0

∑

q �=0

Yp,q |Sp,q |2 = Yinc|Sinc|2 + iC(λ). (5)

The first term corresponds to the incident mode (diffraction

order p = 0, q = 0) and it is a real term. All the other terms are

pure imaginary because, when λ > p, all the diffracted orders

are evanescent waves and their admittances are pure imaginary

numbers. Notations aside, Eq. (2) is given in Ref. 21, a paper

that proposes a discussion of the effective medium theory of

holey films.

When the apertures have a simple geometry (rectangle,

square, disk, annular), the cavity modes have simple mathe-

matical forms. Analytical expressions can then be found for

the overlap integral.22 Moreover, in the metamaterial limit

(λ ≫ p) all the diffraction terms can be neglected [C(λ) ≪
Yinc|Sinc|2] and a very simple equation is obtained:

t0 −→ t0h
∼=

1

cos � + if sin �
with

f =
1

2

(
1

Yinc

Ym

|Sinc|2
+

|Sinc|2

Ym

Yinc

)
. (6)

Equation (6) leads to an Airy-like formula for the trans-

mitted intensity T0 = |t0|2, which is obtained in the theory

of the Fabry-Perot interferometer. However, contrarily to a

conventional Fabry-Perot interferometer, the effective index in

Eq. (3) verifies a dispersion equation with a cutoff. The position

of the transmission’s maxima seems to be easily determined

via Eq. (6). If sin � = 0 (� = lπ with l an integer � 0),

T0 = 1 and transmission maxima are reached.

As we are interested by polarization problems, two kinds

of maxima have to be distinguished: they correspond to even

or odd values of l:

l odd: l = 1, 3, 5 sin(�x) = 0, cos(�x) = −1⇒tx= −1,

(7a)

l even: l = 0, 2, 4, 6 sin(�x) = 0, cos(�x) = +1⇒tx= 1.

(7b)

For l > 0, we obtain a series of maxima similar to Fabry-

Perot’s. They depend on metal thickness and they need a

sufficient thickness (h > l λ
2
) to occur. The solution with

l = 0 is not possible for a conventional Fabry-Perot with a

nondispersive index. But it corresponds here to a new kind of

maximum. The l = 0 maximum is reached near the cut-off

wavelength. It is important to note that the corresponding

value of the wavelength is independent of the metal thickness

and can be observed even for a very small thickness. This

new transmission peak will be named “cut-off peak” in the

following. It was predicted by the coworkers in a theoretical

study of coaxial aperture structures in the optical domain11

and experimentally observed in Refs. 23 and 24.

The position of the peaks can thus be determined approxi-

matively:

λ0
∼= λcutoff ; λl>0

∼=
2hl√

1+
(

2hl
λcutoff

)2
=

2hl√
1+

(
h l

a

)2
. (8)

As explicitly mentioned in Eq. (1), for a fixed value of the

wavelength, the effective index can be controlled by changing

the geometrical parameters of the cavity section, for instance,

the rectangle length a.

The principle of the determination of the parameters of a

half-wave plate is now simple to understand. We use a structure

(see Fig. 1) with two perpendicular rectangular apertures in

the primitive grating cell. The length ax of the first aperture

(ax,bx ; ax > bx) is parallel to the y axis while the length ay of

the second aperture (ay,by ; ay > by) is parallel to the x axis.

Then, we have to adjust ay in order to have the “cut-off peak”

for y polarization which coincides with the l = 1 peak of the

x polarization.

This leads to the structural relation:

ay =
h√

1 + h2

a2
x

. (9)

Unfortunately, this last expression does not work correctly

because it is found on Airy expression of the transmitted

coefficient which is an approximation [Eq. (6)]. It assumes

to completely neglect diffraction and it corresponds to an

homogenization of the structured plates that is absolutely valid

for λ ≫ p. But when λ > p, the evanescent waves, which are

confined in the near field, have a definite influence on the

far-field transmitted amplitude as they induce an additional

imaginary part for Ỹ . Note that the real part is independent of

λ (ReỸ = Yinc |Sinc|2 = 2
√

2
π

√
ab

pxpy
for a rectangular aperture

array illuminated at normal incidence) but the imaginary part

is not equal to zero and vanishes for a wavelength close to the

cutoff.

