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Introduction

Partially hyperbolic dynamical systems form a class of chaotic models of a more subtle type than the ones provided by the well understood uniformly hyperbolic setting [START_REF] Baladi | Positive transfer operators and decay of correlations[END_REF][START_REF] Brin | Introduction to Dynamical Systems[END_REF]. The difficulty in treating such systems is caused by the presence of a neutral bundle that can drastically slow (or even prevent) the escape towards statistical equilibrium. Compact Lie groups extension are an attractive class of models of such type (the fibers of the neutral bundle are homeomorphic to a given compact Lie group and the system acts isometrically between fibers), where representation theory and Lie groups techniques can help tackle issues such as mixing rates or stable ergodicity.

In this article we focus on skew extensions of expanding maps of the circle. Put S 1 ≡ R/Z and let E : S 1 → S 1 be a C ∞ -expanding map with k > 1 smooth inverse branches E -1 ǫ ǫ = 0, ..., k -1. This map is automatically topologically mixing [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF] and mixing w.r. to a smooth invariant absolutely continious measure µ called the SRB measure. Let G be a compact Lie group with normalized Harr measure m. For any smooth map τ : S 1 → G the skew extension E τ : S 1 × G → S 1 × G is defined by (1.1) E τ (x, g) = (E(x), τ (x)g) .

The measure μτ := µ × m is an invariant smooth absolutely continuous measure for E τ . For any two reasonably regular observables Ψ, Φ on S 1 × G the central object in ergodic theory is the correlation function, defined for any n ∈ N * by

(1.2) C Ψ,Φ (n) := Ψ • E τ n ; Φ L 2 (μτ )
which converges to ´Ψdμ τ ´Φdμ τ as n → ∞ iff E τ is mixing. Fundamental questions concern the rate of decay of C Ψ,Φ (n) -´Ψdμ τ ´Φdμ τ and are related to the spectral properties of the so-called Ruelle transfer operator

(1.3) F τ : Ψ → Ψ • E τ , Ψ ∈ C ∞ S 1 × G
in adapted Banach spaces of distribution [START_REF] Ruelle | Thermodynamic formalism. The mathematical structures of classical equilibrium[END_REF][START_REF] Ruelle | Turbulence, strange attractors, and chaos[END_REF]. The first quantitative results in this context where obtained by Dolgopyat [START_REF] Dolgopyat | On mixing properties of compact group extensions of hyperbolic systems[END_REF] who showed an exponential decay rate (exponential mixing) for generic maps τ . On the other hand Naud [START_REF] Naud | Entropy and decay of correlations for real analytic semi-flows[END_REF][START_REF] Naud | Rates of mixing for compact extensionsof expanding maps[END_REF], in the analytic context showed that the rate of mixing cannot exceed a certain bound related to the topological pressure of -2 log |E ′ |. In the Abelian case G ≡ U(1) Faure [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF], using semi-classical analysis showed that the transfer operator acting in some Hilbert spaces of distributions generically exhibits an essential spectral radius bounded by 1/ √ E min ; with E min the minimal expansion rate of E. This results already deduced by Tsujii [START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF] in the setting of suspension semi-flows, shows that up to terms of order ρ n , 1 > ρ > 1/ √ E min the escape towards equilibrium is governed by a linear finite rank operator (theorem 5 in [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF] and Eq.( 1) in [START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF]). We will show that this result extends to the simplest non Abelian compact lie group G ≡ SU(2) ( Theorem 2 and Corollary 3).

As mentioned above to treat such models one uses harmonic analysis. In particular the celebrated Peter-Weyl theorem [START_REF] Taylor | Partial differential equations[END_REF] gives (1.4)

L 2 (G) = ⊕ α dim C (D α ) D α ,
where D α are finite dimensional irreducible hermitian vector spaces of representation for G. For G ≡ U(1) this is simply the Fourier decomposition of functions.

The transfer operator (1.3) extends to a continuous operator on L 2 (S 1 × G) = L 2 (S 1 ) ⊗ L 2 (G) and preserves the decomposition induced by (1.4), so that For simplicity we shall restrict ourselves to the cases G ≡ U(1) and G ≡ SU(2), respectively the Abelian and the simplest non-Abelian compact Lie groups. For G ≡ U(1), α = ν ∈ Z and τν (x) = e iνΩ(x) ; Ω ∈ C ∞ (S 1 ). For G ≡ SU(2), α = j ∈ 1 2 N and dim C (D j ) = 2j + 1. The point we wish to make here is that the spectral study of the familly Fα is a well-posed semi-classical problem, as in [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF] when G ≡ U(1). To see this in the non Abelian setting we will use Lie groups coherent states theory [START_REF] Perelomov | Generalized coherent states and their applications[END_REF]. Doing so we will derive a Fractal weyl asymptotic for the number of resonances outside a fixed spectral radius (Theorem 5) in the (semi-classical) limit ν or j → ∞. As in the previous papers by Faure [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF][START_REF] Faure | Ruelle-pollicott resonances for real analytic hyperbolic map[END_REF][START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF], the techniques used are derived from the works of Sjöstrand [START_REF] Sjöstrand | Geometric bounds on the density of resonances for semiclassical problems[END_REF] Zworski-Lin-Guillope [START_REF] Guillope | The Selberg zeta function for convex co-compact. Schottky groups[END_REF], Sjöstrand-Zworski [START_REF] Sjöstrand | Fractal upper bounds on the density of semiclassical resonances[END_REF], in the context of chaotic scattering.

Statement of the results

The operators Fα defined in (1.6) extend to the distribution spaces D ′ (S 1 ) ⊗ D α by setting, for any

ψ ∈ D ′ (S 1 )⊗D α , ϕ ∈ C ∞ (S 1 )⊗D α : Fα ψ ( φ) := ψ F * α ϕ ,
1 For other α they might not be any eigenvalues on the unit circle. However if τ maps S 1 into a closed subgroup H of G or whenever τ is co-homologous to such a map, meaning that τ = ηη • E with η : S 1 → H ⊂ G, Then they will be some eigenvalues on the unit circle as E τ is not topologically transitive in this case, hence not weakly-mixing [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF]. with the L 2 -adjoint F * α given by (2.1)

F * α ϕ (x) = y∈E -1 {x} 1 E ′ (y) τα (y)ϕ(y).
Recall that for m ∈ R the Sobolev spaces H m (S 1 ) ⊂ D ′ (S 1 ) consists of distributions ψ (or continious functions if m > 1/2) whose fourier series ψ(ξ) satisfy

ψ H m := ξ∈2πZ ξ m ψ(ξ) 2 < ∞, with ξ := (1 + ξ 2 ) 1/2
. It can equivalently be written [START_REF] Taylor | Partial differential equations[END_REF]:

(2.2) H m S 1 := ξ -m L 2 (S 1 ) , ξ := -i d dx .
ξ m is a typical representative of the class of Pseudo-Differential-Operators (PDO) of order m (cf section 3 with = 1). Theorem 1. (Ruelle [START_REF] Ruelle | Locating resonances for axiom A dynamical systems[END_REF], Faure [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF]). Here G can be any compact Lie group and Fα is defined by (1.5) and (1.6). Then ∀m, ∀α, the operator Fα acts in H m (S 1 ) ⊗ D α and has discrete spectrum outside a disc of radius r m := e m min (k/e min ) 1/2 , with e min := min x E ′ (x) > 1. The generalized eigenvalues outside this disc, along with they respective eigenspaces, do not depend on m and define the Ruelle spectrum of resonances of Fα . See figure 2.1.

