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Abstract: Identification of real life systems is often applied in closed-loop due to stability,
performance or safety constraints. However, in case of Linear Parameter-Varying (LPV) systems,
closed-loop identification is not well-established despite the recent advances in prediction-error
identification. Building on the available results, the paper proposes the closed-loop generalization
of a recently introduced instrumental variable scheme for the identification of LPV-IO models
with Box-Jenkins type of noise models. Estimation under closed-loop conditions is analyzed from
the stochastic point of view with the proposed approach and the performance of the method is
demonstrated through a representative simulation example.
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1. INTRODUCTION

Identification of physical or chemical systems is often re-
stricted to data gathered during closed-loop operation due
to stability, performance/economical or safety constraints.
The fact that the control loop itself introduces correlation
between the disturbances and the control signal yields that
the statistically optimal estimation of the parameters of a
chosen model structure w.r.t. the data-generating system
is an essentially different problem than in the open-loop
setting. Hence in the identification literature, especially
in the linear time-invariant (LTI) case, many approaches
have been proposed to provide well-applicable solutions
in this problem setting. An overview of the developments
in the LTI case can be found in Van den Hof (1998) and
Forssell and Ljung (1999).

Identification of linear parameter-varying (LPV) systems
has recently seen significant improvements in terms of
open-loop methods, however closed loop-identification has
remained sparsely studied (see Casella and Lovera (2008);
Tóth (2010)). The main difficulty in this system class in
terms of identification is that even if the signal relations
between the inputs u and outputs y of the system are
linear, these relations are allowed to change over time as
a function of a so called scheduling variable p : Z → P

with P ⊆ Rnp being the so called scheduling space. This
allows to describe a large class of nonlinear/time-varying
systems in an attractive structure allowing the use of
well-established LPV control-synthesis approaches, e.g.
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Packard (1994); Scherer (1996). On the other hand, this
varying-relation prevents the use of crucial system theoret-
ical relations, like transfer functions and commutativity of
operators, which are often used in LTI closed-loop iden-
tification approaches. As a consequence, only preliminary
closed-loop approaches has been proposed in the literature
without being able to exploit the existing tools and knowl-
edge available in the LTI case. In van Wingerden and Ver-
haegen (2009), an approximation based LPV extension of
a predictor subspace approach (PSBID) has been proposed
which is also applicable in a closed-loop setting, while in
Boonto and Werner (2008) also an approximation based
LPV extension of the CLOE algorithm (see Landau and
Karimi (1997)) has been investigated w.r.t. LPV output-
error (OE) type of models. In Abbas and Werner (2009)
and Butcher et al. (2008) a basic instrumental variable
method has been introduced. It is a clear indicator of the
immature state of this research direction that the stochas-
tic properties of the estimation has been analyzed only
in Butcher et al. (2008). Unfortunately in Laurain et al.
(2010), it has been shown recently that the formulation of
the one-step IV approach proposed in Butcher et al. (2008)
does not allow to reach statistically optimal estimates
due no-commutativity of certain filtering operations. This
highlights that currently no method has been established
which allows stochastically optimal estimation under a
closed-loop setting especially with general noise models
like Box-Jenkins (BJ).

Based upon the available results of Abbas and Werner
(2009); Butcher et al. (2008) and using the recent theoret-
ical advancements of the LPV prediction error-framework



introduced in Tóth (2010), we propose in this paper a
closed-loop extension of a recently developed IV approach
for LPV-BJ models, see Laurain et al. (2010). In this
setting, the noise vo affecting the sampled output mea-
surement y(tk) is assumed to have a rational spectral
density which is not restricted to depend on the actual
process dynamics of the data-generating system (general
noise structure). As a first step towards the case of a p-
dependent noise, it is also assumed that this rational spec-
tral density does not depend on p. A stochastic analysis of
the proposed closed-loop approach is provided, exploring
the limitations and the benefits of this estimation strategy.
The performance of the algorithm is also demonstrated on
a representative simulation example.

