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Learning to Play 3�3 Games:
Neural Networks as Bounded-Rational Players

Daniel Sgroia;c Daniel John Zizzob

Department of Economics School of Economics,

University of Warwick University of East Anglia

Abstract

We present a neural network methodology for learning game-playing rules in gen-

eral. Existing research suggests learning to �nd a Nash equilibrium in a new game is

too di¢ cult a task for a neural network, but says little about what it will do instead.

We observe that a neural network trained to �nd Nash equilibria in a known subset

of games will use self-taught rules developed endogenously when facing new games.

These rules are close to payo¤ dominance and its best response. Our �ndings are

consistent with existing experimental results, both in terms of subject�s methodology

and success rates.
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1 Introduction

In this paper we examine how a neural network can learn to do well in some situations and

then use this training to do well in others also. In other words, we wish to model how to learn

game-playing rules in general through a process of learning by example. As a metaphor, this is

much like the process of training a neural network. Imagine an economic agent going through

a training period, perhaps being educated at school, or learning directly from a parent, often

through example. Once felt to be ready, this newly educated agent is left to fend for itself. Next

consider the similarities to the process of training a neural network: it is �rst trained by observing

a series of examples and being informed which choice to follow, it then produces an algorithm

that explains why the given choice is the right course of action in these example situations, and

�nally, it faces a sequence of new situations in which it must decide what to do based on the

algorithm it has learned from the earlier training period.

If neural networks have the potential to be good at developing game-playing rules in general,

then we have an interesting general question to answer: can a neural network learn how to play

any n � n game by playing a �nite set of other n � n games? To give a feel for what we are
trying to discover, consider how experience of chess might help to play checkers, how experience

as a bank manager might help someone to be a better store manager, or how experience in an

oligopoly competing in prices should surely assist an oligopoly that competes in quantities. At

least some experimental evidence from signaling games (Cooper and Kagel 2003), two 2� 2 and
two 3 � 3 games (Weber 2003), a stylized job search environment (Slonim 1999), a compound

lotteries choice task (Zizzo 2005) and various psychological experiments (Fantino and Stolarz-

Fantino 2005), suggests that transfer of learning can be possible to some degree even within the

limited time horizon of an experimental session, though limitations exist. Rather than being

interested in transfer of learning between individual games in a short time span, however, our

approach will be to develop and test a tentative framework to examine the long run learning of

general game-playing strategies after experience has been obtained on a wide set of games.

This is a di¢ cult task, and the methods used in this paper represent a beginning rather than

the �nal word. In particular, the question we address is simpler: can a speci�c neural network

trained to play well in a small set of 3� 3 normal form games be expected to play well in a new

set of 3 � 3 normal form games which it has never faced before against a population of players

all of which will play Nash equilibrium strategies? 3 � 3 games were chosen as they represent
the simplest class of n � n games which allow us to consider iterated deletion of dominated

strategies. The method of investigation will be a neural network trained to play Nash equilibria

coupled with its empirical testing in a set of new games. The choice of a neural network is in part

justi�ed by its relevance for transfer of learning, in part by the large body of related literature in

engineering, cognitive science and cognitive psychology (e.g. the empirical evidence on linguistic

learning in Rumelhart and McClelland 1986), and in part by the fact that our results are broadly
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consistent with experimental tests on human subjects, for example Costa Gomes et al. (2001),

Stahl and Wilson (1994 and 1995). As to the limitations of the paper, we focus on a single neural

network player in a population of Nash players, not a population of neural networks. The latter

would represent a di¤erent set of considerations but would be equally interesting. Second, we

consider a neural network trained to select Nash equilibria, not trained to maximize utility, so

we are assuming Nash equilibria to be the best way to play. This is justi�ed in part below, but

clearly our results are only applicable where Nash equilibria are generally accepted to be the

correct solution method. In particular this paper can be said to address a subsidiary question:

even with direct exposure to the concept of Nash equilibrium taught through example, will a

neural network player stick with this solution concept or independently develop a new technique

for solving new games? What we discover is that Nash equilibrium is just too complex a concept

for a loosely biologically plausible neural network to use in general in new environments. It is not

di¢ cult for the network to �nd Nash equilibria in speci�c games, but what is di¢ cult is to learn

to employ Nash as a general algorithm on the basis of learning by example.

This work is complementary to, but very di¤erent from, evolutionary game theory and other

well documented methods of studying bounded rationality as our focus is to addressing the prac-

tical concern of �nding a biologically reasonable learning model which picks out Nash equilibria

at a similar rate to real-world subjects. There are several pioneering papers which address the

use of neural networks as models of bounded rational agents in economics. These tend to focus

on how neural networks perform at speci�c tasks, such as repeated instances of the Prisoner�s

Dilemma in Cho and Sargent (1996), Cho (1995) and Macy (1996) and games of moral hazard

in Cho and Sargent (1996), Cho (1994) and Cho (1996); heterogenous consumers in a model

of monopoly in Rubinstein (1993); market entry with bounded rational �rms in Leshno et al.

(2003); Cournot oligopoly in Barr and Saraceno (2005); and �nally inter-generational learning

in Hutchins and Hazelhurst (1991). Sgroi (2005) provides a recent survey of this literature.

Our work di¤ers from most reinforcement learning models (whether action-based, belief-

based, or based on replicator dynamics) in trying to explain transfer of learning between games

and not just within each given game.1 An important exception is the literature on rule learning

models (e.g., Stahl 2000, 2001, 2005). We do not see the neural network model in this paper as

a competitor to a rule learning approach. Part of the contribution of this paper is to determine

which rules emerge endogenously from neural network learning, whereas a rule learning model,

given a set of rules, determines which one becomes more frequent or less frequent. Thus, there

is a sense in which our model is situated one logical step prior to the rule learning model.2

Automata and �nite state machines share similarities with neural networks, and both face

1See Stahl (2005) for a good overview.
2In addition, the focus of this paper is not on learning during an experiment (i.e., the �t of data related to

learning in the context of an experimental session) but rather on the �t between Nash and other algorithms and
what the neural network has learnt in long run computer simulations.
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similar di¢ culties learning Nash strategies.3 For example Gilboa and Zemel (1989) show that

computing the Nash equilibrium of a one-shot normal form game is NP -hard, and Gilboa (1988)

and Ben-Porath (1990) characterize the complexity problems of computing best response strate-

gies in repeated games. The closest papers to ours in the automata literature are by Miller

(1996) and Ho (1996), who show how automata can be used to model strategy learning in re-

peated games. However our work di¤ers in two important ways. First and most importantly, we

are concerned with learning game-playing rules in general for new games, not for the same game

faced in a repeated context. Second, neural networks utilize parallel processing rather than serial

processing and thus learn through a di¤erent mechanism (see MacLeod et al. 1998).

