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Abstract 

 

The 11 March 2011 a Mw 9.0 earthquake triggered a tsunami off the Tohoku coast (Japan). 

To the north of the infamous Sendai plain area, a series of small bays stretches from the 

North of Miyagi prefecture to mid-Iwate prefecture. At the border between both prefectures, 

the municipality of Rikuzentakata lies close to the river-mouth of the Kesen River. Both the 

built and the ‘natural’ environment of the municipality have been wiped off the map. In order 

to create more resilient communities, it is important to reduce the costs of reconstruction and 

restructuration by integrating lessons learned from the present tsunami. Therefore, this 

contribution provides a GIS evaluation of the different impacts in order to improve further 

planning. We have used remote-sensing based GIS - ESRI ArcGIS suite – using spatial data 

from July 2010 and March 2011. The GIS analysis has been completed using data collected 

in Japan during the period 2006 – 2010. The results show that the shoreline has retreated up 

to 501 m with the disappearance of the lagoon barrier. Scouring has also occurred along the 

banks and the point-bars of the Kesen River. The point-bars located within 1 Km to the coast 

were totally eroded. The scouring occurred on low-vegetation land but it also occurred in 

forested areas, with the total destruction of forests in some areas. The ~0.26 km
2
 well-known 

coastal forest of the Takata Matsubara park has totally disappeared. We have also observed 

forested lands that have been flattened down along the river. The forested areas at higher 

elevations saw very little damage. 

The built environment in Japan comprises different types of concrete buildings, metallic 

structures and timber-structures. The latter two building types, which rely on their low weight 

to resist earthquakes, have been totally destroyed within 3.5 km from the coast. Indeed the 

low weight increases the floatability and the light walls have poor resistance to the load of the 

tsunami waves. Therefore buildings that resisted the tsunami within 3.5 km of the shoreline 

are all concrete buildings. Nevertheless some concrete buildings also disappeared, because of 

the scouring around their base. These elements call for the reconstruction of a more resilient 

community, in order to decrease the cost of reconstruction in the event of another tsunami 

strike. 
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1. Introduction 

 

The impact of a tsunami in any given environment depends strongly not only on the 

magnitude and intensity of the tsunami wave, but on local factors such as nearshore 

bathymetry, onshore topography, level and structure of urbanisation, and coastal vegetation 

patterns (Kumar et al., 2008, Dawson, 1994). The influence of geomorphology and 

bathymetry on the height and velocity of the wave at different locations along the same 

coastline has been widely recognised when studying patterns of damage related to the 2004 

Indian Ocean tsunami (Umitsu et al., 2007, Leone et al., 2010, Kumar et al., 2008, Hentry et 

al., 2010).  

Inundation distances and patterns are affected by the elevation and surface roughness of the 

land, which is often a function of land cover and land use in populated environments (Kumar 

et al., 2008). Flat topography allows more widespread inundation and greater inland 

penetration, as described by (Kumar et al., 2008)regarding the effect of the 2004 tsunami in 

Southeast India. Low-lying areas of shrimp ponds and rice fields in Banda Aceh were badly 

affected by the 2004 tsunami and were difficult to drain, as a consequence of their elevation 

and constraining topography (Lavigne et al., 2009). Frictional effects are also key, with 

tsunami waves penetrating a much greater distance when able to travel up rivers (Kumar et al., 

2008) or encounter other low friction environments. For example, the large penetration 

distance of the 1923 Kamchatka tsunami is attributed to its run-up over snow-covered land, 

instead of a higher-friction vegetated environment (Minoura et al., 1996). In an urban setting, 

wave energy may be dissipated on contact with coastal buildings and structures, thus slowing 

the wave progression and preferentially protecting buildings further inland (Leone et al., 2010, 

Lavigne et al., 2009). 