Figure 2 illustrates this point where a rectangular aperture

with a = 0.9p, b = 0.1p, and h = p is considered. On

Fig. 2(a), we have compared the exact transmission (T0 = |t0|2)

and the approximate one T0h = |t0h|2. For the two curves, the

cut-off peak is obtained for λ ≃ λc = 2a, but in fact a small

shift appears. However, it is clear that the difference between

the two curves is larger for the first Fabry-Perot peak (l = 1).

As shown in Fig. 2(b), the imaginary part of Ỹ is at the origin

of this discrepancy as it induces a red-shift of this peak as

mentioned above. However, for the rigorous coefficient t0,

the phase difference between the cut-off peak and the first

Fabry-Perot peak remains around π .

So, a half-wave plate can be designed but the parameters

must be determined with the nonapproximate expression t0
[Eq. (2)] or a more general tool such as FDTD that is

able to simulate the transmission through a double-apertured

structure.

III. STUDY OF THE WHOLE STRUCTURE

To design the double structure, we have to take into

account the fact that both of the two apertures should have
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FIG. 2. (Color online) (a) Normalized trans-

mission T0 = |t0|2 (solid blue line) and T0h =
|t0h|2 (in dashed-dotted red line) calculated from

Eqs. (2) and (6) for a 2D grating of rectangular

apertures with a = 0.9p, b = 0.1p, and h = p.

The phase of t0 is also shown (in green dashed

line). (b) Real (solid blue line) and imaginary

(dashed-dotted red line) parts of the function Ỹ

that contribute in the expression of t0.

cut-off wavelengths larger than the period. Consequently,

ax and ay must be larger that p/2. Thus, we first fix the

geometrical parameters of one of the two rectangular apertures,

for example, ax = 0.75p, bx = 0.1p, and h = 0.8p (see

Fig. 1). In addition, by < p − ax is a second condition that

must be fulfilled to enable positioning the two perpendicular

rectangular apertures into one grating period. The rest of the

optimization procedure is done by varying the length ay and

by monitoring both the transmission and the phase difference

(PD) using the fast calculation algorithm of the monomodal

method.

Let us denote tx and ty the transmission amplitudes through

the two apertures (ax,bx) and (ay,by) respectively. Figure 3

shows the result of the optimization steps: we have plotted

the PD defined by PD = arg(ty) − arg(tx) as a function of λ/p

and ay/p. In this figure, three contour plots are underlined:

the white lines that correspond to equality of the transmission

amplitudes (|tx | = |ty |), the other lines correspond to a specific

values of PD: black line corresponds to a PD of π and the blue

line to PD = π/2.

Consequently, by exploiting the diagram of Fig. 3, one

can determine all the geometrical parameters of the desired

structure. Two results are summarized in Fig. 3: point A

corresponds to a half-wave plate with the geometrical param-

eters ax = 0.75p, ay = 0.582p, bx = 0.1p, by = 0.2p, and

h = 0.8p. The operating wavelength is then λ = 1.194p with

a transmission coefficient of Tλ/2 = 0.93 [see Fig. 4(a)]. Point

B corresponds to a quarter-wave plate where the parameters

become ax = 0.75p, ay = 0.653p, bx = 0.1p, by = 0.2p, and

h = 0.8p. The operating wavelength is λ = 1.182p in this case

but a smaller transmission coefficient (Tλ/4 = 0.57) is reached

as seen in Fig. 4(b).

Let us study more precisely the case of the half-wave

plate. The monomodal method can hardly handle the double-

apertured structure. Thus, a finite difference time domain (3D-

FDTD) home-made code25 is used to simulate the transmission

through the whole structure. In the x-y plane, the calculation

window is equal to the elementary square cell (p × p) with

periodic boundary conditions. In the z direction, perfectly

matched layers (PML) boundary conditions are used. A

uniform meshing of δx = δy = δz = p/150 is applied, leading

to more than 12 × 106 nodes for the whole calculation.

Because of the spatial meshing of the structure, the

geometrical parameters of the modeled one must be slightly

modified in order to get the same transmission coefficients

(peaks position) as the monomodal method (point A of Fig. 3).

For example, the metal thickness was found to be h = 0.83p

instead of h = 0.8p used within the monomodal method.