To summarize, this paper �rst provides a summary of the literature on the theoretical lim-

itations to neural network learning. Next it argues that these limitations are precisely the sort

of limitations we want to see when modeling bounded rationality since they evolve endogenously

and re�ect a method of learning that is loosely based on biological plausibility. We examine some

statistical results derived from neural network learning, and we show that these are consistent

with existing experimental evidence on human cognitive abilities. The net result is an imperfect

model of learning which provides suggestive insights into observed imperfect human learning.

1.1 Overview

The next section details the model to be used, in particular de�ning the neural network player

and the games it is to face. It also details some existing results in neural network and algorithm

complexity theory which provide us with clear theoretical predictions about what to expect our

neural network player to be able to achieve. This section also provides an extended literature

review section for those with limited exposure to neural networks; however, those with a thorough

grounding in neural network theory or those who wish to focus on results may wish to skip part

of section 2, or go straight to section 3 which details the results of the empirical testing of the

network. Section 4 concludes.4

2 A Primer on Neural Networks

Dealing with a neural network as a model of bounded rational behavior presents us with a

problem. While neural networks are known and used within economics, they are mainly used

as an econometric tool, not as a behavioral model. Therefore, this section presents a primer

on neural networks together with an extensive survey of related results. For those with no

3We are grateful to an anonymous referee for pointing out that there is a one-to-one relationship between
a type of neural network and a type of �nite state machine, as this leaves the door open for the techniques
introduced in this paper to be applied to repeated games in future research.

4A technical appendix which includes more detail on backpropagation, results on convergence, and de�nitions
of the solution concepts in section 3 is available online from the authors�websites.
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exposure to neural networks, section 2 can be supplemented with material in relevant texts, such

as Anthony and Bartlett (1999), White (1992) or Sgroi (2005).

To summarize, existing work on the learning problem faced by a neural network suggests

that a neural network player cannot be expected to �nd the Nash equilibria consistently in

completely new games, even though a neural network player does build a methodology for such

games. However, the method used by a neural network will have certain characteristics which

will enable it to be successful in a subset of cases, but not all. While we can of course improve its

performance to the point of virtual perfection, to do so would require the addition of biologically

implausible numerical techniques and would rob the neural network model of any claim to model

bounded rational play in human subjects.5 The material in section 2 sets the stage for examining

whether the theorized characteristics of a neural network player get close to the limitations of

observed human play, which provides the focus for the estimation in section 3.

2.1 De�ning a Neural Network

Neural networks can be loosely described as arti�cial intelligence models inspired by analogy

with the brain and realizable in computer programs. They typically learn by exposure to a series

of examples (a training set) and adjustment of the strengths of the connections between its

nodes. They are then able to do well not only on the original training set, but also when facing

problems never encountered before. Consider a neural network C to be a machine capable of

taking on a number of states, each representing some computable functions mapping from input

space to output space, with two hidden layers of further computation between input and output.

Hidden layers can be thought of as intermediate layers of computation between input and output.

Since we see the input go in and the output come out, but do not directly see the activity of

intermediate layers, they are described as hidden.

De�nition 1 De�ne a neural network as C = h
; X; Y; F i where 
 is a �nite set of states,

X � Rn is a set of inputs, Y is a set of outputs and F : 
�X 7! Y is a parameterized function.

For any ! the function represented by state ! is h! : X 7! Y given by h! (x) = F (!; x) for an

input x 2 X. The set of functions computable by C is fh! : ! 2 
g, and this is denoted by HC.

Put simply, when the network, C, is in state ! 2 
, it computes the function h! providing
it is computable. The state ! is a reduced form expression encapsulating past experience and

updating by the neural network, leading to a choice of function h!. The parameterized function F

is also reduced form, capturing the hidden layers. In order to produce answers which reasonably

5The potential ability of neural networks to perform almost �awlessly is discussed towards the end of section
2.4. As noted there, supplementing a neural network�s learning algorithm with a guessing stage, such as grid
search or an application of the theory of sieves, could enable the neural network to perform much better; however
this would lack biological plausibility and be extremely processor hungry. White (1992) goes into considerable
detail on this point.
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correspond to a notion of correctness (in this case we will restrict this to be the unique Nash

strategy in a 3� 3 game), we need to train the network. Let us start by de�ning an activation
function.

De�nition 2 An activation function for node i of layer k in the neural network C is of the

logistic (sigmoid) form �ki =
h
1 + exp

�
�
P

j w
k
iju

k�1
ij

�i�1
where uk�1ij is the output of node j in

layer k � 1 sent to node i in layer k (hence forming the input to layer k), and wkij is the weight
attached to this by node i in layer k. The expression ti �

P
j w

k
iju

k�1
ij is the total activation

�owing into node i.

Finally, we need to specify the situation faced by the neural network. For this we consider a

normal form game G =


N; fAi; �igi2N

�
of perfect information with a unique pure strategy Nash

equilibria. Actions are given by ai 2 Ai. Feasible action combinations are given by A = A1�A2.
Payo¤s for player i are given by �i : A 7! R. We normalize payo¤s to be drawn from a uniform

distribution with support [0; 1] which are revealed to the players before they select an action.

2.2 Training

Consider a set of 18 input nodes each recording and producing as output a di¤erent value from

the vector xk = (x1k; :::; x
18
k ). This neatly corresponds to the payo¤s of a 3 � 3 game. Now

consider a second set of 36 nodes (the �rst hidden layer). Each node in this second layer receives

as an input the sum of the output of all 18 input nodes transformed by the activation function

of node i in layer 2. All of the nodes in the second layer send this output �2i to all nodes in the

second hidden layer, which weights the inputs from all i of the �rst hidden layer by the activation

function to produce �3i . These numbers are sent to the �nal layer of two nodes to produce an

output y which forms a 2-dimensional vector representing the choice of strategy in a 3� 3 game.
To explain this representation of a strategy in a 3� 3 game for the row player, the vector (1; 0)
would imply that the neural network player�s choice is the pure strategy embodied by selecting

the top row, (0; 1) would imply the middle row, and (0; 0) the bottom row. Of course there is

nothing restricting the neural network from choosing values other than 0 or 1, so it might select

(0:8; 0:2), which would suggest that it is certain it does not wish to pick the bottom row strategy,

and is fairly happy to pick the top row strategy, but still has some doubts about whether it is

better than middle. Should the Nash equilibrium be (1; 0) we would aim to train the network

to get close to (1; 0) in a sense to be de�ned below. The network�s outputs will be interpretable

as a probability vector only as long as their sum adds up to 1, so for example (0:9; 0:9) is ruled

out, and normalized to (0:5; 0:5).