The protective nature of raised features to dissipate wave energy is important, whether they 

be natural features such as sand dunes and beach ridges (Hentry et al., 2010, Umitsu et al., 

2007), hard engineered structures designed with a protective purpose (Kumar et al., 2008, 

Srivastava and Babu, 2009) or appropriate coastal vegetation (Sirikulchayanon et al., 2008, 

Tanaka, 2009, Tanaka et al., 2009). However, it has been noted by several authors that should 

these features fail, or vegetation be destroyed, then the opposite effect occurs, with 

consequent floating debris creating more damage to the infrastructure behind than would 

have resulted from the wave otherwise (Tanaka, 2009, Leone et al., 2010). Additionally, a 

gap in this protective barrier (for example, due to a road, river or a difference in elevation) 

can cause amplification of the tsunami current and water velocity increase as it preferentially 

travels through the gap (Tanaka, 2009). Despite the dissipative nature of sand dune systems, 

large tsunamis commonly result in erosion of or complete reorganisation of sandy barriers, 

back-barrier drainage systems and coastline structure (Dawson, 1994).  

Impacts of tsunami are not limited to the run-up phase of the event, with significant erosion 

possible from the backwash phase also (Dawson, 1994). The backwash patterns of a tsunami 

are not always a reversal of the run-up course: for example, Lavigne et al. (2009) and Paris et 

al. (2009) described the backwash in Banda Aceh’s west coast (where there was obstructive 

topography between the inundated area and the coast), which preferentially followed local 

river channels and led to the creation of new erosional rills and widening of the river channels.  

 

At 2.46PM (JST), March 11th, 2011, a powerful 9.0 M. earthquake (24 km depth) shook East 

Japan. According to the Japanese Earthquake Research and Promotion, the fault movement 

was 400 km in the NS direction. In turn, the mega-thrust earthquake triggered a tsunami with 

waves of 9 to 15 m at the shore, which engulfed the major part of the coastal areas of Iwate 

and Miagi prefectures (Japan). Maximum wave-heights reached >35 m to 39 m in funnelled 

topographic areas – such as Ryouriwan -, according to Lin et al., (2011) and Mimura et al. 



(2011) respectively. As at 1st May 2011, 24,000 people were reported dead or missing and 

350,000 were living in refuge areas. One of the areas with the worst damage is the 

municipality of Rikuzentakata, which is located in Iwate Prefecture on the east coast of the 

Tohoku region (Fig. 1). It is situated at the back of a 3 km wide bay that opens to the Pacific 

Ocean, and on the estuary of the Kesen River. The municipality extends over 232.29 km
2
 

with 23,302 inhabitants in 2010. The population was mainly making a living from oyster 

farming (40 million yen revenue in 2010) and from the location as a scenic attraction; with 

the Takata Matsubara Park declared a ‘Place of Scenic Beauty’ by the Japanese Ministry of 

Environment from the year Showa 2 (y.1927). The position of Rikuzentakata and the 

distribution on lowland of the principal infrastructure such as the City Hall and the schools, 

which are used as refuge location during natural disasters, increased the tsunami vulnerability. 

As per the mass-media broadcast, most of the city has been wiped from the map (Fig. 2). 

 

 

 
Fig.1 Location of the municipality of Rikuzentakata and distribution of the major public 

constructs and communication at the study location. 

 

 

Within less than 10 years, the two most deadly tsunamis of historic times have occurred: the 

2004 Andaman tsunami and the 2011 Tohoku tsunami. These events remind us of the 

importance of studying the impacts of extreme-tsunamis (Gomez and Wassmer, 2011a), in 

order to improve the mitigation procedures. 

Therefore, this contribution aims at providing an assessment of the tsunami impacts on the 

built and the ‘natural’ environment in Rikuzentakata, in order to examine potential 

remediation (presented in a companion paper to be published).  

 



 
Fig. 2 View of the bay in front of Rikuzentakata (A) and zoom of the rubble in the destroyed 

municipality (source: images extracted and adapted from Al Jazeera, 2011) 

 

2. Methodology 

 

For this research, we have collected the March 13, 2011 aerial photographs provided by the 

Geospatial Information Authority of Japan in the wake of the 11/3 tsunami (www.gsi.go.jp) 

and the 23 July 2010 Geoeye satellite imagery (0.5 – 1 m resolution) of the area (Fig. 3). 

