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Automati
 data binning for improved visualdiagnosis of pharma
ometri
 modelsMar
 Lavielle & Kevin BleakleyINRIA Sa
lay and University Paris�SudSeptember 2011Abstra
tVisual Predi
tive Che
ks are graphi
al tools to help de
ide whethera given model 
ould have plausibly generated a given set of real data.Typi
ally, time-
ourse data is binned into time intervals, then statis-ti
s are 
al
ulated on the real data and data simulated from the model,and represented graphi
ally for ea
h interval. Poor sele
tion of bins 
aneasily lead to in
orre
t model diagnosis. We propose an automati
 bin-ning strategy that improves reliability of model diagnosis using VisualPredi
tive Che
ks. It is implemented in version 4 of the MONOLIXsoftware.1 Introdu
tionModel evaluation is a 
ru
ial part of model building. The modeler re-quires appropriate numeri
al and graphi
al tools to de
ide whether a pro-posed model adequately des
ribes the underlying pro
ess. Due to the 
om-plexity of pharma
ometri
 models, whi
h 
an involve mixed e�e
ts, non-linearities, 
ategori
al and/or 
ontinuous 
ovariates, residual errors, belowthe limit of quanti�
ation (BLQ) data, et
., diagnosti
s must be performedextremely 
arefully to avoid misinterpretation.A Visual Predi
tive Che
k (VPC) is a tool used to 
ompare the distribu-tion of real observations with that of simulated data [1, 2, 3, 4℄. Summarystatisti
s of the observed and simulated data are 
ompared visually. Thesimulated data itself is generated from the mathemati
al model expe
ted1



to 
hara
terize the underlying biologi
al pro
ess. Inter-individual variability(IIV), residual variability and possibly inter-o

asion variability (IOV) arealso a

ounted for in the simulation. Typi
ally, the summary statisti
s arerelated to the median and two extreme per
entiles, for example the 10th and
90th. The 
hoi
e of per
entiles depends on how mu
h data is available; lessdata leads to poorer estimation of extreme per
entiles.For time-
ourse data one 
an thus plot the relevant median and per
entilesof both the real and simulated data with respe
t to time, and visually 
om-pare them. If the model is good, we would expe
t the simulated median andper
entiles to be systemati
ally �
lose� to the real data ones.Further developments to VPCs have been suggested to improve modeldiagnosis. One strategy is to 
reate a 
on�den
e interval (CI) for the per-
entiles based on the simulated data, and then visually 
he
k how well theper
entiles 
al
ulated on the real data ��t inside� the interval [5℄. Another,�reverse� strategy, is to 
reate a CI on the per
entiles of the real data bybootstrapping, then see how well the simulated per
entiles ��t inside� thisinterval [6℄. However, the bootstrap has limitations when the data is sparse;this may be the 
ase in the tails of the distributions, leading for exampleto uninformative CIs for the 10th and 90th per
entiles. Other interestingdevelopments have been proposed more re
ently [7, 8, 9℄.When trying to visually 
ompare real and simulated data, the real dataare usually �rst binned into spe
i�
 time intervals. Otherwise, the predi
tedCIs may exhibit overly �bumpy� patterns, making visual interpretation di�-
ult. However, binning leads to two fundamental questions: How should webin? and, What is the e�e
t of our 
hoi
e of binning on the 
on
lusions wedraw from a VPC?A partial reply is that there are two �simple� binning strategies for phar-ma
ometri
 time-
ourse data. Either make the bins equal-width, or makethem equal-size, i.e., ea
h 
ontaining the same number of (real) data points.Unfortunately, as we will show further on, the design of typi
al experimentsmakes both these options inherently poor �representations� of the real data.This may end up hiding the eviden
e of a poor model 
hoi
e, or in
orre
tlyreje
ting the 
orre
t model when doing a VPC.In this 
ontribution, we present a binning strategy for pharma
ometri
time-
ourse data that automati
ally determines a �good� binning, i.e., a well-
hosen number of bins and their edges. A modi�ed least-squares 
riteria anddynami
 programming determine the edges, and a model-sele
tion approa
hsele
ts the number of bins. In pra
ti
e, this leads to irregularly sized bins2