Training essentially revolves around �nding the set of weights that is most likely to reproduce

the actual Nash equilibrium of the game faced. During training C receives a sequence of M

5
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random games called a training sample:

xM =
��
x11; :::; x

18
1

�
;
�
x12; :::; x

18
2

�
; :::;

�
x1M ; :::; x

18
M

��
= (x1; x2; :::; xM) 2 XM

until some stopping rule determines the end of the training at some round T . If T > M ,

then (some or all of) the random games in M will be presented more than once. The labelled

examples xi are drawn independently according to the uniform [0; 1] probability distribution PT
which represent the payo¤s of a 3� 3 game, subject to the condition that each vector xt ensures
the existence a unique Nash equilibrium in pure strategies. If this condition fails a new vector

is drawn from PT . A random training sample of length M is an element of XM distributed

according to the product probability distribution PM .

Assume that T > M . In this case, training might be sequential : after q�M rounds (for any

positive integer q s.t. q �M < T ), M is presented again, exactly in the same order of games.

If training is random without replacement, it is less restricted to the extent that the order in

which the random games are presented each time is itself random. If training is random with

replacement, in each round the network is assigned randomly one of the random games in M ,

until round T . Having selected a sample sequence of inputs, x, and determined the unique Nash

strategy associated with each, �, we need to consider how C learns the relationship between the

two to ensure that its output y will approach the Nash strategy.

De�nition 3 De�ne the network�s root mean square error " as the root mean square di¤erence
between the output y and the correct answer � over the full set of q�M games where individual

games are indexed by i, so our error function is " � 1
q�M [

Pq�M
i=1 (yi � �i)

2]1=2.

Note that the unique nature of a pure strategy means that the mean square error need only

be one dimensional. For example a pure strategy Nash equilibrium of (1; 0) as compared with

an output of (0:9; 01) allows the di¤erence 1 � 0:9 to form the basis of the means square error.

The aim is to minimize the error function by altering the set of weights wij of the connections

between a typical node j (the sender) and node i (the receiver) in di¤erent layers. These weights

can be adjusted to raise or lower the importance attached to certain inputs in the activation

function of a particular node. The correct answer here is the vector associated with the unique

Nash equilibrium in pure strategies. In principle we could use any other measure, including for

example training the neural network to select the best or even worst outcome in terms of game

payo¤. This paper�s focus however is narrowly limited to a study of a neural networks�ability

to learn to pick the unique pure strategy Nash equilibrium in G.

2.3 Backpropagation

Generally, the optimum parameter or set of parameters designed to minimize the error function

cannot be calculated analytically when a model is nonlinear, so we must rely on a form of

6
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numerical optimization. The method we use is called backpropagation, speci�ed in Rumelhart

et al. (1986), and is the most standard method used in the neural network literature for building

practical neural networks. The basic intuition behind backpropagation is that of psychological

reinforcement: the economic decision-maker tries to learn how to perform better in the task, and

the more disappointing the outcome (relative to the �correct�outcome), the deeper the change in

connection weights will be. Unlike the reinforcement learning or belief-based learning models of,

for example, Roth and Erev (1995 and 1998) or Camerer and Ho (1999), reinforcement learning

under backpropagation does not occur directly over actions or beliefs but rather over connection

weights: the parallel processing by the network when a new stimulus is received will be a function

not just of the connection weights and the stimulus received but also of the network architecture.

Backpropagation requires a teacher explicitly telling the correct answer during training, and

this might appear too strong a requirement: it renders backpropagation a more powerful algo-

rithm than is biologically plausible. Backpropagation is more powerful also in another sense: it

adjusts individual connection weights using global information on how to best allocate output

error which is unlikely to occur in biological brains as discussed in MacLeod et al. These limi-

tations, however, should not be overstated: what they suggest is that backpropagation might be

a plausible upper bound to the learning of biological neural networks of some given size. Con-

versely, stronger learning algorithms, of the kind used in White to show learnability, are much

further from biological or cognitive plausibility. Hence, the non-learnability results with back-

propagation discussed in the next section cannot be easily dismissed as an arti�cial product of

too weak a learning rule.6

To give an overview of the backpropagation method, we �rst compute the error of the output

layer (layer N) and update the weights of the connections between layer N and N �1.7 We then
compute the error to be assigned to each node of layer N�1 as a function of the sum of the errors
of the nodes of layerN that it activates. We follow this procedure backwards iteratively, one layer

at a time, until we get to layer 1, the input layer. Key parameters include a learning rate given

by � 2 (0; 1], a parameter of the learning algorithm which must not be chosen to be too small or
learning will be particularly vulnerable to local error minima, and momentum � 2 [0; 1) which
makes connection changes smoother by introducing positive autocorrelation in the adjustment of

connection weights in consecutive periods. The connection weights of the network are updated

using backpropagation until round T . T itself can be determined exogenously by the builder of

the neural network, or it can be determined endogenously by the training process (i.e. training

stops when the network returns the correct output with " lower than a target value).

6In practice we know that a neurotransmitter, dopamine, plays a role in biological neural networks analogous
to that of the teacher in the backpropagation algorithm; the activation level of dopamine neurons may work as a
behavioral adaptive critic (i.e. it tells the agent how to adapt its behavior to successfully deal with a task). Zizzo
(2002) provides more detail on this.

7More detail on backpropagation is available in a supporting technical appendix available from the authors,
and in Rumelhart et al.
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To summarize, a neural network is shown a set of games with a unique Nash equilibrium and

computes an algorithm which characterizes the relationship between each game and the unique

Nash strategy. It continues to do so until it is found to be able to recognize the Nash equilibrium

in each of these "training" games with mean squared error, ", below a certain threshold, where

" measures the distance of the network�s output from a vector representation of the pure Nash

equilibrium. At this point the network is pronounced "trained" and allowed to use the algorithm

it has developed to search for the unique Nash equilibrium in a series of new games that were not

part of the training sample. This is widely known in the neural network literature as supervised

learning and accords with an intuitive notion of a teacher continuously correcting the behavior

of a student until behavior is close to that expected in a Nash equilibrium. When it has achieved

this or close enough to it (when it knows the best way to play in this set of games), it is shown

some di¤erent games and asked to �nd the Nash equilibria for these without ever having seen

these new games before. It can however use the algorithms (rules) it has already learned, in order

to allow it to choose correctly the Nash equilibria from those games which it has seen before (the

training set).

