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We show that the dynamics of Fermi–Pasta–Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise 

identical, after a full growth-return cycle. The prop-erties of this phase shift are studied for the particular case of the self-focussing nonlinear Schrödinger 

equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence 

cycle, is a previously-unremarked feature of the Fermi–Pasta–Ulam problem, and we anticipate its wide significance as an essential feature of related 

dynamics in other systems.

Many nonlinear systems in physics display the universal dy-

namical feature of Fermi–Pasta–Ulam (FPU) recurrence [1–11]. The

study of FPU recurrence dates back to 1955 when Fermi, Pasta and

Ulam numerically simulated the evolution dynamics of a nonlinear

oscillator chain, subject to initial excitation in just a single nor-

mal mode. Although the energy would remain entirely within this

initial excited mode in a linear system, the presence of nonlin-

ear coupling led FPU to expect that energy would be transferred

from the initial mode to the other modes of the system in a pro-

cess of energy equipartition. However, what FPU actually observed

was a remarkable phenomenon where, although energy was at first

transferred from the initially-excited mode into the higher-order

modes of the system, subsequent evolution resulted in the transfer

of the energy back to the initial state, with all other modes return-

ing to the ground state with zero excitation. Since its initial and

unexpected discovery, the effect of “FPU recurrence” has become

a defining feature of nonlinear dynamical systems, and has been

related to the mathematics of integrable systems and nonlinear lo-

calization and soliton physics [12].

Surprisingly, however, one aspect of FPU recurrence has not

been completely addressed in previous studies. In particular, be-

cause the state of any oscillator is defined not only by its am-

plitude, but also by its phase, the question naturally arises as to

whether the states of a system undergoing FPU recurrence have

the same phase at the beginning and at the end of the process.

Certainly, studies of phase-space trajectories in general have pro-

vided much insight into the dynamics and chaos of nonlinear sys-

tems, but the specific question relating to a global system phase
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shift in FPU recurrence has not been explicitly examined. This is

somewhat surprising, because it is well known, from studies of lin-

ear systems, that phase evolution can be intimately linked to the

fundamental symmetries of a system under study [13,14].

Our results in this Letter reveal the corresponding importance

of the phase shift between initial and final states as a defining

parameter of FPU recurrence in the context of nonlinear dynam-

ics. Notably, although a superficial examination of the system state

(e.g. in terms of energy) will suggest that initial and final states

are identical, we show that the nonlinear evolution linking these

two points leaves its trace embedded in the form of a constant

phase shift. This phase shift introduces an important physical dis-

tinguishability between two states that may otherwise be consid-

ered to be identical in a system.

Although FPU dynamics can be observed in many different

systems, we introduce the notion of a recurrence phase shift in

the context of the self-focussing nonlinear Schrödinger equation

(NLSE). We hope that the clear results obtained for this particular

case will motivate further studies extending these ideas into other

systems. The NLSE, in dimensionless form, is given by:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ |ψ |2ψ = 0. (1)

The dynamics of interest here relates to modulation instability, the

growth and decay of an initial small amplitude modulation on a

plane wave solution to Eq. (1) [15–20]. The dynamics of modula-

tion instability has recently been shown to be very well described

by an exact family of solutions to Eq. (1) that solve the FPU prob-

lem exactly [21–23]. It is these analytic results [24,25] that we ap-

ply here to study the nonlinear phase shift accumulation in detail.

These solutions, known as Akhmediev breathers (AB) [26–30] are
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Fig. 1. (a) Amplitude of the AB solution defined by Eq. (2) with a = 0.25. The evo-

lution starts with a constant background, q = 1, which is slightly modulated. The

modulation grows to reach its maximum at t = 0, and finally the solution returns

to the original background, q = 1. (b) Phase evolution arg[ψ(x, t)] for the same solu-

tion. The figure illustrates how the amplitude returns to its initial plane wave state

after the FPU cycle, even though the field develops a phase shift of �φ relative to

the initial value during nonlinear propagation.

given by

ψ(x, t) =
[

1−
2(1− 2a) cosh(δt) + iδ sinh(δt)

cosh(δt) −
√
2a cos(κx)

]

eit . (2)

The free parameter a varies in the interval from 0 to 1/2,

and determines the spatial frequency of initial modulation κ =
2
√

(1− 2a) (so that 0 < κ < 2) and the initial instability growth

rate δ =
√
8a(1− 2a) = κ

√

1− κ2/4. An additional scaling param-

eter q can be added to any solution of the NLSE [31]: ψ ′(x, t) =
qψ(qx,q2t). This transformation renormalizes the background to

any desired value, q, and simultaneously rescales the two indepen-

dent variables, x and t . However, the rescaling does not influence

the phases and we will not explicitly use it in what follows.