Remote-sensing methodology has been inefficient in assessing tsunami impacts for ‘small 

tsunamis’ such as the one that struck Java Island in 2006 (Lavigne et al., 2007), but it has 

proven effective for large tsunamis such as the Boxing Day tsunami around the Indian Ocean 

(e.g. Olwig et al., 2011; Wikantika et al., 2011) 

The images have been orthorectified following a plane, this method, known to create 

distorsions over steep elevation areas, can be used without any problem in this research 

strictly focused on flat areas. The images have also been georeferenced in UTM WGS84; the 

choice of UTM was driven by the numerous metric calculations involved. Both processes 

were conducted using the ESRI® ArcGIS® software. Based on this data, we have measured 

and quantified the planform modifications due to the tsunami. Firstly, we measured the 

displacement of the shoreline, the river-banks and the related loss of land for both 

geomorphologic features. The geostatistics associated with the geomorphology have been 

carried out using Matlab and simple scripts (available online with the extracted data as extra-

material for reference). Secondly, we mapped and calculated the lost surface area of riparian 

forest, woods and tree plantations. Thirdly, we mapped and calculated the destruction of the 

built environment. We also analysed the role of building clustering and its role using the 

density function in ArcMap®. Finally, these various indicators were studied in a combined 

geo-analysis. 

We completed this GIS analysis with data collected in the field on Honshu Island between 

2006 and 2010. This dataset concerns the way buildings are constructed and the type of 

materials that are commonly used. 

 

http://www.gsi.go.jp/


 
Fig. 3 The 2010 Geoeye imagery and the 2011 aerial photographs mounted, orthorectified 

and georeferenced for the area of Rikuzentaka and the Kesen River. 

 

 

 

3. Results 

 

3.1 Geomorphological impacts 

 

The length shoreline studied here is approximately 1,800 m for a measure done with a control 

vertex every 100 m. We have observed an average retreat of the seashore of 345 min this area, 

with a high standard deviation of 110 m, meaning that some areas hold well against the 

tsunami, whereas were highly eroded. Areas where the shoreline did not retreat correspond to 

the areas where concrete wave-breaker protected the shore. On the contrary, areas such as the 

lagoon barrier and the lagoon recorded a draw-back of up to 501 m. For these highly eroded 

areas, the retreat of the shoreline was stopped due to the presence of roads parallel to the 

coast, which played the role of a ‘stop-bank’. This shoreline retreat doesn’t however mean 

that a corresponding amount of land has been lost (Fig. 4), because of the presence of the 

lagoon. This retreat has also created a series of 9 main islands that are disconnected from the 

mainland. The total surface of land lost to the tsunami is 0.37 km
2
 (Fig. 4). 

  

 



 
Fig. 4 Area lost to the tsunami in March 2011 (A). The exact causes of this loss cannot be 

solely determined from aerial photographs as it could be a mix of subsidence and erosion. 

 

The 4.8 km length of the Kesen River studied here has been impacted by the tsunami. The 

average width of the active channel has increased from 79 m to 88 m on average (Fig. 5), 

with a maximum width of 163 m in 2010 that became 180 m after the tsunami. Minimum 

values have also increased from 26 m to 30 m. The maximum peak of erosion is 94 m for the 

right bank against 60 m on the left. This exceptionally high value on the right bank is due to 

the total disappearance of a pointbar located between 50 and 60 m from the river mouth. The 

maximum erosion for the left bank is also due to a pointbar that developed against the stop-

bank in the active channel. It is interesting to note that there is no clear gradient – away from 

the sea - in the lateral erosion along the 4.8 km, which one would have expected with the 

progressive energy dissipation. However, the influence of the mingling between build and 

natural environment makes quantification difficult, and the erosion that took place along the 

river was all contained between the concrete stop-banks.  

The position of the active channel within the limits of the stop-banks is at the origin of an 

erosive dissymmetry between the left and right banks (Fig. 6). The left bank (to the East on 

the figures) has lost 10 m on average, whereas the right bank lost 7 m on average. We can 

find a similar ratio for the minimum erosion data: 0.16 m and 0.4 m (right and left banks 

respectively).  



