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Abstract

Background: The aim of this study was to develop an original method to extract sets of relevant

molecular biomarkers (gene sequences) that can be used for class prediction and can be included

as prognostic and predictive tools. Materials and Methods: The method is based on sequential

patterns used as features for class prediction. We applied it to classify breast cancer tumors according

to their histological grade. Results: We obtained very good recall and precision for grade 1 and 3

tumors, but, like other authors, our results were less satisfactory for grade 2 tumors. Conclusions:

We demonstrated the interest of sequential patterns for class prediction of microarrays and we now

have the material to use them for prognostic and predictive applications.

Keywords:

Sequential patterns, Microarrays analysis, Breast cancer, Translational Bioinformatics.
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1. Introduction

Breast cancer is a major public health issue today. According to the breastcancer.org1, with

192,370 new cases in 2009 in the U.S., breast cancer is the most frequently diagnosed malignancy and

the main cause of cancer death in women. One out of eight women will develop breast cancer during

her lifetime. New treatments are continually being developed to target specific types of cancer and to

reduce potentially adverse effects (cardiac dysfunction, premature menopause, etc.). However, despite

early detection and new treatments, up to 50% of the women will develop distant metastases, which

are unfortunately incurable today. The three major challenges associated with breast cancer are: (1)

How to diagnose breast cancer as early as possible through population screening and to identify the

type of tumor detected? (2) How to predict the response of a patient to a given treatment according

to classes of individuals? (3) How to choose the best therapy for a given subject with an accurate

prognosis including her chances of remission, by deducing from the usual course of the disease its

future development and its outcome?

DNA microarrays are powerful tools to draw a genetic portrait of a biological sample (e.g., a tumor

sample) by comparing gene expression in different tissues, cells, and conditions, and providing infor-

mation on the relative levels of expression of thousands of genes among samples. These technologies

carry with them the hope of bringing new insights to cancer biology and improving current tools for

cancer management. Simon and Dobbin [1] describe three ways of using DNA microarrays:

• Class comparison consists in identifying variations (e.g., in the expression of the genes) among

n classes. It can be used to compare normal tissues and tumors [2], and tumors that respond

to therapy and those that do not [3], or to distinguish various subtypes of a tumor [4, 5].

Class comparison enables identification of the critical role of certain genes by establishing the

1http://www.breastcancer.org/
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molecular identity of a class, like a bar code. This code can then be used for class prediction.

• Class discovery consists in discovering new subgroups in a population (e.g., subtypes of a tumor)

based on the molecular profile. For example, Sotiriou et al. [5] describe subtypes of breast cancer.

• Class prediction uses the results of the previous process to assign a new specimen (a new

microarray) to a known class, e.g. to a subtype of a tumor [6]. If the classifier is confident, the

result can be used by medical experts to make clinical decisions (e.g., for population screening)

to predict the effects of a treatment for a patient or for prognoses.

The objective of this study was to develop an original method to extract sets of relevant molecular

biomarkers (gene sequences) that can be used for class prediction and as a prognostic and predictive

tool. Molecular biomarkers are generated from analyses of DNA microarrays and are based on a

particular data mining technique: Sequential pattern discovery. In [7], we described an efficient

algorithm to extract these frequent patterns of correlated genes ordered according to their level of

expression. An example of such a pattern is < (17aagovcadn)(tgzadipup, rettdn) >,80%Gr1, 40%Gr2

meaning that ”For 80% of Grade 1 tumors, and 40% of Grade 2 tumors, the level of expression of gene

17aagovcadn is lower than that of tgzadipup and rettdn, whose levels of expression are very close”.

Sequential patterns have already been used successfully for text categorization. In this paper, we

investigate the relevance of such patterns for tumor classification. The complexity of the data and

the interdisciplinary context make this task extremely challenging.

Our contribution is described in terms of methodology, biological findings and medical implications.