2. PROBLEM DESCRIPTION

2.1 System description

Consider the data-generating LPV system So given in a
closed-loop setting of Fig. 1, where So is defined in the
following form:

Ao(pk, q
−1)χo(tk) =Bo(pk, q

−1)u(tk−d), (1a)

y(tk) = χo(tk) + vo(tk), (1b)

Here u(tk) is the input of the plant, pk is the value of the
scheduling variable p at sample time tk, χo is the noise-
free output, vo is the additive noise with bounded spectral
density, y is the noisy output of the system, d is the delay,
and q is the time-shift operator, i.e. q−iu(tk) = u(tk−i).
Ao(pk, q−1) and Bo(pk, q−1) are polynomials in q−1 of
degree na and nb respectively:

Ao(pk, q
−1) = 1 +

na∑

i=1

aoi (pk)q
−i, (2a)

Bo(pk, q
−1) =

nb∑

j=0

boj(pk)q
−j . (2b)

Here the coefficients ai and bj are real meromorphic
functions 1 with static dependence on p, i.e. dependence
only on the instantaneous value of p at time tk. It is
assumed that each ai and bj is non-singular on P, thus
the solutions of So are well-defined and the process part
Go, defined by (1a), is completely characterized by the
coefficient functions {aoi }

na
i=1 and {boj}

nb
j=0.

For the sake of simplicity, the noise vo is assumed to be
independent from p. In case of rational spectral density of
vo, such a noise process is represented by a discrete-time
auto-regressive moving average (ARMA) model:

vo(tk) = Ho(q)eo(tk) =
Co(q−1)

Do(q−1)
eo(tk), (3)

where Co(q−1) and Do(q−1) #= 0 are monic polynomials
with constant coefficients and with respective degree nc

and nd. The corresponding proper transfer function Ho(q)
is assumed to be stable and to have a stable inverse. In case
Co(q−1) = Do(q−1) = 1, (3) defines an OE noise model,
however with Co(q−1) #= Do(q−1), (3) is general enough to
represent BJ-type of noise models.

1 f : Rn → R is a real meromorphic function if f = g/h with g, h
analytic and h "= 0.

r2(tk) GoCo

r1(tk)

u(tk)

pk

eo(tk)
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Fig. 1. Closed-loop LPV system

In terms of the closed-loop setting of Fig. 1, u(tk) =
r1(tk) + Co(r2(tk)− y(tk)), where Co is the operator form
of the controller. The controller can be any LTI, nonlinear
or LPV controller, under the assumptions that

• Co is a priori known;
• Co ensures BIBO stability of the closed-loop system

So for any p ∈ PZ.

2.2 Model considered

Next we introduce a model structure and parameterization
for the identification of So, where, according to data-
generating system, i.e. (1a-b) and (3), the noise model
and the process model are parameterized separately. The
proposed LPV-BJ model, denoted in the sequel as Mθ, is
defined as:

A(pk, q
−1, ρ)χ(tk) =B(pk, q

−1, ρ)u(tk−d), (4a)

D(q−1, η)v(tk) =C(q−1, η)e(tk), (4b)

y(tk) = χ(tk) + v(tk), (4c)

with parameters θ = [ ρ# η# ] and with u(tk) = r1(tk) +
Co(r2(tk)−y(tk)). The process model part of Mθ, denoted
by Gρ, is defined in terms of the LPV-IO representation
(4a) where A and B are polynomials with order na and
nb respectively and with p-dependent coefficients ai and
bj parameterized as

ai(pk) = ai,0 +
nα∑

l=1

ai,lfl(pk) i = 1, . . . , na (5a)

bj(pk) = bj,0 +

nβ
∑

l=1

bj,lgl(pk) j = 0, . . . , nb (5b)

In this parametrization, {fl}
nα

l=1 and {gl}
nβ

l=1 are a priori
chosen meromorphic functions of p, with static depen-
dence, allowing the identifiability of the model (linearly
independent functions on P for example). The associated
model parameters ρ are stacked column-wise:

ρ = [ a1 . . . ana b0 . . . bnb ]
# ∈ Θρ ⊂ R

nρ , (6)

where ai = [ ai,0 ai,1 . . . ai,nα ], bj = [ bj,0 bj,1 . . . bj,nβ ],
nρ = na(nα + 1) + (nb + 1)(nβ + 1) andΘ ρ ⊂ Rnρ is such
that (4a) is BIBO stable for all ρ ∈ Θρ and p ∈ PZ.