 
Fig. 5 Planform changes of the Kesen River along 4.8 km. (1) Width of the active channel in 

July 2010; (2) Width of the active channel on March 13, 2011; (3) Lateral erosion of the right 

bank; (4) Lateral erosion of the left bank. 

 

 
Fig. 6 Correspondence of the lateral erosion between the right bank and left bank. The scatter 

plot shows that there is no strict relation between the lateral erosion of the right and left bank 

for each sampled transect. 

 

 

3.2 Impacts on the riparian forested areas and tree plantation 

 

Along the 4.8 km of the Kesen River, all riparian trees have been uprooted and transported or 

flattened down by the tsunami. The loss of riparian forested area has been 0.29 km
2
 along the 

Kesen river and 0.34 km
2
 along the Kesen River and its tributary. The tsunami has destroyed 

both large and small clusters of forested land. The largest of these is 51,000 m
2
, located 

between 3 km and 3.8 km from the mouth of the Kesen River. Destruction extends laterally 



195 m from the closest bank and 250 m to the active channel central line. The largest area of 

flattened trees (1 on Fig. 7) measures 42,000 m
2
. It is located on a left pointbar, along the 

Kesen River, only 2.5 km from the river mouth. The second area, where trees have been 

flattened is located on a right bar (2 on Fig. 7). It is 5,500 m
2
 and it is located 3.6 km from the 

river mouth. 

 

Because of the physical destruction of the lagoon’s barrier, forested land in the area 

subsequently disappeared as well. This forested area was composed of two curtains of 

vegetation located on one or both sides of the lagoon with one interruption (Fig. 7). The total 

loss of forested area is 0.26 km
2
, which is a 100% lost, except for one of the pine-tree. Only 

66,000 m
2
 of the land that hosted this forested area hasn’t been colonized by sea-water, and 

38,000 m
2
 of this land is located at the back of the lagoon in an area that was protected by a 

stopbank and around the high-school ground. 

 

 
Fig. 7 Impacts of the tsunami on forested areas in the municipality of Rikuzentakata; (1) and 

(2) are areas where the trees has been flattened down. 

 

Forested land over riparian areas and the lagoon barrier were most affected because they 

extended in the low-land areas. The high level of destruction of the riparian forest far inland 

is due to the tsunami flow that was partially canalized within the river stopbanks with less 



friction at the bottom and therefore conserving more energy. Forested lands growing on 

topographic highs were less affected, if it is not for the edges. These areas represent 0.4 km
2
. 

 

  

3.3 Characteristics and distribution of the built environment pre- and post-tsunami 

 

The characteristics of buildings are strictly controlled in Japan by the Building Standard Act, 

which has seen 4 generations. Each modification of this act has occurred after the lessons 

learned after major earthquakes. The first generation concerns buildings before 1971. The 

second generation concerns buildings between 1971 and 1981, and it was emplaced after the 

Tokachi Earthquake in 1968. This
 
second generation standard focuses on securing the safety 

of people inside of buildings. Buildings had to be able to resist an impact of 6 or higher on 

the JMA seismic scale, which is as follows: 0 Nobody feels the tremor; 1: some people 

indoors may feel the tremor; 2 Hanging features may shake; 3: Electrical wires shake; 4: 

Hanging fixtures considerably shake and dishes rattle; lower 5: People feel the need to get to 

safety; dishes and books fall off shelves; higher 5: A sense of extreme danger, heavy furniture 

tips over, brick walls may topple; Lower 6: people cannot maintain a standing position, doors 

will not open and window glass will break; Upper 6: Impossible to move without crawling; 

brick walls fall down; 7: Unable to move or act by will, furniture will move or ‘fly around’. 

The third generation of the building act concerns the period 1981 – 2000 and specified that all 

large buildings needed to be investigated and structurally improved. The
 
fourth generation of 

the Building Standard Act concerns modifying timber-framed buildings to improve their 

resistance to earthquake and it also makes ground investigation mandatory before starting a 

construction. Thanks to such a strict regulation the earthquake that preceded the tsunami did 

not trigger any major damage to most buildings. However, those structures are not well-fitted 

against tsunamis. 