The solution of Eq. (2) is shown in Fig. 1, where we plot (a) the

amplitude and (b) the phase of the solution. Note that the phase

factor exp(it) associated with purely linear propagation is removed

in order to highlight the specific contribution of the nonlinear

evolution. The dynamics here begins from a constant background,

infinitesimally modulated at frequency κ along x. The modulation

grows exponentially, with the creation of new spectral compo-

nents at harmonics of κ . In the frequency domain, the exponential

amplification is associated with energy transfer from the central

(pump) mode to higher harmonics, but after the growth to the

point of peak amplitude is completed, the process is reversed and

the system returns to its initial state.

The amplitude dynamics of this process has been the subject

of many studies (see Ref. [22] and references therein), but what

appears to have gone unremarked is the presence of the nonlinear

phase shift between the initial and final states. This is indicated

explicitly as �φ in Fig. 1(b). This figure clearly shows how the

nonlinear propagation fundamentally modifies the physical state of

the system, even though the plane wave amplitude [in Fig. 1(b)]

has been recovered during the return cycle.

The corresponding dynamics for the frequency domain spectral

modes can also be calculated exactly:

Fig. 2. (Color online.) Evolution of the energy spectra of the carrier wave (upper

curve) and five nearest sidebands n = ±1, ±2,±3,±4,±5 (counting down). Param-

eter a is 0.45. Note that, for the sidebands, we plot the sum of both ±n harmonics

for clarity.

A0(t) = 1−
iδ sinh(δt) + (κ2/2) cosh(δt)

√

cosh2(δt) − 2a

, (3)

An(t) =
iδ sinh δt + (κ2/2) cosh(δt)

√

cosh2(δt) − 2a

×
[

cosh(δt) −
√

cosh2(δt) − 2a
√
2a

]|n|
. (4)

Here A0(t) describes the t-evolution of the (initial) pump mode

and the An(t) correspond to the harmonics n = ±1,±2, . . . . Pa-

rameters a, κ and δ are as above. As the total energy is con-

served, the spectral components satisfy the equation: |A0(t)|2 +
2
∑∞

n=1 |An(t)|2 = 1.

The time dependence for each of these components, up to n =
±5, is shown in Fig. 2. We see clearly how the central spectral

component contains the total energy at t → −∞, and how this is

redistributed during the evolution to harmonic sidebands before

returning to the central mode at the end of the process, t → ∞.

The phase shift experienced by the central mode can be readily

calculated from Eq. (3) as:

�φ = 2arccos

(

κ2

2
− 1 = 2arccos(1− 4a). (5)

This is easy to see if we consider the position of points defined

by Eq. (3) on the complex plane at t → −∞ and t → ∞. These are

located on the unit circle in the complex plane with the real part

equal to (1 − κ2/2). This phase shift is, of course, identical to the

phase shift experienced by the corresponding plane wave in the

time domain, which can be determined from Eq. (2).

The phase shift given by Eq. (5) is an intrinsic consequence

of the FPU recurrence dynamics. We can make the following ob-

servations. Firstly, the magnitude of �φ depends on the physical

modulation frequency of the initial plane wave κ , as shown in

Fig. 3. For low modulation frequency, κ = 0 (a = 1/2), where the

solution corresponds to the Peregrine soliton [22,32], �φ attains a

maximal value of 2π . For a high modulation frequency at highest

edge of the instability band, κ = 2 (a = 0), the phase shift tends to

zero.

The exact results for the frequency domain dynamics in Eqs. (3)

and (4) allow the dynamical variation of the phase shift across the

spectral components to be readily calculated and explicitly plotted

as a function of the evolution variable t for all modulation param-

eters. This is shown in Fig. 4 which plots the evolution with t of

the phase of both the pump A0 and the higher-order sidebands An

(all of which have the same phase) for all modulation parame-

ters a spanning the range 0 to 1/2. These graphs complement the
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Fig. 3. The figure (a) show how the phase shift related to FPU recurrence depends on

the modulation frequency parameter κ and spans the full range from 0 to 2π . For

convenience, (b) plots the equivalent curve against the parameter a = (1− κ2/4)/2.