The noise-model part of Mθ, denoted by Hη, is defined in
terms of (4b) where C and D are monic polynomials with
order nc and nd respectively and with constant coefficients
ci and dj . These model parameters are stacked column-
wise in the parameter vector,

η = [ c1 . . . cnc d1 . . . dnd ]
# ∈ Θη ⊂ R

nη , (7)

where nη = nc + nd. As (4b) is LTI, it can be represented

by a transfer function H(q,η ) = C(q−1,η)
D(q−1,η) . It is further



assumed that η ∈ Θη ⊂ Rnη such that H(z,η ) is stable
(analytic in the exterior of the unit circle) and has a stable
inverse.

Introduce also G = {Gρ | ρ ∈ Θρ} and H = {Hη | η ∈ Θη},
as the collection of all process and noise models in the form
of (4a) and (4b). Then the model set, denoted as M, takes
the form

M = {(Gρ,Hη) | col(ρ,η ) = θ ∈ Θρ ×Θη} , (8)

corresponding to the set of candidate models in which we
seek the model that explains data gathered from So the
best under a given identification criterion.

2.3 Identification problem statement

Denote DN = {y(tk), u(tk), p(tk)}Nk=1 a data sequence of
So. In Laurain et al. (2010), it has been shown, that a one-
step-ahead output predictor ŷθ(tk|tk−1) can be formulated
w.r.t. the considered model structure (4a-c) under the
commonly used assumption that noise-free observation
of the sequence {pk, pk−1, . . .} is available. Recently it
has been proved that using estimated moments, such a
predictor can be formulated if p is observed up to an
additive white noise independent from vo, see Tóth et al.
(2011), however for the sake of simplicity we will only
consider the previous case. These results allow to formulate
(in either case) the estimation of θ, as the minimization
of the one-step-ahead prediction error : εθ = y(tk) −
ŷθ(tk|tk−1). This minimization is formulated in terms of
an identification criterion W (DN , θ), like the least squares
criterion

W (DN , θ) =
1

N

N∑

k=1

ε2θ(tk) =
1

N
‖εθ(tk)‖

2
&2
, (9)

such that the parameter estimate is

θ̂N = arg min
θ∈Θρ×Θη

W (DN , θ). (10)

Based on the previous considerations, the identification
problem addressed in the sequel is defined as follows:

Problem 1. Given a discrete-time LPV data-generating
system So in the closed-loop setting of Fig. 1 with a priori
known stabilizing controller Co. Based on the LPV-BJ
model structure Mθ defined by (4a-c) and a data set DN

collected from So, estimate the parameter vector θ as the
minimization of (9) under the following assumptions:

A1 So ∈ M.
A2 In the parametrization (5a-b) of A and B, {fl}

nα

l=1 and
{gl}

nβ

l=1 are chosen such that Mθ is identifiable.
A3 DN is informative w.r.t. Mθ, i.e. if θ1 #= θ2 then Mθ1

and Mθ2 lead to different prediction errors given DN .
A4 So is BIBO stable, i.e. for any bounded p ∈ PZ and
u ∈ RZ, the output of So is bounded Tóth (2010).

A5 The closed-loop system with the controller Co and
model Mθ is BIBO stable for any θ ∈ Θρ × Θη, i.e.
the controller stabilizes So and also any model in the
considered model set.

A6 p is treated as an external variable of the system.

In Laurain et al. (2010), a refined instrumental variable
(RIV) based approach has been introduced to solve the
estimation problem of Mθ in an open-loop setting. How-
ever, a major difference between the open-loop setting

considered in Laurain et al. (2010) and the closed-loop
identification setting of Problem 1 is the correlation of
the signal u with the noise eo due to the feedback loop.
Thus in the next section, we focus on the problem how to
determine a suitable instrument that allows the extension
of the LPV-RIV approach to the closed-loop case.