After briefly presenting the state of the art (section 2), we describe the complete methodology in

detail in the material and methods (section 3). We apply this methodology to the study of breast

cancer (section 4). To conclude, we discuss how this methodology can be generalized (section 5)

according to the kind of data and the data mining approach.
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2. Background

Due to the amount of data available, processing DNA microarrays in a way that makes biomed-

ical sense is still a major issue. Statistical methods and data mining techniques play a key role in

discovering previously unknown knowledge. However, their implementation in this context is difficult

because the number of measurement points (gene expression levels) is much higher than the number of

samples, which results in the well-known problem of the curse of dimensionality, also called the high

feature-to-sample ratio [4]. Moreover, the correlation structure of the expressions is unknown (gene

co-expressions) and the presence of noise is a serious problem. For all these reasons, classification

based on microarray data is quite different from previous classifications and traditional methods are

not successful [8].

Most studies are based on the search for differentially expressed genes, particularly disease-specific

genes. These methods work like a filter and reduce the size of the group of genes in the experiment

to a smaller one, which can be more easily investigated. Most widely used methods use univariate

procedures often combined with adjustment of P-values or a similar concept [9, 10]. SAM [10] or

CyberT [11] are well-known programs based on such techniques. Unlike multivariate approaches such

as ANOVA, these methods do not take into account the multidimensional structure of the data [12].

We could also cite other approaches based on combinations of various artificial intelligence techniques

[13, 7]. However, several authors [14, 9] have compared most of these methods and shown that they

do not necessarily detect the same subset of differentially expressed genes.

Nevertheless, the above-mentioned methods do help rank the genes for the development of biomark-

ers that can be used for class discovery. Differentially expressed genes are features used to discriminate

subgroups of specimens. Many diseases are heterogeneous and characterized by the presence of several

subgroups. This is the case of breast cancer [15]. The discovery of associations between prognostic
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information and responses to therapy and the molecular signatures that characterize subgroups has

greatly facilitated the development of treatments tailored to specific subgroups. To discover the sub-

groups concerned, we focus on the case where the experiments monitor the gene expression of different

tissue samples, and the aim is to find a structure in this collection of unlabeled data to associate with

a category, describing, for example, a subgroup of tumors. Several authors [16, 15, 5] have published

such lists concerning breast cancer.

Once the subgroups are defined, it is possible to associate a new microarray with a class with

class prediction by comparing a new specimen to features describing the subgroups. Several authors

[17, 18, 16, 19] have proposed successful methods but it is still too difficult to use them to improve

breast cancer prognosis or prediction [20]. The pitfalls have been emphasized by many authors

[21, 1], these include the risk of over-fitting due to the high feature-to-sample ratio and the lack

of validation due to the absence of independent datasets or the incorrect use of cross-validation

techniques. Although the number of measured genes is in the thousands, it is assumed that only a

few genes determine the type of a tissue. More recent studies focus on finding such groups of genes.

In this paper, we do not try to find the minimum subsets of genes but look for gene sequences that

we can use as features for the prediction of different classes.

3. Material and Methods

The class prediction system involves two steps: Step 1- Building the classifier: (1) The sequence

preprocessing module transforms the raw data into gene sequences; (2) The feature selection module

extracts sequential patterns, which have a close relationship with a given type of class; Step 2-

Evaluation of the classifier: The classification module makes decisions concerning categories of testing

samples and examines whether the classification results are confident or not.

Details of the methods used in each module are described in Sections 3.1, 3.2 and 3.3.
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Microarray G1 G2 G3 G4 G5

M1 6.76 6.65 6.65 9.65 6.75

Associated < (G2G3G5)(G1)(G4) >

sequences < (G2G3)(G5G1)(G4) >

Table 1: Gene expressions for microarray M1 and two associated data sequences with a minimal gap of 0.1

3.1. Sequence preprocessing module:

For each microarray, we have a list of genes associated with an expression value (see Table 1).

The aim of this step is to build sequences by ordering the genes according to their value. In classical

database vocabulary, the genes are called items. An itemset iti is a non-ordered group of genes with

similar expression. By considering the gaps between the expression of the genes (see Table 1), G2

and G3 are grouped in the same itemset because they have the same expression, but considering a

minimal gap equal to 0.1, G5 can be either grouped in it1 = (G2G3G5) or in it2 = (G1G5). A

sequence S =< itaitb...itp > is a non-empty and ordered list of p itemsets, i.e. groups of genes ordered

according to their expression. From a microarray, we generate as many sequences as there are possible

itemsets. Table 2 gives associated data sequences with a minimal gap of 0.1.