Constructions in Japan are either supported: (1) by a timber-frame structure – typically 

traditional buildings and one to two storeys habitation buildings; (2) by a metallic structure – 

recent habitations or commercial buildings: or (3) by a reinforced concrete (RC) structure or a 

steel reinforced concrete structure (SRC). Some buildings also display a mixture of these, 

often with a metallic structure superimposed on the traditional timber structure. This type of 

improvement is adopted to reinforce buildings or further the life of aging buildings (Fig. 8). 

Such improvement is part of the process called ‘refo-mu’ in Japanese, which consists in 

modifying, repairing and restoring houses instead of rebuilding a new one. Hooked to the 

timber and metallic structure, external walls are traditionally light and may be made of wood 

planks, compressed wood panels, aluminium (Fig. 8-B at the back of the photograph) or 

plastic sheets (Fig. 9). Light panelling is also found in the houses with either plaster-board, 

projected plaster on boards or traditionally on bamboo webs, well-known ‘light wood and 

paper’ mobile /or not separations. The structures are usually anchored to a concrete slab or 

concrete walls. For the buildings less than 3 storeys high that form the majority of the 

constructions in the area of Rikuzentakata, the links between the structure and the 

foundations are either metallic threads less than 2 cm in diameter or bolts, which do not resist 

the upward and lateral load well. 

In Rikuzentakata, the ‘light’ constructions have responded poorly to the vertical load and the 

upward forces produced by the tsunami waves. Based on the image analysis, we have 

identified different types of destruction: (1) destruction due to sliding over the foundations 

and/or overturning of the structure, in such a way that we can still observe the concrete slab 

on the ground; (2) scouring of the surrounding land and of the place where a building was 

standing. Such destruction has mostly affected timber and steel frame buildings. High-rise 

buildings (4 storeys and more), with a RC or SRC structure resisted the tsunami (Fig. 10-B) 



 

 

 
Fig. 8 Typical timber-frame structure house, which has been reinforced by a metallic 

structure during the Showa period (1926-1989). We can also appreciate the external wall 

panels made of painted steel. (Photos: C. Gomez, 2006) 

 



 
Fig. 9 Buildings’ external walls: (A) Concrete building; (B) Wood panels covered by plastic 

sheets; (C) Aluminium sheets; (D) Traditional wood boards. (Photos: C. Gomez, 2007) 

 

The area of maximum destruction of buildings is encountered in the lowland plain up to 3 km 

inland. Buildings have been destroyed (Fig. 10) regardless of the density of the built 

environment, the orientation of the houses and for most of them their structure (wood or 

metallic structures). Buildings of the city council, sport-centres and part of school buildings 

have structurally survived the tsunami. This has moved the barycentre of the Rikuzentakata 

buildings from 1400 m to 2400 m from the shoreline, modifying the spatial distribution of 

building density (Fig. 11). 

 

 

 



 
Fig. 10 Location of destroyed buildings (black points) and still standing buildings (grey 

points); Black arrows are orientation associated with the uprush; Grey arrows are orientations 

associated with the backwash. The complexity of orientations marker is interesting; however 

they are very difficult to understand at this stage. 

 



 
Fig. 11 Change in building density (number of building in a radius of 150 m, data provided in 

100 m
2
). 

 

4. Discussion 

 

Large tsunamis can result in a complete reorganisation of the structure of sandy coasts 

(Dawson, 1994), which has occurred here with the destruction of the lagoon barrier resulting 

in loss of the lagoon and the creation of nine offshore islands. In addition, 0.37 km
2
 of land 

has been lost to the sea since the tsunami. However, the degree to which this loss can be 

attributed to erosion and reorganisation of the shoreline is not currently known, as the area 

has experienced significant subsidence as a result of the 9.0 M earthquake that preceded the 

tsunami (Mimura et al., 2011). This subsidence could also contribute to the permanent 

inundation of these coastal areas and further research is required to quantify the effects of 

subsidence and erosion on shoreline changes. In Banda Aceh, at the northern extremity of 

Sumatra, the 9.3 earthquake that preceded the 2004 tsunami produced a subsidence estimated 

locally to 2 to 3 m. This imprecision led to the same uncertainty concerning the respective 

role of subsidence or erosion to explain the retreat of the shore, especially at the western end 

of the large bay of Lok Ngah. 