Proof. Let G be any compact Lie group and D α be some irreducible representation space for G. Fix m ∈ R (we will write H m , resp. L 2 , for H m (S 1 ) and L 2 (S 1 )) and define F E : ϕ → ϕ • E and (τ ϕ) (x) := τα (x)ϕ(x), so that Fα = τ (F E ⊗ I).

Recall from [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF] that F E restricts to F E : H m → H m and has its essential spectral radius bounded by r m . Thus Qm := ξ

m F E ξ -m is L 2 -continuous with the same essential spectral radius estimate. Define Âm := ξ m ⊗ I so that Â-1 m (L 2 ⊗ D α ) = H m ⊗ D α . Consider Qm = A m Fα A -1 m and P = Q * m Qm . We see that P = Â-1 m B2m Â-1 m with B2m := F * α Â2 m Fα = (F * E ⊗ I) τ -1 Â2 m τ (F E ⊗ I). Com- muting Â2
m and τ we get that B2m = F * E ξ 2m F E ⊗ I + Ĉ2m-1 , with Ĉ2m-1 a matrix whose entries are PDOs of order 2m -1 (cf section 3 with = 1). Therefore P = Q * m Qm ⊗ I + Ĉ-1 with Ĉ-1 a matrix whose entries are PDOs of order -1 hence compact. The independence in the value of m for the discrete eigenvalues is proven in [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF], and is a consequence of the fact that H m ′ is dense in H m for any m ′ ≥ m. Theorem 2. (Tsujii [START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF] and Faure [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF] for the Abelian case). Let G be either U(1) or SU [START_REF] Brin | Introduction to Dynamical Systems[END_REF]. Recall that in these cases α denotes respectively ν ∈ Z or j ∈ 1 2 N. For m < 0 sufficiently negative, if the map E τ (1.1) is partially captive (definition 16) then the spectral radius Fα :

H m (S 1 ) ⊗ D α → H m (S 1 ) ⊗ D α satisfies in the semiclassical limit α → ∞ (2.3) r s Fα ≤ 1 √ E min + o(1)
, 

with E min := lim n→∞ min x (E n ) ′ (x)
ψ H m 1/α := ξ∈2πZ 1 α ξ m ψ(ξ) 2 . See figure 2.1.
As explained in detail in [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF], from this and the decomposition (1.5) one can deduce the mixing property of E τ . We refer to the notations defined in the introduction. [START_REF] Brin | Introduction to Dynamical Systems[END_REF]. If the conclusion of Theorem 2 hold, than for any ρ > 1 √ E min there exists a finite rank operator k such that, for any observables Φ, Ψ ∈ C ∞ (S 1 × G)

Corollary 3. Exponential Mixing of E τ , S 1 × G for G ≡ U(1), SU
F n τ Ψ; Φ L 2 (μτ ) = kn Ψ; Φ L 2 (μτ ) + O(ρ n ).
Let Π 0 be the projector on D 0 . If λ = 1 is the only eigenvalue of F τ on the unit circle2 than k admits a spectral decomposition k = |1 µ| ⊗ Π 0 + r, r s (r) < 1 with |1 µ| (ϕ)(x) := µ| ϕ L 2 (S 1 ) and µ the SRB measure of E. Thus

C Ψ,Φ (n) -ˆΨdμ τ ˆΦdμ τ = (r n Ψ; Φ) L 2 (μτ ) + O(ρ n ).
thus E τ , S 1 × G is exponentially mixing.

Proof.

[7] subsection 2.5. In the spirit of [START_REF] Sjöstrand | Geometric bounds on the density of resonances for semiclassical problems[END_REF] and [START_REF] Guillope | The Selberg zeta function for convex co-compact. Schottky groups[END_REF] we show:

Theorem 5. Let G be either U(1) or SU(2) as in Theorem 2. For any ǫ > 0 let

D C ǫ be the open disc in C of radius ǫ. Then as α → ∞, (2.4) ♯ Res Fα ∩ C\D C ǫ = O |α| 1 2 dim(K G )+0
where dim (K G ) is the upper Minkowski dimension (definition 19) of the trapped set K G of the canonical map associated to Fα . For G = U(1) this map (4.1) is defined on T * S 1 and K U (1) is a compact subset of dimension between 1 and 2. For G = SU(2) this map (4.8) is defined on T * S 1 × S 2 and K SU (2) is a compact subset of dimension between 3 and 4. This behaviour is tested numerically on figure 2.2.

Remark 6. If we replace the arbitrary observables Φ, Ψ of Corollary 3 by functions Φ α (x, g), Ψ α (x, g) decomposing only on C ∞ ⊗ D α (at x fixed, eigenvalues of the Laplace operator on G of eigenvalue λ α [START_REF] Taylor | Partial differential equations[END_REF] p. 550) then, for any ǫ > 0, there exists a finite rank operator kα , s.t.

F n τ Ψ α ; Φ α L 2 (μτ ) = kn α Ψ α ; Φ α L 2 (μτ ) + O(ǫ n ).
with an estimation on the rank given by Theorem 5, growing as α grows.

-Pseudo differential theory

Before giving the proofs of Theorem 2 and 5 we first recall some basic facts from semiclassical analysis. This will give us the opportunity to fix some notations but the reader familiar with this theory can very well skip this section. We refer to [START_REF] Evans | Lectures on semiclassical analysis[END_REF][START_REF] Folland | Harmonic Analysis in phase space[END_REF][START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF][START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF]. 2 -neighbourhood of the associated trapped set K for 20 ≤ ν ≤ 600. If Theorem 5 where sharp, then it would imply that both quantities should converge at same speed to 1 2 dim K ∼ 1 (see Lemma 18). Thus numerics suggest that it is the case.

The symplectic structure of R 2d , ω = dx ∧ dξ induces a Poisson algebra on the set of classical observables C ∞ R 2d ; R if one defines the Poisson bracket of two such functions as {f, g} := ω (X f , X g ) with X f the Hamiltonian vector field generated by f . PDO theory stems from an attempt to transpose such an algebra to the set of formally self-adjoint operators acting on L 2 R d , the latter interpreted as the quantum Hilbert space. To some observable f we associate, ∀ > 0, and ϕ ∈ S, its Weyl quantization:

(3.1) Op w (f )ϕ(x) = 1 (2π ) d ˆe i ξ(x-y) f x -y 2 , ξ ϕ(y)dydξ
f is than said to be the Weyl symbol of Op w (f ) : S → S ′ . This expression makes sense if f is not real but if it is the operator is formally self-adjoint. If one restricts to the following class of symbols, given m ∈ R and 0

≤ µ < 1 2 (3.2) S m µ := a ∈ C ∞ R 2d | ∂ α x ∂ β ξ a ≤ C αβ -µ(|α|+|β|) ξ m-|β|
then, for any a ∈ S m µ , Op w (a ) maps S to S and extends continuously to a map S ′ → S ′ . We write OP S m µ for the set of operators associated to S m µ . This class allows the construction of the Weyl quantization over smooth compact manifolds, with (3.1) taken in a local sense [START_REF] Taylor | Partial differential equations[END_REF]. Symbols are then well defined as functions of the cotangent bundle. In our case the manifold is the unit circle3 and its cotangent bundle the cylinder T * S 1 . In the following we drop the subscript for symbols in S m µ even-though they generally are one-parameter families of functions.