Accordingly, we have performed three successive steps for

the FDTD calculations. Figure 5 presents the results of these
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FIG. 3. (Color) Phase difference PD =

arg(ty/tx) as a function of λ/p and ay/p for

h = 0.8p. The white contour plots give the

couples (λ,ay) that correspond to an equal trans-

mission coefficient through the two apertures

(|tx | = |ty |). The black line corresponds to PD =
π (point A answers the case of a half-wave

plate) and the blue line to PD = π/2 (point B

corresponds to a quarter-wave plate).

calculations in term of transmission spectra obtained through

three structures. An x-polarized incident plane wave is

supposed to illuminate the first grating [Fig. 5(a)] while a

y-polarized one is considered for the second grating [Fig. 5(b)].

The corresponding transmission spectra are plotted in Figs.

5(d) and 5(e), respectively. One can clearly see that the high

transmission at the FP (l = 1) peak of the first spectrum almost

corresponds to the cut-off transmission peak of the second

structure. A small shift is necessary to adjust the PD between

the transmitted x and y components. The lower parts of

Fig. 5 verify that the complete structure, with two perpen-

dicular apertures per period, has the properties of a half-wave

plate. The transmission intensity spectrum is calculated in the

case of a normally incident plane wave but linearly polarized
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FIG. 4. (Color online) Transmission spectra

for the two configurations of half-wave plate

(a) and quarter-wave one (b). The geometrical

parameters are given in the legend of each

subfigure. The phase differences are plotted

with a solid black line. The two vertical solid

black lines indicates the working points for each

configuration (λ = 1.194p for the half-wave

plate and λ = 1.182p for the quarter-wave one;

h = 0.8p in both cases).
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FIG. 5. (Color online) The design steps of the half-wave plate. [(a) and (d)] The schema and the transmission coefficient, respectively, of a

p-period array of rectangular apertures when illuminated by a linearly polarized plane wave along the x axis. [(b) and (e)] The corresponding

schema and transmission coefficient of an array of rectangular apertures when illuminated by a y-linearly polarized plane wave. (c) The schema

of the combined structure illuminated at 45◦ from the x axis; (f) the transmitted energy in the zero diffracted order (solid dashed black line)

and the phase difference PD (solid green line). In all cases, the metal thickness is set to h = 0.83p.

at 45◦ from the x axis. The obtained spectrum and the PD

are simultaneously plotted in Fig. 5(f). One can clearly note a

92% transmission coefficient at λ = 1.223p accompanied by

a phase difference of PD = 1.01π .

In order to verify that the transmission mechanism which

explains the polarization properties of the plate is well

understood, we have calculated the field into the two cavities

at the working wavelength value. Figure 6 presents sections

of the electric intensity (I = |Ex |2 + |Ey |2 + |Ez|2) in two

perpendicular planes intersecting the two apertures in their

middle. The illumination conditions are the same as in

Fig. 5(f). One can clearly note the presence of only one

node of the intensity distribution along the z direction

inside the aperture (ax,bx) while an almost uniform intensity

distribution exists inside the second aperture. This confirms

the excitation of the (l = 1) and (l = 0) Fabry-Perot harmonics

inside the (ax,bx) and (ay,by) apertures, respectively, at this

wavelength.

To verify the polarization response of the designed half-

wave plate, we have performed the numerical experiment

shown in Fig. 7(a). So a linearly polarized incident plane wave

is supposed to illuminate the plate at normal incidence. The

angle of polarization φ is defined relatively to the x axis. A

second polarizer is used to analyze the polarization of the

transmitted wave.

As is well known, after passing through a perfect half-

wave plate, the original polarization plane is rotated through

an angle 2φ. Figure 7(b) presents the obtained transmission

spectra as a function of the analyzer angle α when φ = 45◦. At

the working wavelength value λ = 1.223p, the transmission

variations versus α almost verify a Malus law with a maximum

exactly located at α = 135◦ = π − φ demonstrating a rotation

angle of 2φ. Nevertheless, the plate is not a perfect half-wave

one. The transmitted wave is elliptically polarized with a very

small ellipticity of 1:3000 corresponding to a path difference

of λ/2 ± λ/10 000.

035107-6



ENHANCED-TRANSMISSION METAMATERIALS AS . . . PHYSICAL REVIEW B 84, 035107 (2011)

x (p) y (p)

z
 (

p
)

0

0.33 0.33

0.66

1.0 1.0

0.66

0

0.66

1.33

0

2.0

2.66

3.33

4.0

ax ay

h

FIG. 6. (Color online) Two plane sections given the electric

intensity distributions around the whole double apertured structure

when illuminating at normal incidence by a linearly polarized plane

wave (λ = 1.223p). The incident electric field is directed at 45◦ from

the x axis. The vertical planes intersect the apertures in their middle.