that better 
orrespond to the 
lusters we see in the data. Consequently, weimprove the mat
h between the real data and the VPC �summary�, leadingto better model diagnosis in pra
ti
e. In parti
ular, we show how this auto-mati
 binning leads to better VPC diagnosis of 
orre
t and in
orre
t models
ompared to the other �simple� binning strategies. The new algorithm isimplemented in version 4.0 of Monolix.2 Methods for VPC 
onstru
tion2.1 What are VPCs?VPCs are 
ommonly-used model evaluation methods for evaluatingsto
hasti
 models. They provide a fundamental way to evaluate whethera model 
orre
tly des
ribes given data and de
ide if the model is likely toa

urately predi
t responses in future subje
ts. For CI VPCs, several sets ofdata are simulated with the proposed model. Then, the distribution of thesimulated data is 
ompared with the empiri
al distribution of the true data.What follows is a detailed des
ription of how basi
 CI VPCs are 
onstru
tedin Monolix, also illustrated in Figure 1.a) Observations (yi; 1 ≤ i ≤ n) are measured at times (ti; 1 ≤ i ≤ n).Here, n is the total number of observations a
ross the whole set ofindividuals, i.e., in a population 
ontext, data is pooled. Figure 1(a)displays an example of pharma
okineti
 (PK) data (ti, yi).b) Data is grouped into adja
ent time intervals (bins).
) To summarize the distribution, empiri
al per
entiles are 
omputed forthe data in ea
h bin. Here, the 10th, 50th and 90th per
entiles are
al
ulated.d) A large number of datasets are simulated under the model being eval-uated, using the design of the original dataset.e) The data from ea
h simulated dataset is grouped into the same originalbins.f) The same per
entiles are 
omputed in ea
h bin for ea
h of the simulateddatasets. 3



g) CIs for ea
h per
entile are 
al
ulated using these simulated per
entiles.Here, 90% CIs are 
omputed.h) Observed per
entiles are 
ompared with these CI.i) Regions where the observed per
entiles are not found within the CIsare �lled in with red, in order to help dete
t misspe
i�ed models. Asmall number of regions �lled in with red does not ne
essarily mean amisspe
i�ed model; indeed, it is expe
ted, and the modeler must makea de
ision as to whether there are too many su
h regions.Remark: Ideally, we would like to asso
iate VPCs with a de
ision rule basedon a statisti
al test, to a

ept or reje
t a proposed model. However, the datais not independent in su

essive bins, so multiple testing strategies su
h as[10℄ are not dire
tly appli
able to quantifying the regions �lled in with red.It was also shown by [11℄ that there was no 
lear de
ision rule for 
on�den
einterval VPCs. Creating a statisti
al test that leads to a de
ision rule is aninteresting line of resear
h, but out of the s
ope of the paper.2.2 BinningIn general, the distribution of the observations (here, measures of 
on
en-tration) 
hanges with time. Binning the data, i.e., grouping observations intotime intervals, leads to an approximation of this distribution by a pie
ewise-
onstant distribution (
onstant in ea
h time interval). The 
hoi
e of the setof bins is 
ru
ial, as binning will always lead to a 
ertain distortion betweenthe true and estimated distributions. A binning strategy should aim to be�good�, in the following senses:
• for a given number of bins, the lo
ations of the bin edges must be
hosen so as to minimize heterogeneity of the data in ea
h bin.
• the number of bins must be 
arefully 
hosen, i.e., we require a goodtradeo� between a large number of bins and a large number of observa-tions in ea
h bin; the true distribution 
an be a

urately approximatedby a pie
ewise-
onstant distribution with a large number of bins, whilea large number of observations in ea
h bin is required to a

uratelyestimate this true distribution. 4
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Figure 1: Visual Predi
tive Che
k 
onstru
tion: (a) the data, (b) datagrouped into bins, (
) empiri
al 10th, 50th and 90th per
entiles 
omputedfor ea
h bin, (d) several simulated data sets, (e) these simulated data setsgrouped into the same bins, (f) the 10th, 50th and 90th per
entiles of ea
hsimulated data set 
omputed for ea
h bin, (g) 90% 
on�den
e intervals 
om-puted from the per
entiles of the simulated data, (h) observed per
entilesand 90% 
on�den
e intervals, (i) zones outside of the 
on�den
e intervals are�lled in with red.Remark: We only 
onsider �basi
� CI VPCs as des
ribed above. Severalauthors proposed di�erent 
orre
tions in order to take into a

ount a largevariability in doses or 
ovariates [6, 8, 9℄. As suggested in [7℄ and imple-mented in Monolix 4, the same methodology 
an also be used for a graph-i
al representation of the (weighted) residuals and the normalized predi
tiondistribution error (npde). The proposed binning strategies des
ribed belowalso applies to these extensions.
5