Lemma 7. (L 2 -continuity theorem 5.1 in [START_REF] Evans | Lectures on semiclassical analysis[END_REF]). If a ∈ S 0 µ than for any > 0, Op w (a) extends to a continuous operator on L 2 . As goes to zero, Op w (a

) L 2 →L 2 ≤ sup |a| + O( 1-2µ ).
The set of -PDO defined through the weyl quantization is an algebra and defines a star-algebra on the set of symbols, which coincides at first order with the Poisson algebra of C ∞ R 2d induced by ω = dx ∧ dξ:

Lemma 8. (Composition [10] p. 109). Let a, b ∈ S m 1 µ , S m 2 µ . Than Op w (a)Op w (b) ∈ OP S m 1 +m 2 µ
, thus defining the star product a♮b such that Op w (a)Op w (b) = Op w (a♮b). a♮b = ab mod 1-2µ S m 1 +m 2 µ and Furthermore

[Op w (a), Op w (b)] = i Op w ({a, b}) mod 2(1-2µ) S m 1 +m 2 -2 µ
The major consequence of this fact is that if U t is one parameter-group of unitary operators satisfying the Shrödinger equation-i ∂ t U t := Op w (H)U t , with H a real bounded symbol, than the classical and "quantum" dynamics are related at first order by the celebrated Egorov theorem:

Lemma 9. (Egorov. section 9.2 in [5]). For any a ∈ S m µ , U -t Op w (a)U t ∈ OP S m µ and its symbol is a • e tX H mod 1-2µ S m-1 µ
, with e tX H the time-t flow generated by the Hamiltonian vector field X H .

The operators U t are a special kind of so called -Fourier-Integral-Operator (FIO) [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]. FIOs are always associated to a symplectic map on the classical phase space. Another important example of FIOs is given by pull-back operators U κ : ϕ → ϕ • κ with κ a smooth diffeomorphism of R d . The above Egorov theorem holds replacing the Hamiltonian flow by the canonical lift κ of κ on R 2d (seen as the cotangent bundle of R d ),

κ : (x, ξ) → (κ -1 (x), t D κ -1 (x) κ • ξ).

Canonical maps

In this section we derive the canonical maps that play a central role in our approach.

4.1. The Abelian case. When G ≡ U(1), the operator Fν reads e iνΩ F E with

F E : ϕ → ϕ • E and Ω ∈ C ∞ (S 1
). Fν can be seen as an -Fourier-Integral-Operator (FIO), with semiclassical parameter ν -1 . As explained in the previous section, the pull back operator F E is one of the simplest examples of an FIO and is associated to the k-valued canonical lift E of E on the cotangent space T * S 1 (recall that E -1 ǫ are the inverse branches of E):

E ǫ : (x, ξ) → (E -1 ǫ (x), E ′ E -1 ǫ (x) ξ) ǫ = 0, ..., k -1.
On the other hand the multiplication operator e iνΩ ,ν → ∞ is also a very simple FIO and is associated to the time 1 flow generated by the Hamiltonian Ω(x), (x, ξ) → (x, ξ + Ω ′ (x)). The canonical map associated to Fν is thus k-valued and reads (4.1)

F ǫ : (x, ξ) → (E -1 ǫ (x), E ′ E -1 ǫ (x) ξ + Ω ′ E -1 ǫ (x) ) ǫ = 0, ..., k -1.
The intuitive idea behind these maps is that wave packets localized both in direct and Fourier space near some point (x, νξ) =: (x, ξ ν ) will be transformed, up to negligible terms as ν → ∞, in other wave packets localized near F ǫ (x, ξ ν ), ǫ = 0, ..., k -1. To the reader not familiar with semiclassical analysis we recommend the reading of section 3.2 in [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF] where this simple idea is explained in detail.

Using the fact that E -1 ǫ • E = Id S 1 and (2.1) the Egorov theorem of section 3 can be quoted with Fν in the role of the FIO as Lemma 10. (Egorov in the Abelian setting). Let = ν -1 ; ν > 0. For any a ∈ S m µ (T * S 1 ) any > 0, F * ν Op w (a) Fν ∈ OP S m µ and its symbol reads

(4.2) ǫ=0,...,k-1 a • F ǫ E ′ • E -1 ǫ mod 1-2µ S m-1 µ .

4.2.

The simplest non-Abelian case. When G ≡ SU(2), the operator Fj reads τj F E ⊗ I D j . We thus need to understand how the unitary operator τj defined by (τ j ϕ) (x) := τj (x)ϕ(x) could be an FIO and on which space its canonical map would act.In other words we have to define wave packets on C ∞ (S 1 ) ⊗ D j and exhibit the action of τj upon them. For this purpose we shall use coherent states theory for compact Lie groups [START_REF] Perelomov | Generalized coherent states and their applications[END_REF].

The Lie algebra of SU( 2) is a 3 dimensional real vector space spanned by three generators iJ l ; l = 1, 2, 3. The representations spaces D j are eigenspaces of the Casimir operator J 2 := 3 l=1 J 2 l with eigenvalue j(j + 1), and an o.n. basis in D j is given by the eigenvectors of J 3 . In particular if one defines J ± = J 1 ± iJ 2 there exists a unique normalized vector |0 ∈ D j such that J 3 |0 = -j |0 and J -|0 = 0, called the maximal weight vector and D j = span J k + |0 , k = 0, ..., 2j . Let π : D j → P (D j ) be the canonical mapping on the projective space. Define the following subset of P (D j ) (4.3)

X j := {π (ĝ j |0 ) ; g ∈ G} ,
i.e. the set of complex lines trough 0 in D j spanned by the orbit of |0 . The isotropy subgroup of π (|0 ) is the set of elements e iθJ 3 , a U(1) subgroup of G. Thus X j is isomorphic to the coset space SU(2)/U(1) ∼ = S 2 . The isomorphism φ : X j → S 2 can be fixed once and for all by setting φ(π (ĝ j |0 )) = R g n 0 with n 0 the south pole of the sphere and R g ∈ SO(3) the rotation corresponding to the adjoint representation of g in R Also one can show that the coherent sates are localized, as j → ∞, on the sphere:

| n ′ | n | 2 = 1+n ′ •n 2 2j
. A natural way to quantize smooth observables is to put

(4.5) Op AW j : C ∞ (S 2 ) → End(D j ) a(n) → ´S2 a(n) |n n| dn j dn j := dim D j 4π .
This mapping is surjective. In fact, because we have chosen a maximal weigh vector as a starting point, X j has a Kaehlerian structure inherited from the projective space ( [START_REF] Guillemin | Symplectic Techniques in Physics[END_REF] p. 168). The symplectic form on X j reads ω j = jω S 2 with ω S 2 the canonical symplectic form on S 2 and (4.5) corresponds to the geometric quantization of (S 2 , ω S 2 ) with D j as the quantum Hilbert space [START_REF] Woodhouse | Geometric quantization[END_REF]; the following is a special case of a more general result: Remark 12. The representations of group elements are natural FIOs in this setting as one can check readily that, for any observable a, and g ∈ G,

ĝ-1 j Op AW j (a)ĝ j = Op AW j (a • R g ).
Since ĝj = e iju• J j for some u ∈ R 3 this means that u

• J j = Op AW j (u • n + O(j -1
)) so that the Hamiltonian time-1 flow on S 2 coincides with the rotation R g ∈ SO(3).