2.4 Learnability Results in the Literature

Many results exist in the algorithm complexity and computer science literature which stress the

di¢ culty of the learning problem. One of the most well-known results comes from Hornik et

al. (1989): there exists a set of weights for a standard feedforward network with only a single

hidden layer which allow it to approximate any continuous function uniformly on any compact set

and any measurable function arbitrarily well. However, the network may experience inadequate

learning so that the learning dynamic will fail to reach the global error-minimizing algorithm.

A learning algorithm L takes random training samples and acts on these to produce a function

h! 2 H that, provided the sample is large enough, is with probability at least 1��, "-good (with
" de�ned as in de�nition 3) for PT . It can do this for each choice of "; � and PT . Closely related

is the de�nition of learnability.8

De�nition 4 A learning algorithm L takes random training samples and acts on these to produce
a hypothesis h 2 H. We say that the class of functions H is learnable if 9 a learning algorithm
L for H.

Thus we see how crucial is the computability of our function h! (h for a given state!)

which represents the entire processing of the neural network�s multiple layers, taking an input

vector x and producing a vector representation of a choice of strategy. Over a long enough time

period we would hope that C will return a set of optimal weights which will in turn produce

8A more formal set of de�nitions "learnable" and "learning algorithm" can be found in Sgroi and Zizzo (2002).
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a function which will select the Nash strategy if there exists a learning algorithm for selecting

Nash equilibria (H in this case). Alternatively if we wish to attain some below perfect success

rate, we can do so using a �nite training sample, and the success rate will grow as the number

of examples increases. This all crucially rests on the ability of backpropagation to pick out the

globally error-minimizing algorithm for �nding Nash equilibria. Let us now de�ne C�s learning

problem.

De�nition 5 C, using backpropagation, faces a training sample of sizeM�q. The Nash problem
is to �nd an algorithm for which " ! 0 as M ! 1 where the error function " is as de�ned in

de�nition 3.

Sontag and Sussmann (1989) demonstrates that backpropagation converges only to a local

minimum of the error function.9 The problem is exacerbated in the case of our neural network

C as the space of possible weights is so large. Furthermore, Fukumizu and Amari (2000) shows

that local minima will always exist in problems of this type, and Auer et al. (1996) shows that

the number of local minima for this class of networks can be exponentially large in the number

of network parameters. The upper bound for the number of such local minima is calculable,

but it is unfortunately not tight enough to lessen the problem (see Sontag 1995). In fact, as

the probability of �nding the absolute minimizing algorithm (the Nash algorithm) is likely to be

exponentially small, the learning problem faced by C falls into the NP -hard class of problems.10

A gradient descent algorithm such as backpropagation cannot consistently �nd an absolute

minimum of the error function given the prevalence of local minima. Several statements of

this exist within the algorithm complexity literature. For instance, in Anthony and Bartlett

(1999), Theorem 25.5 states that problems of the type given in de�nition 5 faced by the class

of networks encompassing C are NP -hard. There exist several forms of this result for di¤erent

types of network including the feedforward class of which C is a member. As an example, we

shall show later that the trained network performs well in games A and B in Table 5 but poorly

in games C and D, and we shall discuss why this is the case.

Other far less biologically plausible methods involving processor hungry guess and verify

techniques can produce better results. If we were to supplement the algorithm with a guessing

stage (i.e. add something akin to grid search or a subtle application of the theory of sieves), then

we could hope to �nd the absolute minimum in polynomial time however, White (p. 161) argues

9White summarizes the di¢ culties inherent in backpropagation: it can get stuck at local minima or saddle
points, can diverge, and therefore cannot be guaranteed to get close to a global minimum. In fact, while �su¢ -
ciently complex multilayer feedforward networks are capable of arbitrarily accurate approximations to arbitrary
mappings...an unresolved issue is that of �learnability�, that is whether there exist methods allowing the net-
work weights corresponding to these approximations to be learned from empirical observation of such mappings
(p.160).�
10For more on NP -hardness, see the small related literature on the complexity of computing an automaton to

play best response strategies in repeated games, for example Ben-Porath (1990) and Gilboa (1988).
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that such methods �... lay no claim to biological or cognitive plausibility�and are therefore not

desirable additions to the modeling of decision-making. For this reason we will restrict attention

to backpropagation, and so we cannot consider the task facing the network to be learnable in

the sense of de�nition 4.

The problem of NP -hardness is acute; the solution can be found in exponential time, but not

in polynomial time. For any network with a non-trivial number of parameters, such as C, the

di¤erence is great enough for us to consider the problem intractable: backpropagation cannot

consistently �nd an algorithm capable of providing Nash equilibria in never before seen games.

To summarize, the neural network player will �nd a decision-making algorithm that will

retain some error even at the limit, so we may have to be content with an algorithm which is

e¤ective in only a subclass of games, optimizing network parameters only in a small subspace of

the total space of parameters. In the case of normal-form games we can summarize what can be

extracted from the existing literature for our particular problem as follows: with high probability

our player will not learn the globally error-minimizing algorithm for selecting Nash equilibria in

normal-form games. However, we can reasonably assume that some method will be learned, and

this should at least minimize error in some subset of games corresponding to the domain of some

local error-minimizing algorithm.

2.5 Local Error-Minimizing Algorithms

We are left with the question, what is the best our neural network player can hope to achieve?

If we believe the neural network with a large, but �nite training set adequately models bounded-

rational economic agents, but cannot �awlessly select Nash strategies with no prior experience

of the exact game to be considered, this question becomes: what is the best a bounded-rational

agent can hope to achieve when faced with a population of fully rational agents? In terms of

players in a game, we have what looks like bounded-rational learning or satis�cing behavior: the

player will learn until satis�ed that he will choose a Nash equilibrium strategy su¢ ciently many

times to ensure a high payo¤. We label the outcome of this bounded-rational learning as a local

error-minimizing algorithm (LMA). More formally, consider the learning algorithm L, and the

�gap�between perfect and actual learning, "0 (M; �). ZM de�nes the space of possible games as

perceived by the neural network.