The location of the township at the head of a bay contributed to the level of damage 

experienced here. The effect of funnelling and amplification of tsunami waves as they 

propagate in bay environments is documented in the literature (Sugawara et al., 2005, Poisson 



et al., 2009, Lavigne et al., 2009, Kumar et al., 2008, Hentry et al., 2010) and this occurred 

here, culminating in the high run-up heights and wave energy experienced in Rikuzentakata. 

This, coupled with the concentration of the population on the low-lying and narrow coastal 

plain, resulted in high levels of damage and mortality.      

The intensity of the tsunami at Rikuzentakata was such that the coastal forest vegetation and 

riparian vegetation along 4.8 km of the Kesen River was destroyed. Had these forested areas 

remained standing, they may have dissipated some of the energy of the tsunami, but as they 

did not it is likely that the floating debris caused by uprooted trees combined with destroyed 

buildings would have impacted the buildings further inland and enhanced the damage 

potential (Tanaka, 2009, Leone et al., 2010). Tanaka et al. (2009) also notes that the nature of 

the vegetative cover is important in determining its protective capacity and that well 

developed woody forested areas (such as those found in Rikuzentakata) are not sufficiently 

low, dense or consistent for this purpose. The nature of the trees may have played a role as 

well. On the lagoon barrier, pine-trees were planted, but not as a protection against tsunami or 

storms but to reduce the impacts of sea-salt on the agricultural land behind. After the 2011 

tsunami, just one of the pine trees has survived. 

The Kesen River acted as an important conduit for tsunami propagation inland, resulting in 

damage several kilometres from the coast and allowing some areas to become inundated from 

the side or behind, rather than or as well as from the direction of the coast (Mimura et al., 

2011). The reason for the river becoming a ‘tsunami highway’ is likely a combination of 

elevation and surface roughness. Friction plays an important role in dissipating wave energy 

and slowing the tsunami wave (Minoura et al., 1996, Lavigne et al., 2009) and the low-

friction water surface would allow the wave to travel further and faster before dispersing. In 

addition, the elevation of the river is lower than surrounding land, providing a gap that could 

potentially amplify the waves, playing the role of a wave trap. This river propagation effect is 

consistent with that documented along India’s coastline in response to the 2004 tsunami 

(Kumar et al., 2008, Hentry et al., 2010), however we could not observe such a severe 

difference on the extremely flat coast of Banda Aceh, excepted further inland, where the 

channelled valleys open to the wide coastal plain. 

Significant erosion and widening of the Kesen River channel occurred as a consequence of 

this event. The energy of the tsunami during the run-up phase was sufficient to destroy 

riparian vegetation and therefore erode riverside sediment, but it is likely that significant 

erosion also occurred due to backwash and draining of the land into the river channel, as 

described by Lavigne et al. (2009)  in relation to the backwash phase of the 2004 tsunami in 

Banda Aceh. A greater degree of erosion occurred on the true left bank of the Kesen River, 

and this can be explained at least in part by differing elevations of the land alongside the two 

banks. Land on the true left bank was lower-lying than that of the right and surface area of 

the coastal plain was also greater to the left, likely causing a greater volume of water 

exchange on this side according to the observations of tsunami transmission described in the 

literature (Umitsu et al., 2007, Poisson et al., 2009, Lavigne et al., 2009, Kumar et al., 2008, 

Hentry et al., 2010, Dawson, 1994).  

 

After the 2004 Boxing Day Andaman tsunami, extensive appraisals of the impacts of the 

tsunami on the buildings have been conducted (e.g.  Dias et al., 2006).  Although the building 

code (present or not), building materials and the types of construction vary from one country 

to another, one can identify elements that can be transposed to the Japanese case.  