We can now define a quantization of the full symplectic phase space (4.6)

T * S 1 × S 2 ; dx ∧ dξ + ω S 2
To any classical observable a ∈ C ∞ (T * S 1 × S 2 ) we associate an operator Op j (a) : S(S 1 ) ⊗ D j → S ′ (S 1 ) ⊗ D j defined by (4.7) Op j (a) := Op AW j

• Op w j -1 (a) with Op w ; > 0 the usual Weyl quantization (3.1) defined on the circle. By composition the quantization (4.7) obeys the correspondence principle: The composition of two such PDO is a PDO whose principal term is the product of the symbols and the principal term of their commutator is (-i/j) times the Poisson bracket of the symbols. Since SU( 2) is simply connected we can write τ (x) as e iΩ(x)•J with Ω ∈ C ∞ (S 1 ; R 3 ) a smooth vector valued function. Using remark 12, we have that τj = exp ijOp j (a) ; with a(x, n) = Ω(x) • n + O(j -1 ). This is precisely the formal expression of an FIO associated to the time-1 flow generated by the Hamiltonian vector field associated to Ω(x) • n:

ẋ = 0; ξ = -Ω ′ (x) • n; ṅ = Ω(x) ∧ n
After integration the time-1 flow reads:

(x, ξ, n) → (x, ξ + n • H(x, n), R τ (x) n), with H(x, n) := n • ´1 0 RtΩ(x) Ω ′ (x)
dt, and Ru the rotation in R 3 of axis u. Coming back to the operator Fj = τj F E ⊗ I D j we see now that it is indeed an FIO and by composition its k-valued canonical map reads, with ǫ = 0, ..., k -1 :

(4.8) F ǫ : (x, ξ, n) → E -1 ǫ (x), E ′ E -1 ǫ (x) ξ + H(E -1 ǫ (x); n), R τ (E -1 ǫ (x))
n . Using the Campbell-Hausdorff formula ( [START_REF] Taylor | Partial differential equations[END_REF] p. 541) one can show that 4

H(x, n) = - i j n| τ -1 j dτ j dx (x) |n , the Wick symbol [17] of -ij -1 τ -1 j d dx τj (x) ∈ su(2)
. 4 This result is not surprising if one considers the transport by τj of generalized wave packets ϕ x,ξ,n := ϕ x,ξ ⊗ |n with ϕ x,ξ a Gaussian wave-packet of width j -1/2 as defined in [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF] section 3.2. By the localization property of both the coherent states and the Gaussian wave packets

ϕ y,η,n ′ |τ j ϕ x,ξ,n L 2 (S 1 )⊗Dj := ˆS1 ϕ y,η (z)ϕ x,ξ (z) n ′ |τ j (z)n dz
will be negligible as j grows if y = x and if y = x negligible if n ′ = R τ (x) n. On the other hand, for some c > 0

ϕ x,η,R τ (x) n |τ j ϕ x,ξ,n := ˆS1 e -j(x-z) 2 e ij(ξ-η) n|τ j (x) -1 τj (z)n dz + O(e -cj ).
n|τ j (x) -1 τj (z)n is maximal and equal to one for z = x. If we write this term as ρ(z)e -ijψ(z) then the stationary phase theorem states that the above expression will be negligible whenever ξη -i j n|τ j (x) -1 d dx τj (x)n = 0.

Set ≡ j -1 , j > 0 to define the class, as (3.2), given m ∈ R and 0 ≤ µ < 1 2 : (4.9)

S m µ T * S 1 × S 2 := a ∈ C ∞ ; |∂ α x ∂ β ξ ∂ γ n a | ≤ C αβ -µ(α+β+|γ|) ξ m-|β| .
In this setting the Egorov theorem can then be stated as Lemma 13. (Egorov in the non-Abelian setting). Let a ∈ S m µ (T * S 1 × S 2 ), then F * j Op j (a) Fj ∈ OP S m µ and its principal symbol reads

(4.10) ǫ=0,...,k-1 a • F ǫ E ′ • E -1 ǫ mod 1-2µ S m-1 µ .

Dynamics on Phase space

In this section we derive some elementary facts about the canonical maps (4.1) and (4.8) associated respectively to Fν . We introduce the compact trapped sets of Theorem 5 and give the hypothesis on which Theorem 2 is based.

Time-n dynamics.

Let A := {0, ..., k -1} be the alphabet and

A n := {ǫ = ǫ 1 ǫ 2 ...ǫ 2 ; ǫ i ∈ A} ,
the set of k n words on length n > 0 written with A. For any

ǫ ∈ A n define E -n ǫ := E -1 ǫn • ... • E -1 ǫ 1 and put x ǫ := E -n ǫ (x).
The expansion rate of this trajectory is then

E ′ ǫ (x) := (E n ) ′ (x ǫ ) = n j=1 E ′ (x ǫ| j )
with ǫ| j := ǫ 1 ...ǫ j the troncation at the j-th letter of the word ǫ. We put ∀ǫ ∈ A n :

ξ x,ǫ := E ′ ǫ (x){ξ -S U (1) ǫ (x)} with (5.1) S U (1) ǫ (x) := - n j=1 E ′ ǫ| j (x) -1 • Ω ′ x ǫ| j ,
and Ω as in (4.1). In the same manner, if

n x,ǫ := R τ (xǫ) • R τ (x ǫ| n-1 ) • ... • R τ (xǫ 1 ) n define ξ x,n,ǫ := E ′ ǫ (x){ξ -S SU (2) ǫ (x, n)} with (5.2) S SU (2) ǫ (x, n) := - n j=1 E ′ ǫ| j (x) -1 • H † x ǫ| j , n x,ǫ| j ,
and H † (x, n) := H(x, R -1 τ (x) n), H as in (4.8). With these notations the time-n dynamics read (5.3)

F n ǫ (x, ξ) = (x ǫ , ξ x,ǫ ) and F n ǫ (x, ξ, n) = (x ǫ , ξ x,n,ǫ , n x,ǫ ); ǫ ∈ A n for respectively the Abelian and non-Abelian case. The inverse maps F -n are single valued and read, (5.4)