De�nition 6 If 9 a "0 (M; �) s:t: 8M;�;PT , with probability at least 1� � over all z 2 ZM chosen

according to PM , erp (L (z)) < optp (H) + "0 (M; �), and 8�2(0;1); "0 (M; �)! 0 as M !1 then

"0 (M; �) is de�ned the global error-minimizing algorithm (GMA).

This states that for all possible games faced by the network, after su¢ cient training, the

function will get arbitrarily close to the Nash algorithm, collapsing the di¤erence to zero. This

requires an algorithm su¢ ciently close to Nash to pick a Nash equilibrium strategy in almost all

games.

10
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De�nition 7 A local error-minimizing algorithm (LMA) will select the same outcome as a GMA
for some z 2 ZM , but will fail to do so for all z 2 ZM :

LMAs can be interpreted as examples of rules of thumb that a bounded-rational agent is likely

to employ in the spirit of Simon (1955 or 1959). They di¤er from traditionally conceived rules of

thumb in two ways. First, they do select the best choice in some subset of games likely to be faced

by the learner. Second, they are learned endogenously by the learner in an attempt to maximize

the probability of selecting the best outcome where the �best�outcome can be determined in

terms of utility maximization or a reference point, such as the Nash equilibrium.

3 Testing a Neural Network Model

We have seen that when we restrict the learning algorithm employed by a neural network to be

backpropagation, generally thought to be if anything too strong an algorithm in practice, we �nd

that the neural network will not be able to pick Nash equilibria in new games faultlessly. While

we could improve its performance easily through the addition of other algorithms, we instead

restrict our attention to probably the most biologically plausible algorithm and ask whether such

a limited neural network approximates observed human failings, and if so, whether the methods

it employs are a good model of bounded rationality.

3.1 Setting the Scene

In practical terms we can construct a simulated network and test to see whether this network

matches our theoretical predictions. The training set is a sequence of inputs x 2 X corresponding

to the set of actions Ai for N players in M random games, and outputs corresponding to the

payo¤s �i : A 7! R for N players for each of the actions. We set M = 2000; N = 2 and restrict

the action set by assuming a 3 � 3 normal-form game. 2 � 2, 2 � 3 and 3 � 2 games could be
modeled by forcing rows or columns of zero. We then allow the network to play 2000 further

random games never encountered before, selecting a single input and recording a single output.

Since we force each game to contain a unique Nash equilibrium in pure strategies and we restrict

the network�s choice to be in pure strategies, we can then check the network�s success rate as

de�ned by the proportion of times the network selected the Nash strategy to within a given

threshold of mean squared error (as de�ned in de�nition 3). For example, if the correct output

is (1; 0) and the neural network returns (0:99; 0), it easily meets an " = 0:05 threshold.

The training set consisted of M = 2000 games with unique pure Nash equilibria. Training

was random with replacement (subject to the unique Nash equilibrium condition) and continued

until the error " converged below 0.1, 0.05 and 0.02 (i.e. three convergence levels  were used:

11
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more than one convergence level was used for the sake of performance comparison).11 Conver-

gence was checked every 100 games, a number large enough to minimize the chance of a too early

end of the training; clearly, even an untrained or poorly trained network will get an occasional

game right, purely by chance. The computer determined initial connection weights and order of

presentation of the games according to some �random seed�given at the start of the training. To

check the robustness of the analysis, C was trained 360 times, that is once for every combination

of 3 learning rates � (0.1, 0.3, 0.5), 4 momentum rates � (0, 0.3, 0.6 and 0.9) and 30 (randomly

generated) random seeds. Momentum rates span the whole range, learning rates re�ect a plau-

sible range when backpropagation is used, and 30 random seeds were chosen as a number large

enough to avoid dependence on speci�c values or idiosyncratic combinations of values. Conver-

gence was always obtained, at least at the 0.1 level, except for a very high momentum rate.12

We will henceforth call the simulated network C� once trained to a given convergence level.

C� was tested on a set of 2000 games with unique Nash equilibria never encountered before.13

We restricted ourselves to training with games with unique pure strategy Nash equilibria because

of the technical need for backpropagation to be able to work with a unique solution. This

appeared a lesser evil relative to having to postulate re�nements to Nash in order to discriminate

among multiple equilibria and, hence, making the analysis dependent on these re�nements. We

considered an output value to be correct when it is within some range from the exact correct

value. If both outputs are within the admissible range, then the answer can be considered correct;

see Reilly (1995). The ranges considered were 0.05, 0.25 and 0.5, in decreasing order of precision.

[Table 1: Percentage of Correct Answers]

Table 1 displays the average performance of C� classi�ed by , � and �.14 It shows that C�

trained until  = 0:1 played exactly (i.e., within the 0.05 range) the Nash equilibria of 60.03%

11It is important that the sample the network is trained on is su¢ ciently large and representative. If shown a
small non-random selection of games, the network will not be trained e¤ectively. For example, just showing the
games used by Costa Gomes et al. in their experiment would not do for training and might result in over�tting
(ignoring for the sake of the argument the issue of dimensionality, as Costa Gomes et al. do not just have 3� 3
games).
12More detail on convergence is available in a supporting technical appendix available online.
13Sgroi and Zizzo (2002) and Zizzo and Sgroi (2000) consider how C� performs when faced with games with

multiple Nash equilibria.
14The level of convergence  simply measures how correct we ask the network to be: the smaller it is, the

stricter the criterion. The learning rate � is a coe¢ cient that determines the speed of the adjustment of the
connection weights when the network fails to play the Nash equilibrium behavior. A positive momentum rate �
introduces autocorrelation in the adjustments of the connection weights when successive examples are presented.
The error tolerance criterion measures how close the answer given by the network must be to the exact answer in
order to consider the answer right. The smaller the error tolerance criterion, the tighter it is. The numbers given
under �At least 1 Correct Output�are the % of cases in which at least 1 of the two output nodes is correct. The
numbers given under �Correct Answer Given�are the % of cases in which both output nodes are correct.
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of the testing set games (e.g. of 2000 3� 3 games never encountered before). This �ts well with
the 59.6% average success rate of human subjects newly facing 3� 3 games in Stahl and Wilson
(1994), although one has to acknowledge that the sample of games they used was far from

random. With an error tolerance of 0.25 and 0.5, the correct answers increased to 73.47 and

80%, respectively. Further training improves its performance on exactness (the 0.02-converged

C� plays the Nash equilibria of a mean 2/3 of games) but not on �rough correctness�(the 20%

result appears robust). This suggests (and indeed further training of the network con�rms) that

there is an upper bound on the performance of the network. Table 1 also shows that once C

converges, the degree it makes optimal choices is not a¤ected by the combination of parameters

used: the average variability in performance across di¤erent learning rates is always less than

1%, and less than 2% across di¤erent momentum rates. This is an important sign of robustness

of the analysis.