Indeed, Dias et al (2006) recognized the importance of ‘tying down structures against upward 

and lateral loads as well as the need to anticipate and reduce soil scour around foundations’. 

These destructive processes seem to have played an important role in Rikuzentakata. 



For the buildings constructed on the lagoon barrier, scouring has played a major role, since 

the foundations of some of the buildings have also disappeared. 

Overturning and sliding of structures have also been observed on videos around Sendai, 

Yamata and Rikuzentakata (Gomez and Wassmer, 2011a,b). Single to two storeys habitation 

buildings in Rikuzentakata have a light structure and a light envelope, in order to resist 

earthquake induced damages. Therefore constructions are characterized by timber- or 

metallic-framed structure with either wood, either aluminium or plastic exterior walls. 

Interior walls are either made of spread plaster over a bamboo structure, light-wood and 

paper mobile partitions, or for more recent constructions plaster boards. 

The importance of overturning and sliding was evident after the 2004 tsunami. Single storey 

masonry houses were destroyed in Sri Lanka except for the parts of the houses that had 

important weights such as concrete water-tanks located on the roof. The extra-weight 

prevented sliding and overturning (Dias et al., 2006). Thusyanthan and Gopal (2008) used 

flume simulation to demonstrate the effect of uplift forces applied on roofs due to water that 

curls, which may cause damage even when the tsunami wave height is lower than the roof 

level.  

 

Large events also prove that humans are ill-prepared against extreme events. Even tsunami 

resistant houses tested in Thusyanthan and Gopal (2008) assume a tsunami height that does 

not exceed the height of a one-storey house. Most engineering simulations also ignore the 

role of debris that impacts buildings (Dias et al., 2006; Thusyanthan and Gopal, 2008). 

 

This series of findings calls for considering a reconstruction process that takes into 

consideration the lessons learned from the recent tsunami. 

 

5. Conclusion 

 

The municipality of Rikuzentaka is located in an area vulnerable to tsunami due to the funnel 

shape topography and low-land configuration. The Kesen River has also acted as a highway 

for the tsunami, bringing destruction and inundation far inland. We argue that this is mainly 

due to the reduced friction in the water body. Planted and natural forest areas, which are often 

considered as natural barrier against tsunamis, have also proven ineffective in the face of 

such a large tsunami, and the debris may have actually increased the destructive ability of the 

tsunami.  

For the reconstruction of the city and the communication infrastructure, one must take into 

consideration this dataset in order to provide the local population with a more secure built 

and natural environment. These reconstruction concerns are to be published in a companion 

paper. 
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Extra documents: 

 



Loops to calculate distances (reference variables available upon request and at 

www.gomezchristopher.com): 

 
% calculate the distance between True left banks 
for a=1:48 
    dRv10L(a)=(Rv11Ly(a)-Rv10Ly(a))^2+(Rv11Lx(a)-Rv10Lx(a))^2; 
    dRV10L(a)=sqrt(dRv10L(a)); 
end 

  
clear a dRv10L 
dRV10L=dRV10L'; 

  
% calculate the distance between True Right banks 
for a=1:48 
    dRv10R(a)=(Rv11Ry(a)-Rv10Ry(a))^2+(Rv11Rx(a)-Rv10Rx(a))^2; 
    dRV10R(a)=sqrt(dRv10R(a)); 
end 

  
clear a dRv10R 
dRV10R=dRV10R'; 

  
% calculate the width of the river in 2010 
for a=1:48 
    larg10(a)=(Rv10Ry(a)-Rv10Ly(a))^2+(Rv10Rx(a)-Rv10Lx(a))^2; 
    Larg10(a)=sqrt(larg10(a)); 
end 

  
clear a larg10 
Larg10=Larg10'; 

  
% calculate the width of the river in 2011 
for a=1:48 
    larg11(a)=(Rv11Ry(a)-Rv11Ly(a))^2+(Rv11Rx(a)-Rv11Lx(a))^2; 
    Larg11(a)=sqrt(larg11(a)); 
end 

  
clear a larg11 
Larg11=Larg11'; 

 

 

 