3.2. Feature selection module:

Table 2 gives an example of data used as input in the feature selection module. The aim of this

step is to build sequential patterns [22], in our case frequent sequences of genes, to characterize a

class. A pattern is supported by a microarray if the pattern is included in one or more sequences

associated with a microarray. For example (see Table 2), the pattern P =< (G2)(G5) > is included

in one of the two M1 data sequences. So, P is supported by the microarray class1. The support of

a pattern P in a class classi, denoted by supportclassi(P ), is defined as the percentage of microarrays
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Microarray Class Associated genes sequences.

M1 1 < (G2G3G5)(G1)(G4) >

< (G2G3)(G5G1)(G4) >

M2 1 < (G1)(G4)(G2)(G3)(G5) >

M5 1 < (G2 G5)(G4)(G3)(G1) >

< (G2)(G5G4)(G3)(G1) >

M3 2 < (G1)(G4)(G5)(G2)(G3)) >

M4 2 < (G1)(G2)(G3)(G4)(G5) >

Table 2: Gene sequences for 5 microarrays and 2 classes. The microarrays M1, M2 and M5 are associated with

the class 1 and M3 and M4 are associated with the class 2. According to a minimal gap, 2 sequences are associated

with the microarray M1 and M5 and 1 sequence is associated with the microarrays M2, M3 and M4.

that support P in that classi. For example, support1(P ) = 3/3 and support2(P ) = 1/2. To obtain

the most frequent patterns, a minimum support is provided and the patterns extracted must have a

support greater this threshold, called the minimum support. For instance, if the minimum support

is equal to 2/3, P is frequent in class1 but not in class2. These definitions were given in a previous

work [4], and an efficient algorithm was developed. In this paper, we have adapted the PrefixSpan

algorithm [23] to take into account n sequences associated with a microarray. [24] have shown that

Prefixspan is pseudo-polynomial. The complexity is O((2N) ∧ L) where N is the number of items

and L is the maximum length of the initial gene sequences of the microarrays.

For class prediction, we only look for relevant patterns and not for all patterns. We rank the

patterns to keep only the k best patterns for each class according to a measure based on the support

value. For each pattern, the ranking measure is the difference between their two highest supports.

For example (see Table 3), the gap between the two highest supports for pattern P1 is 0.4 and for
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Patterns Supports in the different classes Best Gap.

Class 1 Class 2 Class 3

P1 0.4 0.8 0.1 0.4

P2 0.1 0.7 0.2 0.5

Table 3: Gaps obtained for two patterns for 3 classes. For each pattern, support has been computed for each

class. For a particular, the best gap is equal to the difference between the two highest supports. In this example P2

”is better” than P1 because P2 has the highest best gap.

P2, 0.5. Consequently, pattern P2 has a better rank than pattern P1. The interest of these patterns

is that they can be used to distinguish classes but they also enable to take into account additional

information with respect to differentially expressed genes, i.e. the order of expression of correlated

gene groups.

3.3. Classification module:

The objective is to assign S =< (G1)(G2G3)(G4)(G5G6)(G7)(G8)(G9)(G10G11) > an unlabelled

sequence to a class (a category of tumor). We compare S to n% of the ranking patterns by class.

Consider the patterns P1, P2, P3 (see Table 4), with P1, P3 for class2, and P2 for class3. When S

contains a pattern, the score of S for the class associated with the pattern is increased by 1. Table 5

gives the score of S for each class. As the highest score is for class2, S is assigned to class2.

To evaluate the classification, we measure the precision and the recall for each class. Precision

is the number of sequences correctly assigned to a class divided by the total number of sequences

assigned to this class (correctly or not). The recall is the number of sequences correctly assigned to

a class, divided by the number of sequences of real data belonging to this class. Table 6 gives an

example of such a calculation. An F-measure combines Precision and Recall according to Formula 1:
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Patterns Class 1 Class 2 Class 3

P1 =< (G1)(G2G3)(G4) > 0.2 0.8 0.1

P2 =< (G5G6)(G7)(G8) > 0.1 0.0 0.9

P3 =< (G9)(G10G11) > 0.3 0.7 0.1

Table 4: Distribution of the sequential patterns in 3 classes. As P1 and P3 have the highest support in Class

2, they are associated with Class 2. P2 is associated with Class 3.