3. REFORMULATION OF THE IDENTIFICATION
PROBLEM

In Laurain et al. (2010) it has been shown that reformula-
tion of (4a-c) as a multiple-input single-output (MISO) LTI
model allows an elegant solution of the filtering problem
associated with LPV-IV approaches. This reformulation
is necessary to avoid the problem of non-commutativity
of parameter-varying filters and hence required to solve
Problem 1. Consequently, (4a-c) are rewritten as

χ(tk) +
na∑

i=1

ai,0χ(tk−i)

︸ ︷︷ ︸

F (q−1)χ(tk)

+
na∑

i=1

nα∑

l=1

ai,lfl(pk)χ(tk−i)
︸ ︷︷ ︸

χi,l(tk)

=
nb∑

j=0

nβ
∑

l=0

bj,lgl(pk)u(tk−d−j
︸ ︷︷ ︸

)

uj,l(tk)

(11a)

v(tk) =
C(q−1, η)

D(q−1, η)
e(tk) (11b)

y(tk) = χ(tk) + v(tk) (11c)

where F (q−1) = 1+
∑na

i=1 ai,0q
−i and g0(!) = 1. Note that

in this way, the LPV-BJ model is rewritten as a MISO
system with (nb + 1)(nβ + 1) + nanα inputs {χi,l}

na,nα

i=1,l=1

and {uj,l}
nb,nβ

j=0,l=0. F (q−1) does not depend on pk, and (11a)
can be rewritten as the following LTI model:

y(tk) = −
na∑

i=1

nα∑

l=1

ai,l
F (q−1)

χi,l(tk)

+
nb∑

j=0

nβ
∑

l=0

bj,l
F (q−1)

uk,j(tk) +H(q)e(tk), (12)

Note that (12) is an equivalent form of (4a-c), but it is not a
representation of the associated LPV system as it includes
lumped output variables in the signals {χi,l}

na,nα

i=1,l=1 .

4. RIV APPROACH FOR CLOSED-LOOP LPV
SYSTEMS

Using the MISO-LTI formulation (12), the estimation
problem of the parameters can be formulated as a linear
regression which allows optimal solution of (9) w.r.t. LPV-
BJ models. To achieve this solution, one possible way is
to develop an extension of the refined instrumental vari-
able (RIV) approach of the closed-loop LTI identification
framework. Next we derive this extension, which, as we will
see, provides an easily implementable iterative estimation
scheme.

4.1 The refined instrumental variable estimate

Using (12), y(tk) can be written in a linear regression form:

y(tk) = ϕ
#(tk)ρ+ ṽ(tk), (13)

where ṽ(tk) = F (q−1, ρ)v(tk) and
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Fig. 2. Auxiliary model

ϕ(tk) = [−y(tk−1) . . . −y(tk−na) −χ1,1(tk) . . .

−χna,nα(tk) u0,0(tk) . . . unb,nβ
(tk) ]#,

ρ= [ a1,0 . . . ana,0 a1,1 . . . ana,nα b0,0 . . . bnb,nβ ]#.

Two difficulties remain to obtain the minimum of (9)
based on (13): the regressor ϕ(tk) contains unknown terms
{χi,l(tk)}

na,nα

i=1,l=0 and all of its elements are corrupted
with the colored noise v(tk). To resolve this problem, an
appropriate instrumental variable ζ(tk) can be introduced
such that the (extended-IV) estimate of ρ can be given as
Söderström and Stoica (1983):

ρ̂XIV(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N
∑

k=1

L(q)ζ(tk)L(q)ϕ
#(tk)

]

ρ

−

[

1

N

N∑

t=1

L(q)ζ(tk)L(q)y(tk)

]∥
∥
∥
∥
∥

2

W

, (14)

where ‖x‖2W = xTWx, with W a positive definite weight-
ing matrix and L(q) is a stable prefilter. If Go ∈ G, the
estimate (14) is consistent under the following well-known
conditions 2 :

C1 Ē{L(q)ζ(tk)L(q)ϕ#(tk)} is full column rank.
C2 Ē{L(q)ζ(tk)L(q)ṽ(tk)} = 0.