We compared C��s performance with three null hypotheses of zero rationality. Null1 is the

performance of the entirely untrained C: it checks whether any substantial bias towards �nding

the right solution was hardwired in the network. Null2 alternates among the three pure strategies:

if C��s performance is comparable to Null2, it means all it has learned is to be decisive on its

choice among the three. Null3 entails a uniformly distributed random choice between 0 and 1 for

each output: as such, it is a proxy for zero rationality. Table 2 compares the average performance

of C� with that of the three nulls.15 Formal t tests for the equality of means between the values

of C� and of each of the nulls (including Null2) are always signi�cant (p < 0:0005). C��s partial

learning success is underscored by the fact, apparent from Tables 1 and 2, that when C� correctly

activates an output node, it is very likely to categorize the other one correctly, while this is not

the case for the nulls.

[Table 2: Average Performance of the Trained Network versus Three Null
Hypotheses]

3.2 Is the Neural Network using Alternatives to Nash?

It appears that C� has learned to generalize from the examples and to play Nash strategies at

a success rate that is signi�cantly above chance. Since it is also signi�cantly below 100%, the

next question we must address is how to characterize the LMA achieved by the trained network.

While the network has been trained to recognize Nash equilibria when they are uniquely de�ned,

from section 2 we know that the process of calculating a Nash equilibrium is a hard one. Our

�rst strategy is therefore to ask ourselves whether there are simple alternatives to Nash capable

of describing what the network does better than Nash on the games over which they are uniquely

15The smaller the error tolerance criterion, the tighter the criterion used to consider C��s strategy choice correct.
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de�ned. Given the robustness of our analysis in the previous section to di¤erent combinations

of � and �, in this and the next sections we focus just on the case with � = 0:5 and � = 0:

The robustness of the results with di¤erent parameter combinations ensures that this particular

choice is not really relevant. In any event, it was driven by two considerations: 1. any momentum

greater than 0 has hardly any real psychological justi�cation, at least in this context, and 2. given

� = 0, a learning rate of 0.5 had systematically produced the quickest convergence.

For testing we used the 30 networks trained with the 30 di¤erent random seeds but with the

same learning (0.5) and momentum (0) rates. Using these 30 networks, we tested the average

performance of the various algorithms on the same testing set of 2000 new games with unique

pure Nash equilibria considered in the previous section.

We consider the following algorithms or alternative solution methods in turn: 1) minmax,

2) rationalizability, 3) �0-level strict dominance�(0SD), 4) �1-level strict dominance�(1SD), 5)

�pure sum of payo¤ dominance�(L1), 6) �best response to pure sum of payo¤ dominance�(L2),

7) �maximum payo¤ dominance� (MPD), and 8) �nearest neighbor� (NNG). 1 and 2 are well

known, and 3 and 4 are simply levels of reasoning in the rationalizability process (rationalizability

equating to �2-level strict dominance�in a 3� 3 game).16 Intuitively, MPD corresponds to going
for the highest conceivable payo¤ for itself, L1 to choosing the best action against a uniformly

randomizing opponent, and L2 to choosing the best action against a L1 player. Finally, a NNG

player responds to new situations by comparing them to the nearest example encountered in the

past and behaves accordingly. These algorithms seem worth testing as plausible solution methods

partly because they are among the most well-known methods of solving a game that are simpler

than Nash and partly because they accord to di¤erent possible heuristics which might tempt a

player, such as going for large numbers (MPD or L1; for the latter, see Costa Gomes et al.),

responding to someone going for large numbers (L2; see Costa Gomes et al.) or using similar

experiences from the past (NNG; see Gilboa and Schmeidler 2001).

We de�ne a game as answerable by an algorithm if a unique solution exists. Table 3 lists the

number and percentage of answerable games (out of 2000) according to each algorithm, averaged

out across the 30 neural networks trained with di¤erent random seeds, � = 0:5 and � = 0.

[Table 3: Answerable Games and Relationship to Nash]

Table 3 also lists the percentage of games where the unique solution coincides with the pure

Nash equilibrium of the game. In order to determine how an agent following a non-Nash algorithm

would behave when faced with the testing set, we need to make an auxiliary assumption with

regards to how the agent would be playing in non-answerable games. We assume that, in non-

answerable games, the agent randomizes over all the actions (two or three, according to the

16More detail about these algorithms is available in a supporting technical appendix available online.
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game) admissible according to the non-Nash algorithm (e.g., in the case of rationalizability, all

the non-dominated actions); if the admissible actions are two or three and one of them is the Nash

equilibrium choice, the agent will get it right 1/2 or 1/3 of the times on average, respectively. The

right column of Table 3 adjusts accordingly the expected success rate of the non-Nash algorithm

in predicting Nash, giving us the degree to which the various algorithms are good or bad LMAs.

[Table 4: Describability of C��s Behavior by Non-Nash Algorithms]

Some �ndings emerge. Our set of candidate LMAs typically can do better than how a zero

rational agent simply playing randomly across all choices and games would do. More strategically

sophisticated LMAs can do better than less strategically sophisticated ones. Rationalizability,

0SD and 1SD are limited in their ability in predicting Nash by the limited number of corre-

sponding answerable games. The most successful algorithms in predicting Nash are �rst L2,

then rationalizability and �nally L1. L2 and L1 combine, in di¤erent proportions, simple algo-

rithms based on payo¤ dominance with considerable Nash predictive success in our set of 3� 3
games. They have also been found as the best predictors in normal-form games of behavior by

experimental subjects in Costa Gomes et al. L2 is particularly impressive in predicting Nash

in our set of 3 � 3 games. On the basis of these considerations, we hypothesize that the LMA
played by C� may be describable to a signi�cant degree by L2 and also possibly L1, among the

non-Nash algorithms we have considered. In our interpretation, though, we do not rule out the

possibility that C� does more than simply follow any of the non-Nash algorithms of Table 3.