2.3 Standard binning strategiesThere are various ways to implement binning. The two simplest are:
• equal-width binning: K bins of length (tmax − tmin)/K.
• equal-size binning: K bins, ea
h with n/K data points. If n is nota multiple of K, we 
an 
orre
t so that ea
h bin has either [n/K] or

[n/K] + 1 data points.
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Figure 2: (a) theophylline PK data, (b) equal-width binning, (
) equal-sizebinning.Figure 2 shows these two strategies applied to theophylline PK data.Equal-width binning (Fig. 2(b)) is 
learly not appropriate when time-pointsare inhomogenously distributed; some bins 
ontain many data points whereasothers are 
ompletely empty. Due to this inherent poor adaptability, we donot 
onsider this method in the following.In other situations, several observations are obtained from di�erent pa-tients at the same time points. This is the 
ase for example in the warfarinPK data shown in Figure 3(a). This poses obvious problems for equal-sizebinning. We may wonder if the equal-size binning pro
edure 
an be modi-�ed to deal with this 
ase of identi
al time points, but di�erent number ofmeasurements at ea
h time point? In Figure 3(b), we see that it is possibleto obtain bins with �similar� amounts of data in ea
h. Su
h a 
onstru
tion6
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Figure 3: (a) the warfarin PK data, (b) �approximately� equal-size binning.is of 
ourse possible �by hand�. Our �rst obje
tive is to propose a pro
e-dure whi
h automati
ally gives bins with sizes as similar as possible. Let
t1 < t2 < . . . < tM be the M di�erent time points and m1, m2, . . . , mMthe number of measurements taken at ea
h of these time points. As before,
n =

∑

mj is the total number of data. For a given number K of bins, welook for the bins I = (I1, I2, . . . , IK) that minimize the following 
riteria:
Jsize =

K
∑

k=1

∣

∣

∣

∣

∣

∑

j∈Ik

mj −
n

K

∣

∣

∣

∣

∣

. (1)This minimization 
an be performed using dynami
 programming [12℄. Thesegmentation displayed Figure 3(b) was obtained by minimizing this 
riteria
Jsize with K = 8 bins.2.4 A new binning pro
edure2.4.1 Sele
tion of bin boundariesSo far, we have shown that as soon as time points are inhomogeneouslydistributed, equal-width binning breaks down, and that the equal-size method
an be relaxed to perform relatively well using similar-sized bins. Often how-ever, we have data where all time points are di�erent and the data is �
lus-tered� around various time points (Fig. 4(a), simulated data). In this 
ase,7



the similar-size solution obtained by minimizing Jsize no longer provides aplausible binning (Fig. 4(b)) as it does not take into a

ount knowledge ofthe 
lusters.One way to resolve this more general problem is to interpret binning as
lustering or 1D-segmentation, i.e., grouping the n time points t1 ≤ t2 ≤

. . . ≤ tn into K 
lusters or segments along the time axis. One possible wayto do this is by 1D K-means 
lustering [13℄. Let us de�ne
Jopt(I) =

K
∑

k=1

∑

j∈Ik

(

tj − tk
)2
, (2)where tk is the empiri
al mean of the tj's in bin Ik:

tk =
1

nk

∑

j∈Ik

tj ,with nk the number of points in bin k. Then, the K-means solution is foundby minimizing Jopt over all possible segmentations I = (I1, I2, . . . , IK) of thedata into K bins. In pra
ti
e, we do this using dynami
 programming [12℄.Fig. 4(
) shows the optimal binning obtained by minimizing Jopt.
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Figure 4: (a) simulated data, (b) equal-size binning, (
) optimal binningobtained by minimizing Jopt. 8