Fig. 4. Phase shift of pump A0 and sideband components An calculated as a function

of t for different modulation parameters a.

time-domain representation as shown in Fig. 1 in revealing the rich

behavior present in the phase dynamics.

Another way to visualize the recurrence and the corresponding

phase shift is to view the complex plane of solutions as shown in

Fig. 5, defined by Eq. (2) with x = 0. The phase shift gained by the

central frequency component is the same as the phase shift be-

tween the plane wave solutions at t → −∞ and t → ∞. For any x,

trajectories in the complex plane connect two points located on

the unit circle, as shown in Fig. 5, clearly demonstrating that there

is a phase shift after recurrence, even though the amplitudes (the

points on the circle) remain unchanged. In general, a solution at

the point exp(i�φ/2) is transformed to the point exp(−i�φ/2)

on the circle; this is also a constant background solution, but with

shifted phase. In the case with the maximum growth rate, when

a = 0.25, the shift is π . Thus, after the breather has developed,

Fig. 5. Trajectories in the complex plane demonstrating FPU recurrence and the

phase shift related to it. Four trajectories, defined by Eq. (2), are plotted for the

parameter a = 0.03;0.11;0.25;0.49. A unit circle with its centre at the origin de-

fines the points of initial and final complex amplitudes of the plane wave. Start and

end points on the unit circle do not depend on x, while the actual trajectories do.

Here, the variable x = 0.

Fig. 6. Peregrine soliton, defined by Eq. (2), with a → 0.5, showing the single spatio-

temporal peak observed in this limit. Phase diagram arg[ψ(t)] for the same solution.

The nonlinear phase shift �φ in this case is 2π .

the plane wave has gained a phase shift of �φ as a result of

the nonlinear energy exchange of the evolving field with the back-

ground.

A special case of Eq. (2) when a → 0.5 (i.e. when the period

along the x-axis → ∞ is the Peregrine soliton shown in Fig. 6(a)

and given by:

ψ1 =
(

1− 4
1 + 2it

1+ 4x2 + 4t2
eit . (6)

This solution is strongly localized, both in space and time, as

shown in Fig. 6(a), and the phase shift relative to the back-

ground for this solution is 2π , as shown in Fig. 6(b). However,
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it is important to note that, although the final phase returns to

the original phase of the background, the evolution is associated

with the wave field changing phase through all intermediate val-

ues from 0 to 2π . These changes dramatically influence the wave

carrier in the immediate proximity to the solution, which is par-

ticularly relevant in this case, as the Peregrine soliton is often

considered as a prototype of rogue waves in the ocean where rapid

phase changes of the carrier would clearly have dramatic conse-

quences [30].

The principal result of this Letter has been to identify a non-

zero phase shift which modifies the state of a plane wave field be-

fore and after an FPU growth-return cycle. The accumulated phase

shift varies from 0 to 2π , depending on the position of the initial

perturbation within the instability band (as shown in Fig. 3). Al-

though we have considered the specific case of FPU dynamics in

the NLSE, we expect that the development of a phase shift across

an FPU recurrence cycle will be a generic effect for a large class of

nonlinear systems.

We can also speculate upon the consequences of our results

when interpreting the observed behavior of other systems which

show rapid growth and decay of some initial perturbation. Such

events occur widely in many different areas of science, and include

such processes as periodic flooding, financial cycles of boom and

bust, and also social instability phenomena like demonstrations

and revolutions. Although each of these systems requires specific

modeling scenarios to be analyzed in detail, the significance of our

results here is that they suggest that, for a system that undergoes

some type of rapid growth-decay evolution, even though it may

appear to have returned to a state that is identical with its initial

one, a residual signature of its nonlinear evolution remains in its

nonlinear phase shift. When such systems subsequently evolve in

the presence of coupling and synchronization with other processes,

it is clear that a nonlinearly acquired phase shift may have a dra-

matic influence. Of course, we stress that whilst a single phase

parameter is unlikely to capture the full complexity of all processes

of this sort, future studies of nonlinear phase developed during

FPU recurrence may well have significant impacts in many differ-

ent areas of physics.
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