F -n (x, ξ) = ( E n x, (E n ) ′ (x) -1 {ξ - n-1 j=0 E j ′ (x) • Ω ′ E j x } )
in the Abelian setting, and if n (j)

x := R -1 τ (E j-1 x) • ... • R -1 τ (x)
n, in the non-Abelian setting:

(5.5)

F -n (x, ξ, n) = ( E n x, (E n ) ′ (x) -1 {ξ - n-1 j=0 E j ′ (x) • H † (E j x, n (j) x )}, n (n) x )
5.2. The trapped sets. We refer to the notations defined in the previous subsection. A fundamental feature of the classical dynamics is that:

Lemma 14. For any 1 < κ < e min , there exists R > 0, s.t. for any

ǫ ∈ A, |ξ| ≥ R ⇒ |ξ x,ǫ | ≥ κ |ξ| and |ξ x,n,ǫ | ≥ κ |ξ|.
Proof. If ξ > 0, than ξ x,ǫ (resp. ξ x,n,ǫ ) will be larger than κξ for some

1 < κ < e min iff κξ ≥ e min ξ -C G -⇔ ξ ≥ C G -/(e min -κ), with C U (1) - = |min x Ω ′ (x)| and C SU (2) - = |min x,n H(x, n)|.
On the other hand if ξ < 0 then ξ x,ǫ (resp. ξ x,n,ǫ ) will be smaller than κξ iff κξ ≤ e min ξ + C G + ⇔ ξ ≤ -C G + /(e minκ), with C

U (1) + = |max x Ω ′ (x)| and C SU (2) + = |max x,n H(x, n)|. So with R := max G max C G -, C G + /(e min -κ) the lemma holds.
As a consequence, for both maps (4.1) and (4.8) there exists a non-empty compact set of points from which some trajectories do not escape as n → ∞. Indeed, taking R > 0 large enough and Z U (1

) := S 1 × [-R; R], Z SU (2) := S 1 × [-R; R] × S 2 ,
K G can be defined as the limit of a sequence of nested non-empty compacts sets (see fig. 5.1):

(5.6)

K G := n≥0 F -n (Z G ) .
For some word ǫ ∈ A n we define ǫ := ǫ00 the word of infinite length completed from ǫ with zeros. Put A n := {ǫ; ǫ ∈ A n }. One can than define the set of infinite words as

A ∞ := ∪ n>0 A n .
Lemma 15. K G can be seen as the closure of the union of graphs of smooth uniformly bounded functions S G ǫ ; ǫ ∈ A ∞ over, resp. S 1 and S 1 × S 2 : (5.7)

K G = ∪ ǫ∈A ∞ GS G ǫ . Figure 5.1. Numerical computation of K SU (2)
corresponding to the skew extension of the linear map E(x) = 2x mod1 for two particular expression of τ . On the left τ (x) = e i cos(2πx)J 3 with J 3 the generator of the rotations around the vertical axis. In this case τ maps S 1 to a U(1) subgroup of SU( 2). The induced dynamics on the sphere is not transitive as it leaves invariant the geodesics parallel to the equator. Over any of these, the trapped set corresponds to K U (1) for τ (x) = 1 2π n 3 cos(2πx), and degenerates above the equator (this is consistent with the fact that the canonical map ought not be partially captive in this case). On the right we break the degeneracy by taking τ (x) = e i cos(2πx)J 3 +i0.2 cos(2πx)J 1 .

Furthermore, if S G

max is the uniform bound of the sequence

|S G ǫ | than any point in F -n (Z G ) is at distance at most R + S G max e -n min from K G . Proof. Points in F -n Z U (1)
can be written as

x∈S 1 ǫ∈A n F -n (x ǫ , ξ); ξ ∈ [-R; R] .

Using (5.4) a short calculation gives

F -n (x ǫ , ξ) = x, E ′ ǫ (x) -1 • ξ + S U (1) ǫ (x) with S U (1) ǫ
as in (5.1). As n grows we have that

|E ′ ǫ (x) -1 • ξ| ≤ e -n min R → 0. On the other hand, for any ǫ ∈ A ∞ , any n > 0, S U (1) ǫ|n (x) ≤ Ω ′ ∞ 1 e min -1 =: S U (1) max and S U (1) ǫ|n (x) -S U (1) ǫ| n-1 (x) = E ′ ǫ|n (x) -1 • Ω ′ x ǫ|n ≤ e -n min Ω ′ ∞ .
The same kind of estimates hold true for the sequences ∂ and this gives (5.7) for G ≡ U(1). Since, for any ǫ ∈ A ∞ ,

E ′ ǫ|n (x) -1 • ξ + S U (1) ǫ|n (x) -S U (1) ǫ (x) ≤ e -n min R + S U (1) max ,
we get that points in F -n Z U (1) lie at distance at most e -n min R + S We do not know much more at present about these elusive sets [START_REF] Tsujii | Fat solenoidal attractors[END_REF]. Using the characterization (5.7) one can show quite easily that over some point {x} or {(x, n)} the trapped set is either reduced to a unique point {ξ} or has no isolated points. This however does not inform us about their dimension more than the obvious bound 1 ≤ dimK U (1) ≤ 2 and 3 ≤ dimK SU (2) ≤ 4.

5.3.

The partially captive property. For any starting point on K G , for any time n > 0, at least one of k n different trajectories Stays in K G . In the light of lemma 15 we have obvious trapped trajectories from the fact that ∀ǫ ∈ A ∞ , ǫ 0 ∈ A,

F ǫ 0 x, S U (1) ǫ 0 ǫ (x) = x ǫ 0 , S U (1) ǫ 
(x ǫ 0 )
and similarly

F ǫ 0 x, S SU (2) 
ǫ 0 ǫ (x, n), n = x ǫ 0 , S SU (2) ǫ (x ǫ 0 , n x,ǫ 0 ), n x,ǫ 0 ,
showing that points in K G lying on the branch GS G ǫ 0 ǫ jump to the branch GS G ǫ and so on. When τ is not a co-boundary, its seems only an unlikely coincidence that some other trajectory ǫ ′ = ǫ 0 would yield S U

ǫ 0 ǫ (x) = S U (1) 
(x ǫ ′ ) or S SU (2) ǫ 0 ǫ (x, n) = S SU (2) ǫ (x ǫ ′ , n x,ǫ ′ ), for some ǫ ∈ A ∞ . (1) ǫ 
Thus one expects most trajectories to eventually escape in the non-compact direction. Definition 16. Let N (n) ≤ k n be the maximal cardinality (over different starting points in Z G ) of the set of trajectories ǫ ∈ A n that do not escape from Z G . The map E τ of eq.(1.1) will be called partially captive iff:

(5.8) lim n→∞ log (N (n)) n = 0.
This is the hypothesis under which Theorem 2 holds. It is known to be generically true in the Abelian setting [START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF], but one can reasonably expect the arguments of the quoted article to remain valid in the non-Abelian case.