Still, if true, it would be consistent with the predictive success of L2 and L1 in experimental

data in Costa Gomes et al., even though they did not include 3� 3 games in their experiment.
Table 4 shows how well the various algorithms can describe C��s behavior on the testing set. We

consider both the success rate as a percentage of the answerable games or of the full testing set

and an adjusted success rate to allow once again for random play over admissible strategies in

the non-answerable games.

NNG fares considerably worse than Nash on the data; indeed, it does worse in predicting

C��s behavior than it does in predicting Nash (see Table 3). We should not be surprised by the

fact that the NNG still gets about half of the games right according to the 0.02 convergence level

criterion; it is quite likely that similar games will often have the same Nash equilibrium. Partial

nearest neighbor e¤ects cannot be excluded in principle on the basis of Table 4. However, the

failure of the NNG algorithm relative to Nash suggests that, at least with a training set as large

as the one used in the simulations (M = 2000), the network does not reason simply working on

the basis of past examples.

Rationalizability, 0SD and 1SD outperform Nash for the games they can solve in a unique

way. 0SD, 1SD and rationalizability exactly predict C��s behavior in 80.98%, 76.25% and 74.36%
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of their answerable games, respectively; this is 8-14% above Nash. The fact that C� still gets

three quarters of all rationalizable games exactly right suggests that it does behave as if capable

of some strategic thinking. However, the network can still play reasonably well in games not

answerable according to 0SD, 1SD and rationalizability; hence, Nash still outperforms over the

full testing set.

To summarize, L2 is the best algorithm in describing C��s behavior, with a performance

comparable to rationalizability, 0SD and 1SD for answerable games but, unlike those, with

virtually all the games answerable. It predicts C��s behavior exactly 76.44% over the full testing

set. L1 performs worse than L2, but its performance still matches rationalizability over the

full testing set. The fact that L2 outperforms L1, while being more strategically sophisticated,

con�rms that C� behaves as if capable of some strategic thinking.

We can now turn back to the issue of which games are such that C� performs better and

which games are such that it perform worse. Where C��s LMA�s predictions coincide with Nash,

we expect C� to be more likely to reach the right Nash answer. The median (mean) root mean

square error " when Nash coincides with L1 and L2 is only 0.018 (0.084), but shoots up to 0.287

(0.340) for the 227 games where Nash coincides with L2 but di¤ers from L1, and to as much as

0.453 (0.461) for the subset of 103 games where Nash di¤ers from both L1 and L2.

[Table 5: Examples of C��s Performance, in Terms of Root Mean Square Error
Levels ",

in Four Games from the Training Set]

Table 5 contains examples of games from the training set with their corresponding " levels

when faced by C�. Game A has the same prediction for Nash, L1 and L2 (action 3), and so has

game B (action 2); both have low errors, though game B displays more trembling as good payo¤

values (such as 0.998) exist for alternative actions. Game C predicts action 3 for Nash and action

2 for L1 and L2; Game D predicts action 2 for Nash, but action 1 for L1 and L2. Both have

poor performance as C� tends to play the L1 and L2 action, and as action 2 is especially poor

from an L1 and L2 viewpoint in game D, C� systematically fails to reach Nash in this game. The

explanatory power of di¤erent LMAs in mimicking what C� does, and further analysis of the

game features that facilitate or hinder C��s performance, is contained in Zizzo and Sgroi, where

multivariate regression analysis is employed.

An additional interesting exercise would be to pit C� against L1, L2 or Nash to see how well it

does in terms of payo¤s. This could give preliminary insights on whether an evolutionary process

would see C� under-matched by its closest LMA equivalents (L1 and L2) or by Nash. While we

feel that this question is best left for future research where neural networks are embedded in a

proper evolutionary dynamic, our suggestive �ndings are that, on the testing set, C� seems to
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do as well as or just slightly better than Nash or L2 (by 2-3%), and quite better (by 6 to 9%)

than L1 (see electronic appendix D for some details).17

4 Conclusions

This paper presented a neural network model designed to capture the endogenous emergence

of bounded-rational behavior in normal-form games. Potentially any �nite normal-form could

be modelled in this way, though we have concentrated on 3 � 3 games, the simplest class of
n � n games that can be subjected to iterated deletion. A neural network player, having seen
a su¢ ciently large sample of example games in which the Nash outcome was highlighted, could

potentially learn the Nash algorithm. However, this is highly unlikely because of the complexity

of the Nash problem; e¤ectively, the Nash algorithm is intractable by a network that uses learning

algorithms, such as backpropagation, with some biological and cognitive plausibility. Hence, the

network is much more likely to �nd some simpler way to solve the problem that allows it to

get su¢ ciently close in a large enough number of cases to leave the network satis�ed that it

has found a suitable way of playing new games. This local error-minimizing algorithm would

allow the network to achieve a �satis�cing� level of success in �nding a Nash equilibrium in a

never-before-seen game, though it would not achieve 100% success. It would correspond to one

or more behavioral heuristics endogenously learned by the bounded-rational agent. This paper

argues that this limited performance by a neural network is a good model of observed bounded

rationality, �rst because it retains a level of biological plausibility, second because the methods

used emerge endogenously (rather than imposed in an ad hoc fashion), and �nally because the

level of success achieved by the neural network closely resembles the results observed in laboratory

experiments.

The simulation results suggest a �gure of around 60% success on games never encountered

before, as compared with the 33% random success benchmark. It is also broadly consistent with

the 59.6% experimental �gure from Stahl and Wilson (1994). Such simulations also indicate

that solution concepts other than Nash get closer to explaining the simulated network�s actual

behavior: pure sum of payo¤ dominance and the best response to this strategy. These strategies,

under the respective names of L1 and L2, are those most observed in the laboratory with normal-

form games in the study by Costa Gomes et al. This correspondence is the more interesting

because Costa Gomes et al. uses game matrices of di¤erent dimensionality from 3� 3 (namely,

17Let us call a choice �decided�if both network outputs are within 0.25 of a pure strategy value. Let us then
assume that, for each game, C� chooses the action which is most frequently �decided�in the computer simulations.
Call this implementation of C� C1. We can also add the �lter that we require C� to �decide�an action over 1/2
of the times or over 2/3 of the times in order for it to be considered C��s action; call these implementations of
C� as C2 and C3 respectively. Our �ndings are that C1 obtains an average payo¤ which is 0, 1 and 6% above
that of Nash, L2 and L1, respectively; C2 obtains an average payo¤ 1, 2 and 8% above that of Nash, L2 and L1,
respectively; and C3 obtains an average payo¤ 2, 3 and 9% above that of Nash, L2 and L1, respectively.
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2� 2, 2� 3, 3� 2, 4� 2, and 2� 4), suggesting that our reliance on 3� 3 games is not seriously
restrictive in practice. Further, in our data L2 performs better than L1, possibly because it is

a considerably more successful theoretical tool in predicting Nash while being computationally

only moderately more demanding.