Sequence Class 1 Class 2 Class 3

S =< (G1)(G2G3)(G4)(G5G6)(G7)(G8)(G9)(G10G11) > 0 2 1

Table 5: Scores by class associated with sequence S. According to the distribution in Table 4, the sequence S

is included in 0 pattern of class 1, in 2 patterns of class 2 and in 1 pattern of class 3.

Number of sequences

Class Associated with the class Correctly labeled Labelled

1 20 15 18

Table 6: Example of results obtained after cross validation. Precision=15/20, Recall=15/18 and F-measure=

2*(15/20*15/18)/(15/20+15/18))

.
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F = 2 ∗ precision ∗ recall
precision + recall

(1)

4. Experiments

Datasets and objectives: We examined the following microarray datasets: a dataset provided

by the IRCM which is not public, and datasets available online from Gene Expression Omnibus2

KJX64-KJ125 (GSE2990), TAM (GSE6532), and TBG2 (GSE7390), focusing on a total of 624 human

Affymetrix microarrays HG 133. All these microarrays share 22000 probesets3. To start the study, we

focused on a subset of this list, the 128 genes identified by [5] for breast cancer. Below, we illustrate

the power of classification based on sequential patterns in the case of breast cancer through one

question: how to classify a new microarray according to its histological grade [25, 26]? This grade is

a well-known variable with three values. It is used in clinical studies for its high prognostic potential

in breast cancer. For example, patients with a grade 1 tumor have better survival rates than those

with a grade 3 tumor. The distribution of the microarrays is 162 for grade 1, 274 for 2 and 185 for 3.

Figure 1: Extraction time vs. minimal support

2http://www.ncbi.nlm.nih.gov/geo/
3Even though it is misusing the language, we use the term gene for probeset.
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Extraction of sequential patterns:

The extraction parameters are defined experimentally. As shown in Figure 1, in this type of data,

it is difficult to extract patterns with a minimum support in a reasonable timeframe (we only keep

patterns with a support greater than a given threshold named minimum support). We do not look

for all patterns but only for a subset of patterns enabling efficient classification. For rapid extraction,

we split the gene base into few groups and extract patterns from each. We experimentally vary the

number of genes and the support. We observed that the most accurate approach is to form groups of

42 genes that can be extracted in 350 seconds with a miniuml support of 0.4.

Figure 2: Stability of the generation of the patterns

In Figure 2, we gradually increase the number n of microarrays used for the extraction. For

each n, we randomly select n microarrays per class, extract the patterns m times (m = 20), and

count the number of common patterns. The higher the n, the more extracted patterns are the same.

Experimentally, we fixed n at 80 per grade to get a consistent training set and to keep enough

microarrays to be able to validate the classifier in the validation set.

Classification: We used a cross-validation process to assess how the results of our classifier are

generalized to an independent dataset. One round of cross-validation involves distributing the data
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Grade 1 Grade 2 Grade 3

Recall .81 .15 .86

Precision .39 .76 .54

F-Measure .53 .25 .66

Involved genes 68 57 55

Total genes 104

Table 7: Evaluation of the classifier per grade. For a total of 104 genes (68 involved in sequences associated with

Class 1, 57 with Class 2 and 55 with Class 3), we obtain various measures of Recall, Precision and F-measure by class.

into complementary subsets, building the classifier on the training set, and validating the analysis on

the validation set. According to the results deduced from Figure 2, we extracted sequential patterns

on 80 specimens (38% of the total base) and validated the classifier on the remaining specimens (62%).

To reduce variability, multiple rounds (50) were performed using different distributions. We used the

100 best sequential patterns for each grade.