Proof of theorem 2

The Abelian case is treated in detail in [START_REF] Faure | Semislassical origin of the spectral gap for transfer operators of partially expanding maps[END_REF]. We simply adapt Faure's proof to this context. In the following 1 < κ < e min and R > 0 are chosen as in lemma 14. Using the quantization rule (4.7), for any j > 0, m < 0 consider the following Hilbert spaces of distributions

H m j -1 S 1 ⊗ D j = Op j (A m ) -1 L 2 ⊗ D j , where A m (x, ξ, n) ≡ A m (|ξ|) ∈ (0, 1] is an elliptic symbol in S m 0 (T * S 1 × S 2
) (independent of x, n), constant and equal to one for |ξ| ≤ R and equal to R |m| |ξ| m pour |ξ| ≥ R + η with η > 0 arbitrary small. As subspaces of D ′ (S 1 ), H m j -1 (S 1 ) and H m (S 1 ) are isomorphic to one-an-other but posses different norms. Since the spectrum does not depend on the choice of a norm, the spectrum of Fj :

H m j -1 (S 1 ) ⊗ D j → H m j -1 (S 1
) ⊗ D j is no other than the Ruelle spectrum of resonances introduced in theorem 1. Consider

Qm := Op j (A m ) Fj Op j (A m ) -1 .
By construction Qm acts in L 2 (S 1 ) ⊗ D j and is unitary equivalent to Fj | H m j -1 ⊗D j . On the other hand [START_REF] Kato | Perturbation theory for linear operators[END_REF] 

∀n ∈ N * r s Qm ≤ Qn m 1 n ≤ Qn * m Qn m 1 2n . Define P (n) := Qn * Qn = Op j (A m ) -1 F n * j Op j (A n m ) F n j Op j (A m ) -1 .
From Egorov (4.10) and composition theorems, using the notations of subsection 5.1, we get that P (n) ∈ OP S m 0 and its symbol reads

P (n) (x, ξ; n) = ǫ∈A n 1 E ′ ǫ (x) A 2 m (ξ x,n,ǫ ) A 2 m (ξ) modj -1 S -1 0 .
Faure's simple idea is to use the basic properties of the classical dynamics to bound this positive symbol, and then use the L 2 -continuity theorem (lemma 7) to conclude. At x ∈ S 1 and n ∈ S 2 fixed we distinguish three cases. Using lemma 14 we get:

(1) If |ξ| > R, then ∀ǫ ∈ A n , A 2 m (ξx,n,ǫ) A 2 m (ξ) ≤ (κ 2m ) n .
(

) Si |ξ| ≤ R but |ξ x,n,ǫ| n-1 | > R then we can write A 2 m (ξ x,n,ǫ ) A 2 m (ξ) = ≤κ 2m A 2 m (ξ x,n,ǫ ) A 2 m (ξ x,n,ǫ| n-1 ) ≤1 A 2 m (ξ x,n,ǫ| n-1 ) A 2 m (ξ x,n,ǫ| n-2 ) ... A 2 m (ξ x,n,ǫ 1 ) A 2 m (ξ) ≤ κ 2m . 2 
(3) In all other case ( |ξ| ≤ R| and

|ξ x,n,ǫ| n-1 | ≤ R), A 2 m (ξx,n,ǫ) A 2 m (ξ)
≤ 1, but by definition 16, the number of such trajectories is bounded by N (n -1).

Using this decomposition we get

P (n) (x, ξ; n) ≤ 1 E n min (k n -N (n -1)) κ 2m + N (n -1) + O n j -1 Set B(n) := k E min n κ 2m + N (n-1) E n min
. Remark that at n fixed the first term goes to zero as m → -∞. The L 2 -continuity theorem gives

P (n) ≤ B(n) + O n j -1 , so r s Qm ≤ B(n) + O n j -1 1 2n ; ∀n ∈ N * .
Letting first j → ∞, then m → -∞ et finally n → ∞ we finally obtain a nice expression for the the spectral radius, as j grows:

r s Fj | H m ⊗D j ≤ 1 E min exp lim inf n→∞ log (N (n)) n + o(1).
The partially captive assumption (5.8) then yields (2.3) of Theorem 2. The second statement of Theorem 2 is derived using Qn m ≤ P

(n) = (B(n) + O n (j -1 )) 1 2 
(polar decomposition [START_REF] Gohberg | Traces and Determinants of Linear Operators[END_REF]). With the partially captive assumption, for any c > 0 an n large enough N (n) < e nc , so for any ρ > E 

m := F n H m j -1 ⊗D j ≤ ρ n .

Proof of theorem 5

To treat simultaneously both cases G ≡ U(1); G ≡ SU(2) let us fix some notations. Let M G be the classical phase space associated to the FIO Fα ; so M U (1) ≡ T * S 1 and M SU (2) ≡ T * S 1 × S 2 . We write points on M G as ρ = (ρ c , ξ) with ρ c the components along the compact directions of M G . We set = ν -1 , ν > 0 or = j -1 , j > 0 and Op will stand for the associated quantification either (3.1) or (4.7).

7.1. The escape function. For any closed subset A of M G we denote by A δ its closed δ-neighbourhood.

Lemma 17. (Existence of an escape function). ∃C 0 , C 1 > 0 such that ∀m < 0, ∀ 0 ≤ µ < 1 2 ; and ∀ 1 < κ < e min , there exists an elliptic symbol in µm S m µ (M G ), called the escape function and written A G m,µ , satisfying the following property:

∀ρ / ∈ K C 0 µ G , ∀ǫ ∈ A, A G m,µ
deacreases stricly along the trajectories of F ǫ :

(7.1) A G m,µ • F ǫ A G m,µ (ρ) ≤ C 1 κ m .
Proof. Let m < 0. Let R be as in lemma 14 and define

A m ∈ S m 0 (M G ); A m (ρ) ∈ (0, 1] s.t. (7.2) A m (ρ) = 1 if |ξ| ≤ R = |ξ| R m if |ξ| ≥ R + η with η > 0 arbitrarily small. Put (7.3) ÃG m,µ := 1 k n ǫ∈A n A m • F n ǫ |E ′ ǫ | m ;
with with n = n( , µ) such that

(7.4) e -n min = O(1) µ ⇔ n( , µ) = [µ log -1 log e min ].
For any point ρ / ∈ F -n (Z G ), we have, by lemma 14 , (5.3) and (7.2), that

ÃG m,µ (ρ) := R |m| k n ǫ∈A n ξ -S G ǫ (ρ c ) m .
Since, from the proof of lemma 15, we know that S G ǫ (ρ c ) is smooth (uniformly in n), we get directly, with (7.4), that the symbol class estimates (3.2) and (4.9) of µm S m µ are satisfied as long as ξ -

S G ǫ (ρ c ) ≥ e -n min = O(1) µ . By lemma 15 if ρ is at distance at least (R + 2S G max )e -n min from K G than ρ is both out of F -n (Z G ) and satisfies ξ -S G ǫ (ρ c ) ≥ e -n min . We can always smooth out ÃG m,µ near K G to define A G m,µ ∈ µm S m µ so that ÃG m,ν ≡ A G m,ν out of the neighbourhood K C 0 e -n min G ⊇ F -n (Z G ) with C 0 = 2(R + 2S G max ).
On the other hand, again by lemma 14 and (7.3), out of F -n (Z G ) we also have that, for any letter ǫ, 