A neural network cannot learn to pick out Nash equilibria faultlessly in a series of new games,

even when it is capable of doing so in a �nite subset of games. A grand master chess player may

be a tough chess opponent and will be a strong player when facing many new games, but there

will equally be many times when he will play new games, make many errors, and face defeat. In

the process of trying to learn always to pick out Nash equilibria, a neural network will stumble

onto an alternative simpler set of rules which may look at �rst sight like some form of simple

dominance. Indeed perhaps the most interesting �nding in this paper is that a simulated neural

network�s behavior is consistent with the behavior of experimental subjects in Costa Gomes et

al. through the use of what seems like payo¤ dominance.18 However, much like real people,

as our neural network diverges from rational (Nash) behavior, it becomes increasingly di¢ cult

to tie down its underlying motivation; nevertheless, progress can be made. We suggest that

as we more understand the methods used by biologically plausible neural networks, so we may

better hope to understand the errors made by game-players in the laboratory and in the real

world. An interesting next step for future research might be to combine neural networks with an

evolutionary dynamic process or to explore best response learning to neural network behavior.19
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Tables from �Learning to Play 3�3 Games:
Neural Networks as Bounded-Rational Players�

Correct Answer Given
Convergence Error tolerance criterion
Level γ 0.05 0.25 0.5

0.1 60.03 73.47 80
0.05 64.12 74.75 80.09
0.02 66.66 75.47 79.96

Convergence Error tolerance criterion
Rate η 0.05 0.25 0.5

0.1 63 74.48 80.22
0.3 63.3 74.42 79.89
0.5 63.66 74.54 79.94

Convergence Error tolerance criterion
Rate µ 0.05 0.25 0.5

0 62.86 74.63 80.47
0.3 62.89 74.49 80.22
0.6 63.73 74.53 79.9
0.9 64.05 74.05 79.04

Table 1: Percentage of Correct Answers

Table(s)
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Correct Answer Given
Error tolerance criterion
0.05 0.25 0.5

Trained C* 63.31 74.48 80.02
Null1 (Untrained C ) 0 0 0

Null2 (Strategy Switcher) 22.8 22.8 22.8
Null3 (Random) 0.003 0.06 25.5

Table 2: Average Performance of the Trained Network versus Three Null Hypotheses
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NonNash Algorithm Answerable Uniquely predicted Expected performance
Games (%) Nash equilibria (%) in predicting Nash (%)

0 Level Strict Dominance 18.3 18.3 46.97
1 Level Strict Dominance 39.75 39.75 62.19
Rationalizability 59.35 59.35 74.78
L1 100 67 67
L2 99.75 88.4 88.48
Maximum Payoff Dominance 99.6 62.1 62.23
Minmax 99.75 58.55 58.63
Nearest Neighbor 100 62.8 62.8

Table 3: Answerable Games and Relationship to Nash

Table 3 footnote: Answerable games are games for which the Nash algorithm provides one, and

exactly one, solution. The percentage is equal to (Number of Answerable Games)/2000. The central

column considers the cases where these unique solutions coincide with the pure Nash equilibrium

of the game. The right column adjusts this Nash predictive success of the non-Nash algorithm by

making an auxiliary assumption on the agent�s play in games where the non-Nash algorithm does

not provide a unique solution: namely, we assume that the agent randomizes over all the choices

(two or three, according to the game) admissible according to the non-Nash algorithm (e.g., in the

case of rationalizability, all the non-dominated solutions).
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Algorithm
Over Answerable Games Over Full Testing Set

=0.25 =0.05 =0.25 =0.05 =0.25 =0.05
Nash 75.7 66.53 75.7 66.53 75.7 66.53
L2 82.23 76.54 82.03 76.35 82.11 76.44
L1 63.48 55.97 63.48 55.97 63.48 55.97
Rationalizability 82.57 74.36 49.01 44.13 61.94 57.18
Nearest Neighbor 58.78 51.48 58.78 51.48 58.78 51.48
MPD 57.02 49.95 56.79 49.75 56.79 49.76
Minmax 53.83 46.89 53.7 46.77 53.77 46.85
1SD 84 76.25 33.39 30.31 53.15 50.19
0SD 87.79 80.98 16.06 14.82 43.35 42.12

Overall Performance
Over Full Testing Set (%)

% of Correct Answers % of Correct Answers

Figure 1: Table 4: Describability of C��s Behavior by Non-Nash Algorithms

Table 4 footnote: The % of correct answers over answerable games = (number of correct an-

swers) / (number of answerable games). Correct answers here implies giving the same answer as

C�. Answerable games are games for which the algorithm identi�es a unique solution. % of cor-

rect answers over full testing set = (number of correct answers) / (number of answerable games).

Expected performance over full testing set: % of correct answers over full testing set + adjustment

due to the assumption of randomization over admissible actions in non-answerable games.
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Action Game A (ε = 0) Game B (ε = 0.050)
1 0.189, 0.142 0.379, 0.888 0.546, 0.427 0.554, 0.792 0.647, 0.015 0.759, 0.639
2 0.559, 0.268 0.033, 0.909 0.39, 0.8 0.697, 0.004 0.96, 0.22 0.911, 0.133
3 0.208, 0.337 0.991, 0.843 0.986, 0.85 0.998, 0.203 0.305, 0.282 0.686, 0.491

Action Game C (ε = 0.460) Game D (ε = 0.991)
1 0.736, 0.825 0.335, 0.234 0.149, 0.047 0.965, 0.978 0.537, 0.262 0.301, 0.99
2 0.977, 0.747 0.993, 0.301 0.308, 0.844 0.166, 0.037 0.014, 0.018 0.754, 0.171
3 0.437, 0.805 0.873, 0.471 0.727, 0.939 0.054, 0.886 0.13, 0.157 0.283, 0.072

Table 5: Examples of C��s Performance, in Terms of Root Mean Square Error Levels ", in Four

Games from the Training Set