Table 7 shows the evaluation of the method for the three grades. The method remains valid for

more than three classes. We obtained optimistic results for grade 1 and 3 (Recall) and bad results

for grade 2. These results are consistent with [5] who found that breast cancers of grades 1 and 3

had distinct gene expression profiles that appear in the patterns, but that grade 2 had heterogeneous

gene expression profiles that are not captured by the patterns. In most cases, the specimens are

wrongly classified in grade 1 or 3 (Precision). The line 4 of Table 7 corresponds to the genes used in

the patterns that describe a grade. The last line gives the union between the genes involved in each

grade. It should be noted that the genes are not the same for each grade. The genes can be ranked

according to their efficiency for class prediction thank to the number of patterns in which they appear

and all genes used to construct the pattern can be reduced considering the best genes.
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Grade 1 and 3 Grade 1, 2 and 3

Classifier IRCM IRCM and online datasets Online datasets IRCM

R P F R P F R P F R P F

Rules (9) 0.954 0.967 0.959 0.922 0.922 0.922 0.924 0.906 0.915 0.715 0.706 0.710

Bayes (8) 0.921 0.932 0.926 0.819 0.826 0.822 0.920 0.918 0.819 0.702 0.716 0.708

Functions (5) 0.955 0.970 0.962 0.902 0.901 0.902 0.917 0.918 0.917 0.760 0.802 0.779

Lazy (4) 0.909 0.939 0.923 0.922 0.931 0.926 0.937 0.943 0.940 0.727 0.721 0.724

Misc (3) 0.934 0.942 0.937 0.937 0.934 0.936 0.932 0.936 0.934 0.736 0.714 0.724

Tree (12) 0.928 0.944 0.936 0.943 0.944 0.944 0.938 0.943 0.940 0.765 0.770 0.767

SP 0.962 0.974 0.968 0.896 0.910 0.903 0.891 0.880 0.885 0.769 0.797 0.782

Table 8: Classifier evaluation. Family of classifiers available in Weka are compared to our method in the last line

entitled SP in term of Recal, Precision and F-measure. We vary the number of class (Grade 1 and 3 / Grade 1, 2 and

3) and the datasets (IRCM, IRCM and online datasets and online datasets alone). The highest F-measure scores are

in bold in this table.

By considering only grades 1 and 3, and the 3 grades (Table 8), we compared our classifier with

those of Weka software that refer to the data mining community. We calculated the recall, the

precision and the F-measure for each group of classifiers. Considering only grade 1 and 3 or only

grade 3, we obtained the higher F-measure with the IRCM dataset in all cases. The results were least

satisfactory when considering the combination of IRCM and online datasets or online datasets alone.

We can make two assumptions: 1) the online datasets are heterogeneous and it is more difficult to

obtain relevant sequential patterns: the microarrays were obtained from patients undergoing different

treatments, with different types of tumor and many others parameters that affect gene expression.

2) Our classifier is more effective for an imbalanced dataset. Unsatisfactory results were obtained

for grade 2 tumors (table 7) with all the datasets, but optimist results with the IRCM dataset.

From a list of patterns, we can effectively classify tumors into grades. Unlike a list of differentially

expressed genes specific to a class, the patterns can be used to compare different classes and thus

provide answers to different questions concerning prognosis. We can take into account all the DNA

microarrays available online and the associated contextual information to produce a bar code (list of
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patterns) from a limited set of genes (one hundred). A category could be: a grade 2 tumor, between

2 and 3 cm, treated with hormones, etc. Once a patient is classified in a category, we can use the

information about the future of the patient already assigned to a class to predict her resistance to the

various therapies or to make a prognosis for each choice of therapy.

5. Conclusions and Prospects

In this paper, we focus on the classification of DNA microarrays based on sequential patterns.

Our contribution is two-fold: (i) we have developed a classification technique based on sequential

patterns and not on differentially expressed genes, which is the case of most of the methods cited

in the literature; (ii) we checked it experimentally to verify the interest of these features for the

classification of tumors according to their histological grade. We have shown that the method is

effective at highlighting biological differences between grade 1 and 3 tumors and is better than other

classifiers when the datasets are imbalanced. Like the other methods, the classification is not efficient

for grade 2 tumors. We hope to improve these results by using another form of distribution described

by [5]. We try now to improve the patterns extraction module to manage more genes. We can also

go a step further and use this technique for prediction and prognosis.
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