Jopt is a least-squares 
riteria that supposes that we are dealing with ahomos
edasti
 model, i.e., the data spread (with respe
t to time) inside ea
h
luster is similar. This is not always the 
ase, as for example in Fig. 5(a).Here the 
ombined variability of the �rst two 
lusters is similar to that ofea
h of the third, fourth and �fth, whereas the variability of the sixth 
lusteris signi�
antly greater than all the others. In this 
ase, the Jopt 
riteria maynot be optimal; Fig 5(b) shows that it groups the �rst two 
lusters together,and splits the sixth 
luster in two. In order to avoid this, we 
an generalize
Jopt to better take into a

ount heteros
eda
ity:

Jopt,β(I) =

K
∑

k=1

nk(σ
2
k)

β, (3)where β ∈ (0, 1] and σ2
k is the empiri
al varian
e of the tj 's in bin Ik:

σ2
k =

1

nk

∑

j∈Ik

(

tj − tk
)2
.We see that Jopt = Jopt,β when β = 1. Fig. 5(b) shows the binning obtainedwhen β = 1. Then, as β is set 
loser and 
loser to 0, more emphasis ismade on sele
ting bins with di�ering variability. We refer the reader to [14℄for more details that motivate this approa
h. Fig. 5(
) shows an intuitivelyoptimal binning, obtained by minimizing Jopt,β when β = 0.2, whi
h is thedefault value proposed byMonolix 4. Exa
tly the same binning is obtainedwith any value of β in [0.05 , 0.35].Remark 1: Binning 
onsists in summarizing the probability distribution ofthe observations (yi) into K probability distributions, one for ea
h of the

K bins. In other words, if ti belongs to the k-th bin Bk, we approximatethe marginal distribution Pti of the observation yi measured at time ti withthe marginal distribution PBk
estimated using the set of observations foundin the k-th bin. After pooling the data, let us suppose that ea
h measure-ment yi 
an be written: yi = f(ti, ψi) + ǫi, where we suppose a 
ontinuousdata model with f the regression fun
tion, ψi a ve
tor of (random) parame-ters and ǫi some residual error. Then, we 
an approximately rewrite this as

yi ≃ f(tk, ψi) + ǫi + (ti − tk)f
′(tk, ψi) when ti is in bin k, and tk is de�ned asbefore. In order to minimize the distan
e between the true distribution Ptiand the approximation PBk

, the 
orre
tion term (ti − tk)f
′(tk, ψi) 
an then9
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Figure 5: (a) simulated data, (b) binning minimizing Jopt,β with β = 1, (
)binning minimizing Jopt,β with β = 0.2.either be dealt with by taking more into a

ount the form of f (and thus f ′),or by trying to make (ti − tk) small on average. The latter option is the oneinvoked in our method, whereas supposing prior knowledge of f (the �rstoption) may in the future lead to alternative approa
hes.Remark 2: Per
entiles of PBk
are estimated empiri
ally. The varian
e ofthese empiri
al per
entiles de
reases as the number of observations in bin

Bk in
reases. Minimizing simultaneously the bias and the varian
e of theestimated per
entiles requires bins with small width and large size: this isexa
tly what our 
lustering approa
h does.2.4.2 Sele
tion of the number of binsFor any given number of bins K, the binning that minimizes the 
riteria
an be 
al
ulated. The question then arises as to whi
h K to 
hoose. Wehave seen in the previous se
tion that a small number of bins leads to a poorapproximation (large bias) but a good estimation (small varian
e) of the es-timated per
entiles. On the other hand, a large number of bins will lead toa good approximation (small bias) but a poor estimation (large varian
e).In order to obtain a good 
ompromise between these two 
riteria, we pro-pose here to automati
ally sele
t the number of bins using a model sele
tion10