To evaluate the bandwidth of this plate, we plot on Fig. 8

the polarization ellipticity η (solid black line) of the elliptical

polarization of the wave emerging from the plate as a function

of the wavelength in the case of an incident polarization at

φ = 45◦. This ellipticity is defined by the ratio of the minor

axis Am to the major one AM [η = tan(ξ ) = Am/AM ]. It can

be related to the PD and to the amplitude of the x and y

components through the expression:

sin(2ξ ) = sin(2χ ) sin(PD), (10)

where χ is given by tan(χ ) = Ey/Ex .

By the same way, the ellipsis axis rotation β (see inset of

Fig. 8), that is due to the difference between the two transmitted

amplitudes Ex and Ey , is given by

tan(2β) = tan(2χ ) cos(PD). (11)

The variations β(λ) are also plotted (dashed blue line)

on the same Fig. 8 where the transmission spectrum is

also remembered (dotted-dashed red line). First, we fix the

wavelength bandwidth so that it corresponds to 20% variations

of the transmission coefficient. According to Fig. 8, we get

a bandwidth of λ = λ/40 inducing a maximum elliticity

variations of η = 0.03. This value is very small. So it can be

assumed that the polarization of the transmitted wave remains

linear over all this bandwidth. In addition, the ellipsis major

axis, is directed along the y direction (2 × φ = 2 × 45◦ =
90◦) at the working wavelength λ = 1.223p, but this almost

remains valid over all the bandwidth ([β]max ≃ 10◦). All

these properties correspond to a very efficient half-wave plate.

To be more concrete, let us set the working wavelength

to λw = 300 μm that corresponds to a frequency of 1 THz.

The structure dimensions become p = 245 μm, ax = 179 μm,

ay = 143 μm, bx = 24.5 μm, by = 49 μm, and h = 196 μm.

With these values, the wavelength bandwidth is about λ =
7.5 μm that corresponds to a frequency bandwidth of

ν = 25 GHz.
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FIG. 7. (Color online) (a) Numerical experiment to verify the

polarization properties of the half-wave plate. (b) Detected spectra

through the analyzer versus its axis direction (α). The coordinates of

the maximum of the detected intensity are pointed out through the

dashed lines.
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FIG. 8. (Color online) Spectrum of the ellipticity (solid black

line) of the elliptical polarization emerging from the plate when

illuminating at normal incidence by a plane wave that is linearly

polarized at 45◦ from the x axis. The major axis position β counted

from the x axis is also presented (dashed blue line). The transmission

spectra (dotted-dashed red line) of Fig. 5(f) is also plotted in

order to estimate the wavelength bandwidth (λ) of the half-wave

plate.
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IV. CONCLUSION

In summary, we have designed and theoretically tested

an anisotropic metamaterial based on enhanced transmission

structures exhibiting guided modes inside their subwavelength

apertures that are engraved into opaque metallic plates. The

obtained phase difference, that can freely be set, directly

involves the effective index of the guided modes inside each

aperture. The geometrical parameters of the apertures (includ-

ing the metal thickness) allow fixing the cut-off frequencies

of the guided modes. Any phase difference value, associated

with same transmission coefficients along two perpendicular

polarization directions, can be obtained. An example of a half-

wave plate with 92% transmission coefficient is theoretically

demonstrated. The diagram of Fig. 3 shows also another

solution to get a nonoptimized quarter-wave plate exhibiting a

transmission coefficient of 57%. This kind of structure can be

exploited in both terahertz and microwave spectral domains

but it also can be extended to the visible range in spite of

metal losses. Nevertheless, for the proposed structure, the

wavelength bandwidth where the plate can be considered as a

good half-wave plate is not very large. The bandwidth depends

on the width of the transmission peaks which is directly related

to the width (bx and by) of the apertures. It is important to

optimize the plate bandwidth for each particular application.

Other geometrical patterns can be used for this purpose. Their

“common point” must be the high sensitivity to the polarization

properties. In addition, if the technological fabrication process

needs the presence of a substrate, this latter slightly modifies

the transmission efficiency and induces a small modification

of the working wavelength value. Consequently, an adjustment

of the metal film thickness is required to reach the desired

effect at the chosen wavelength. Moreover, based on the

same principle, other artificial anisotropic plates can be planed

and we are working on the design of quarter-wave and half-

wave plates where the wavelength bandwidth is significantly

improved.
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