ÃG m,µ (F ǫ 0 (ρ)) ÃG m,µ (ρ) ≤ κ m ǫ∈A n |E ′ ǫ (x)| m ǫ∈A n |E ′ ǫ (x ǫ 0 )| m . Now, for some absolute constant C > 0, e nP (|m|)-C ≤ ǫ∈A n |E ′ ǫ (x)| m ≤ e nP ( 
-1 U (1) = 2π; C -1 SU (2) = 8π 2 . ∀ǫ > 0, ∀0 ≤ µ < 1 2 , m < 0 sufficiently negative and |α| > 0 large enough, ♯ spct Fα | H m α,µ C\D C ǫ ≤ C G dim C (D α ) |α|Vol K C|α| -µ G (1 + o(1)) . Proof. Fα : H m α,µ → H m α,µ is by construction unitary equivalent to Qm,µ := Op A G m,µ Fα Op A G m,µ -1 : L 2 S 1 ⊗ D α → L 2 S 1 ⊗ D α . Define Pµ := Q * m,µ Qm,µ = Op A G m,µ -1 F * α Op A G m,µ 2 Fα Op A G m,µ -1 . 
By the composition and Egorov theorems (4.2), (4.10) Pµ ∈ OP S 0 µ and its symbol reads

P µ = ǫ∈A A G m,µ • F ǫ A G m,µ 2 mod 1-2µ S -1 µ .
From lemma 17, P µ naturally decomposes into a compact part K µ supported on

K C µ G
, with some C > C 0 , and a bounded part

R µ with sup |R µ | ≤ C 2 1 κ 2m + O( 1-2µ
). With lemma 7, the decomposition transposes to the operator level with Pµ = Kµ + Rµ , Kµ := Op (K µ ) trace class and self-adjoint and Rµ ≤

C 2 1 κ 2m + O( 1-2µ
). From lemma 20 in the appendix , we have that ∀ǫ > 0 and ≡ |α| -1 small enough

♯ spct Kµ R\(-ǫ; ǫ) ≤ f G (α)|α|Vol K C µ G (1 + o(1)) , with f U (1) (ν) ≡ 1 2π and f SU (2) (j) = 1 8π 2 dim C (D j )
. By perturbation, eventually choosing a larger ǫ > 0, for m sufficiently negative and small enough, the same is true for the eigenvalues of Pµ thus for the singular values of Qm,µ . Corollary 22 from the appendix allows us to draw the same conclusion for the eigenvalues of Qm,µ , yielding the result. As long as µ < 1 2 , for any δ > 0 arbitrarily small, one can take N large enough s.t. δ N ≤ δ/2 and then small enough s.t. 2(1-2µ) C N ≤ δ/2, so that the term δ N + 2(1-2µ) C N is smaller than δ. This gives (8.3). The exact same argument can be carried out for  := Op j (a), using (8.2) to compute the trace of P ±  and with ≡ j -1 to get (8.4).

Appendix B. General lemmas on singular values

Let (P ν ) ν∈N be a family of compact operators on some Hilbert space. Consider any P ν and let (λ j,ν ) j∈N * ∈ C be the sequence of its eigenvalues ordered decreasingly according to multiplicity: Proof. (Of corollary 22). Suppose that for any ǫ > 0, there exists a rank A ǫ s.t. for all ν ≥ A ǫ # {j ∈ N * ; µ j,ν } < N(ν), which means that µ N (ν),ν → ν→∞ 0 and from Lemma 21, ∀C > 1, |λ [CN (ν)],ν | → ν→∞ 0, which can be directly restated as (9.1).

Let us now prove the lemma.

Proof. (Of lemma 21) The main relation between singular and eigenvalues is given by the Weyl inequalities ( see [START_REF] Gohberg | Traces and Determinants of Linear Operators[END_REF] p. 50 for a proof): Notice that [CN(ν)] -N(ν) > 0 for ν large enough. Therefore (9.5) gives the result.

(1. 5 )

 5 Fτ = ⊕ α dim C (D α ) Fα with Fα := Fτ | L 2 (S 1 )⊗Dα acting on smooth vector valued functions ϕ : S 1 → D α as (1.6) Fα ϕ (x) = τα (x)ϕ(x), with τα (x) the representation in D α of τ (x) ∈ G. In some standard Sobolev spaces of distributions these operators have discrete spectrum (the Ruelle spectrum of resonances, Theorem 1). For the trivial representation corresponding to dim C (D α ) = 1 and τα (x) ≡ Id, the constant function is an obvious eigenfunction of Fα with eigenvalue one 1 .

Figure 2 . 1 .

 21 Figure 2.1. Numerical computation of the superposition of the resonance spectrum of Fα (1.6) for to the first few values of α, for particular skew extension of the linear map E(x) = 2x mod1. On the left τ (x) = 12π cos(2πx) seen as an element of the Abelian group R/Z. On the right τ (x) = e i cos(2πx)J 3 e iθJ 2 e i cos(2πx)J 3 ∈ SU(2) with iJ l ; l = 1, 2, 3 the generators of su(2) and θ = 0 a fixed arbitrary value. In both pictures the inner circle corresponds to the asymptotic gap of Theorem 2 and the black dot is the dominant simple eigenvalue λ = 1.

Definition 4 .

 4 For any λ > 0 consider O λ = {m ∈ R | r m ≤ λ}. The set of all resonances of Fα can be defined as Res Fα := lim λ→0 m∈O λ spect Fα | H m (S 1 )⊗Dα .

Figure 2 . 2 .

 22 Figure 2.2. Here we restrict our attention to the Abelian skew extension of the linear map E(x) = 2x with τ (x) = 1 2π cos(2πx) ∈ R/Z. The +signs represent log(N ν )/ log(ν) with N ν the number of resonances of Fν larger in modulus than some fixed ǫ > 0. The stars represent 1 + log V ol(K ν )/ log (ν) with K ν a numerical approximation of the volume of a ν -12 -neighbourhood of the associated trapped set K for 20 ≤ ν ≤ 600. If Theorem 5 where sharp, then it would imply that both quantities should converge at same speed to1 2 dim K ∼ 1 (seeLemma 18). Thus numerics suggest that it is the case.

Theorem 11 .

 11 (Cahen-Gutt-Rawnsley[START_REF] Gutt | Quantization of kahler manifold ii[END_REF]). For any a, b ∈ C ∞ (S 1 ) with a♮b = ab + O(j -1 ). Furthermore -b}) + O End(D j ) (j -1 ).

α x S U ( 1 )

 1 ǫ|n (x) for any order of derivation proving the convergence in C ∞ (S 1 ) of the sequence of functions S ) ; x ∈ I its graph over S 1 . As n grows F -n Z U (1) converges to ∪ ǭ∈A n GS U (1) ǫ

U ( 1 ) 1 e

 11 max from K U (1) . The exact same argument can be carried out for G ≡ SU(2) with S SU (2) ǫ|n as in (5.2) which is uniformly bounded by H ∞ min -1 =: S SU (2) max , and converges in the C ∞ -topology to S SU (2) ǫ .

.

  Thus for m sufficiently negative, j, n sufficiently large Qn

7 . 2 .Lemma 18 .