approa
h with the following penalized 
riteria:
U(I, λ) = log (Jopt,β(I))) + λβK(I), (4)where K(I) is the number of bins in binning I. We 
hoose the I (and thusthe K) that minimizes U(I, λ) for λ �xed. The larger λ is, fewer bins aresele
ted. Extensive numeri
al trials suggest the use of λ = 0.3. Modelers 
ansee for themselves whether this value of λ gives plausible binnings for theirown data, and if ne
essary, modify the value of λ to penalize to a higher orlesser degree. The β term is in
luded in the penalty as it 
an be shown thatwhen the tj's are uniformly distributed, log (Jopt,β(I))) de
reases as a linearfun
tion of β.3 ResultsData was simulated under a PK model, then two VPCs were 
onstru
ted,one using the 
orre
t model that had generated the simulated data, the otherusing an in
orre
t model. The true model is a 1-
ompartment oral model with�rst-order absorption and a proportional residual error model. The in
orre
tmodel assumes a zero-order absorption and a 
onstant residual error model.The data is presented in Fig. 6(a), along with the binning produ
ed usingthe similar-size binning algorithm with 10 bins. We see that the visually-obvious 
lusters are split unnaturally; parts of several 
lusters end up in abin to the left, shared with the previous 
luster, and a bin to the right, sharedwith the next 
luster. Criti
ally, this has an e�e
t on the VPCs, as shown inFig. 6(b)-(
). In (b), the simulated CIs are generated from the true model forthe simulated data, yet several �red� areas exist where the data quantiles slipoutside the 90% CIs from data simulated from the true model. In parti
ular,the arti�
ial splitting of the data 
luster just after t = 10h helps providethe largest area of red. Similarly, (
) shows simulated CIs from the wrongmodel. Again, several red areas exist, but not signi�
antly more than in (b).This shows that poorly binned data does not lead to easily di�erentiatingthe right model from the wrong one.In Fig. 7(a), the same simulated data is binned using the proposed binningstrategy with the default β = 0.2 setting in MONOLIX 4.0, and model-sele
tion for K with λ = 0.3. Ea
h visually-obvious 
luster is now 
ontainedwithin its own bin. In (b), the simulated CIs were again generated from thetrue model. However, unlike before, the VPC indi
ates, 
orre
tly, that we11
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Figure 6: (a) simulated PK data with equal-size binning, (b) VPC obtainedfrom the 
orre
t model, (
) VPC obtained from the wrong model.
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Figure 7: (a) simulated PK data and optimal binning with β = 0.2, (b) VPCobtained from the 
orre
t model, (
) VPC obtained from the wrong model.12



should not reje
t the suggested model. In (
), it is now 
learer that we shouldreje
t the proposed, in
orre
t, model, due to how often the data quantilesslip outside the simulated 90% CIs.It should be pointed out that in this example, the result is relativelyinsensitive to the 
hoi
e of the parameters β and λ: the same binning with10 bins is obtained with any β in [0.01 , 1] and any λ in [0.26 0.53]. The two�rst bins are grouped with λ in [0.53 , 0.77] while a value of λ in [0.17 , 0.26]leads to split the sixth bin into two bins.4 Dis
ussionVisual diagnosti
 methods are in
reasingly used in pharma
ometri
 mod-eling to help determine the quality of a model thought to represent a givenbiologi
al pro
ess and its relationship to various 
ovariates. Typi
ally, wehave measured time-
ourse data from a 
ohort of patients undergoing a treat-ment, and we want to see if a given model 
ould have plausibly generated thereal data we obtain from these patients. One way to do this is to 
al
ulatepertinent statisti
s of the real data and of data simulated from the suggestedmodel, and 
ompare them visually in some way.Visual Predi
tive Che
ks, or VPCs, are a 
lass of methods that do justthat, and various implementations and extensions are possible. In ea
h ofthese methods, the real data are typi
ally binned into spe
i�
 time inter-vals, be
ause otherwise, predi
ted CIs may exhibit overly �bumpy� patterns,making visual interpretation di�
ult. Simple, automati
 binning strategiessu
h as putting the same number of data points in ea
h bin, or having binsof equal length, are not adaptive enough to 
leanly summarize typi
al phar-ma
ometri
 time-
ourse data. This is a fundamental problem, and 
an leadto poor model diagnosis when performing VPCs. We have shown that whenusing su
h binning strategies, it is easy to in
orre
tly dis
ard the true model,or a

ept the wrong model.We have introdu
ed a binning algorithm that improves the �binned� rep-resentation of data before performing VPC diagnoses of a suggested phar-ma
ometri
 model. It sele
ts variable-width bins that better 
apture the
luster of data around ea
h time point; 
lusters visible to the naked eye intu-itively end up in their own bins. The algorithm, implemented in MONOLIX4.0, automati
ally proposes a solution � no user input is initially required,greatly simplifying the modeler's task. We have shown with a typi
al PK13



example how this better �binned� summary of the data improves model di-agnosis, whether it be improved likelihood of dis
arding an in
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