 7218 |m|)+C with P (|m|) the topological pressure of E associated to the potential -m log E ′ (see [6] Theorem 5.1 p. 72). Thus choosing C 1 = e 2C concludes the proof of lemma 17 with A G m,µ as the escape function End of the proof. Since A G m,µ is elliptic and of order m the following spaces of distributions H m α,µ := Op A G m,µ -1 L 2 S 1 ⊗ D α are Hilbert spaces w.r. to the norm inherited from L 2 and are isomorphic in terms of subsets of D ′ (S 1 ) ⊗ D α to H m (S 1 ) ⊗ D α . Theorem 5 essentially reduces to the following statement: Choose any C > C 0 and set C

Definition 19 . 1 (

 191 The upper Minkowski 5 dimension (or box dimension) of a non empty bounded subset A of R d is(7.5) ddim A := co dim A := sup s∈R lim sup δ↓0 δ -s • Vol d A δ < +∞ . In general lim sup δ↓0 δ -co dim A • Vol d A δ < +∞ does not hold 6 , so Vol d A δ = O δ co dim A-η for any η > 0. We write the latter Vol d A δ = O δ co dim A-0 .composition theorem, their respective symbols read P ± (a) + 2(1-2µ) b ± with b ± negligible out of the support of a. By eq.(8.1) :trP ± Â = 1 (2π ) d ˆ P ± (a) + 2(1-2µ) b ± dxdξ.Now ´b± dxdξ ≤ Vol {|a| > 0} C N with C N independent of . On the other hand P ± = 1 ǫ + r ± on [-C; C] with r ± (0) = 0. We thus get ´P+ (a)dxdξ ≤ Vol {|a| > ǫ} + Vol {|a| > 0} δ N and the opposite inequality for ´P-(a)dxdξ, with δ N → 0 as N grows. By the spectral and L 2 -continuity (lemma 7) theorems, for > 0 small enough,trP -Â ≤ tr1 ǫ Â ≤ trP + Â so 2π ) d ( Vol {|a| > ǫ} -Vol {|a| > 0} (δ N + 2(1-2µ) C N ) ) ≤ tr1 ǫ Âandtr1 ǫ Â ≤ 1 (2π ) d ( Vol {|a| > ǫ} + Vol {|a| > 0} (δ N + 2(1-2µ) C N ) ).

  |λ 1,ν | ≥ |λ 2,ν | ≥ ... In the same manner, define (µ j,ν ) j∈N * ∈ R + , the decreasing sequence of singular values of P ν ( the eigenvalues of P * ν P ν ). Finally let [x] ∈ N stand for the integral part of x ∈ R. Lemma 21. Suppose there exits a map N : N → N s.t. N(ν) → ∞ and µ N (ν),ν → 0 as ν grows. Then ∀C > 1, |λ [C.N (ν)],ν | → ν→∞ 0. Corollary 22. Let N : N → N be as in lemma 21. Suppose that ∀ǫ > 0, ∃A ǫ ≥ 0 s.t. ∀ν ≥ A ǫ ; # { j ∈ N * | µ j,ν > ǫ} < N(ν). Then for any C > 1, ǫ > 0 there exists B C,ǫ ≥ 0 such that: (9.1) ∀ν ≥ B C,ǫ ; # { j ∈ N * | |λ j,ν | > ǫ} ≤ [C × N(ν)].

  ν |; ∀k ∈ N * .Let m j,ν := -log (µ j,ν ), l j,ν := -log (|λ j,ν |) to define S k,ν := k j=1 m j,ν , and L k,ν := k j=1 l j,ν . The Weyl inequalities (9.2) thus reads: S k,ν ≤ L k,ν , ∀k ∈ N * . Notice that both sequences (l j,ν ) j≥1 and (m j,ν ) j≥1 are increasing so, ∀k ∈ N * , k•l k,ν ≥ L k,ν , and for any k, K ∈ N * ,(9.3) S k+K,ν ≥ K • m k,ν .Suppose that µ N (ν),ν → 0 (hence m N (ν),ν → ∞) as ν → ∞ and choose some constant C > 1, By (9.3) we have that(9.4) S [CN (ν)],ν ≥ ([CN(ν)] -N(ν)) • m N (ν),ν ,and therefore, sincel [CN (ν)],ν ≥ 1 [CN (ν)] × L [CN (ν)],ν ≥ 1 [CN (ν)] × S [CN (ν)],ν , from (9.4) we get (9.5) l [CN (ν)],ν ≥ [CN(ν)] -N(ν) [CN(ν)] × m [CN (ν)],ν .

  1/n > e min the minimal expansion rate of E.

	Also for any ρ > 1 √ E min there exists n 0 , α 0 > 0, m 0 < 0 s.t. ∀ |α| ≥ α 0 , m ≤ m 0 F n 0 α H m 1/α ⊗Dα ≤ ρ n 0 , where • H m 1/α stands for the Semiclassical Sobolev norm

  3 . A point n on the sphere is thus associated to an orthogonal projector |n n| on D j with |n being any ĝj |0 s.t. [g] ≡ n. This mapping is called the quantization of the sphere and the vectors |n the coherent states. Furthermore, since ´S2 |n n| dn commutes with all elements of G, by Shur's lemma it is a multiple of the identity I D j .

			An algebraic calculation gives
	([20] p. 63)		
	(4.4)	dim D j 4π ˆS2	|n n| dn = I D j .

which is always the case if τ is not a co-boundary:[START_REF] Tsujii | Decay of correlations in suspension semi-flows of angle-multiplying maps[END_REF] Appendix A

In our context, since S 1 is an affine manifold it is not necessary to restrict to such a class. But since our techniques allow it, and since S m is standard we will not work on the most general class allowed.

For nice sets the Minkowski dimension coincides with the Hausdorff dimension dim H , but in general dim H A ≤ dim A.

when it does the set A is said to be of pure dimension see[START_REF] Sjöstrand | Geometric bounds on the density of resonances for semiclassical problems[END_REF] for some comments and further references.

From this definition and lemma 18, Theorem 5 follows rather directly. For any 0 ≤ µ < 1 2 , the spectrum of Fα | H m α,µ is no other than the Ruelle spectrum of resonances, the latter independent of µ. Thus, for any ǫ > 0, m < 0 sufficiently negative, for some CG > 0 independent of α, m, and for |α| large enough:

In the Abelian case

Thus (7.6) yields Theorem 5.

Appendix A. Adapted Weyl type estimates

If a ∈ S 0 µ ∩ L 2 R 2d one has the following important exact formula [START_REF] Evans | Lectures on semiclassical analysis[END_REF]:

For the quantization Op j := Op AW j

• Op w j -1 defined in (4.7), using (4.5) and (8.1) we have for any

Lemma 20. Let a ∈ S -∞ µ be a real compacly supported symbol. ∀ > 0, Op w (a) is self-adjoint and trace class on L 2 . Furthermore, for any ǫ > 0, small enough:

The same holds true for a ∈ S -∞ µ ∩ C ∞ 0 (T * S 1 × S 2 ), for j > 0 large enough, with (8.4)

Let P ± be polynomials of degree N vanishing at zero and approximating