Moreover it has been shown in Söderström and Stoica
(1983) and Young (1984) that in general for IV methods,
based on (14), the minimum variance estimator can be
achieved if:

C3 W = I.
C4 ζ(tk) is chosen as the noise-free version of (13) and is

therefore defined in the present LPV case as:

ζ(tk) = [−χ̊(tk−1) . . . −χ̊(tk−na) −χ̊1,1(tk) . . .

−χ̊na,nα(tk) ů0,0(tk) . . . ůnb,nβ
(tk)

]#

where ů and χ̊ are the signals from the auxiliary system
as presented in Fig. 2 and where the index notations are
the same as presented in (12).

C5 Go ∈ G and nρ is equal to the minimal number of
parameters required to represent Go with the considered
model structure.

C6 L(q) is chosen as in Laurain et al. (2010):

L(q) =
D(q−1)

F (q−1)C(q−1)
. (15)

Full column rank of Ē{L(q)ϕ(tk)L(q)ϕ#(tk)} is ensured by
the informativity of the data set (A3). Note that conditions
about informativity w.r.t. LPV-BJ model structures is
in the focus of current research (see Bamieh and Giarré

2 The notation Ē{.} = limN→∞

1

N

∑
N

t=1
E{.} is adopted from the

prediction error framework of Ljung (1999).

(2002); Tóth (2010); Wei and Del Re (2006) for results in
the ARX case). To fulfill C1 under A3, the discussion can
be found in Söderström and Stoica (1983). It is also impor-
tant to note that in a practical situation none of F (q−1, ρ),
C(q−1, η), D(q−1, η) or {ai,l(ρ)}

na,nα

i=1,l=0, {bj,l(ρ)}
nb,nβ

j=0,l=0 is
known a priori. Therefore, the RIV estimation normally
involves an iterative (or relaxation) algorithm in which,
at each iteration, an ‘auxiliary model’ is used to gener-
ate the instrumental variables (which guarantees C2), as
well as the associated prefilters. Convergence of such an
iterative RIV algorithm has not been proved so far and is
only empirically assumed Young (2008). Furthermore, the
considered LPVmodel can be reformulated in a LTI-MISO
form only under the condition that the noise-free output
terms are a priori known. Therefore, even if the presented
method considerably lowers the variance in the estimated
parameters, the optimality cannot be guaranteed.

4.2 Iterative closed-loop LPV-RIV Algorithm

Based on the previous considerations, the iterative scheme
of the RIV algorithm can be extended to the closed-loop
LPV case as follows.

Algorithm 1. (LPV-RIV).

Step 1 Assume that as an initialization, an ARX estimate
of Mθ is available by the LS approach, i.e. θ̂(0) =
[ (ρ̂(0))# (η̂(0))# ]# is given. Set τ = 0.

Step 2 Compute an estimate of χ(tk) via

A(pk, q
−1, ρ̂(τ))χ̂(tk) = B(pk, q

−1, ρ̂(τ))u(tk−d),

where ρ̂(τ) is estimated in the previous iteration and it
is assumed to be stable in analog with A5. Based on
Mθ̂(τ) , deduce {χ̂i,l(tk)}

na,nα

i=1,l=0 as given in (11a). It is
important to note that χ̂(tk) is correlated with the noise
as it is simulated using the measured signal u.

Step 3 Compute the estimated filter:

L(q−1, θ̂(τ)) =
D(q−1, η̂(τ))

C(q−1, η̂(τ))F (q−1, ρ̂(τ))

and the associated filtered signals {uf
j,l(tk)}

nb,nβ

j=0,l=0,

yf(tk) and {χ̂fi,l(tk)}
na,nα

i=1,l=0.
Step 4 Build the noisy filtered estimated regressor ϕ̂f(tk)

as:
ϕ̂f(tk) = [−yf(tk−1) . . . −yf(tk−na) −χ̂f1,1(tk)

. . .−χ̂fna,nα
(tk) uf

0,0(tk) . . . uf
nb,nβ

(tk) ]#

and compute the filtered instrument ζ̂f(tk) by simulating
the estimated auxiliary model according to Fig. 2:

ζ̂f(tk) = [− ˆ̊χf(tk−1) . . . − ˆ̊χf(tk−na) − ˆ̊χf1,1(tk)

. . .− ˆ̊χfna,nα
(tk) ˆ̊uf

0,0(tk) . . . ˆ̊uf
nb,nβ

(tk) ]
#

Note that this instrument fulfills C1 and C2.
Step 5 The IV optimization problem can now be stated in

the form

ρ̂(τ+1)(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N
∑

k=1

ζ̂f(tk)ϕ̂
#
f (tk)

]

ρ

−

[

1

N

N
∑

k=1

ζ̂f(tk)yf(tk)

]∥
∥
∥
∥
∥

2

(16)



where the solution is obtained as

ρ̂(τ+1)(N)=

[
N
∑

k=1

ζ̂f(tk)ϕ̂
#
f (tk)

]−1N
∑

k=1

ζ̂f(tk)yf(tk).

The resulting ρ̂(τ+1)(N) is the IV estimate of the process
model associated parameter vector at iteration τ + 1
based on the prefiltered input/output data.

Step 6 An estimate of the noise signal v is obtained as

v̂(tk) = y(tk)− χ̂(tk, ρ̂
(τ)). (17)

Based on v̂, the estimation of the noise model param-
eter vector η̂(τ+1) follows, using e.g. ARMA estimation
algorithm of the MATLAB identification toolbox (an IV
approach can also be used for this purpose, see Young
(2008)).

Step 7 If θ(τ+1) has converged or the maximum number of
iterations is reached, then stop, else increase τ by 1 and
go to Step 2.

Based on a similar concept, the so-called simplified LPV-
RIV (LPV-SRIV) method, can also be developed for the
estimation of LPV-OE models. This method is based on
a model structure (4a-c) with C(q−1, η) = D(q−1, η) = 1
and consequently, Step 6 of Algorithm 1 can be skipped.

5. SIMULATION EXAMPLE

Next, the performance of the proposed RIV method with
its SRIV variant are compared via a simulation example.
The considered data-generating system is described as

So











Ao(q, pk) = 1 + ao1(pk)q
−1 + ao2(pk)q

−2

Bo(q, pk) = bo0(pk)q
−1 + bo1(pk)q

−2

Ho(q) =
1

1− q−1 + 0.2q−2

(18)

where vo(tk) = Ho(q)eo(tk) and

ao1(pk) = 1− 0.5pk − 0.1p2k, (19a)

ao2(pk) = 0.5− 0.7pk − 0.1p2k, (19b)

bo0(pk) = 0.5− 0.4pk + 0.01p2k, (19c)

bo1(pk) = 0.2− 0.3pk − 0.02p2k. (19d)

According to Fig. 1, So is considered with a stabilizing
feedback controller given in this case as

u(tk) =
1 + 0.5q−1

1− 0.85q−1
(r2(tk)− y(tk)) + r1(tk), (20)

To generate data sets DN of So for identification and
validation, the closed-loop system is simulated using pk =
0.5 sin(0.35πk) + 0.5 and r1(tk) taken as a white noise
with a uniform distribution U(−1, 1) and with length
N = 4000. In the simulation, the white noise disturbance
eo(tk) ∈ N (0, σ2) is considered with different σ2 > 0 to
investigate low and high noise conditions.

In the sequel, the conventional LPV Least Square (LS)
method Bamieh and Giarré (2002) is compared to the
proposed IV approaches. The least square method is not
suited for OE models and may not be a good candidate for
comparison. Nonetheless, this method is known to result
in parameter estimates with low variance and is therefore
a good indicator for the efficiency of the RIV estimator.
In order to the demonstrate the efficiency of the proposed

RIV estimators without effect of under-modeling and over-
parametrization, full structural knowledge about system
is assumed. Thus the proposed LPV Closed Loop Refined
Instrumental Variable method (LPV-CLRIV) is considered
with the following LPV-BJ model:

MLPV−RIV

θ











A(pk, q
−1, ρ) = 1 + a1(pk)q

−1 + a2(pk)q
−2

B(pk, q
−1, ρ) = b0(pk)q

−1 + b1(pk)q
−2

H(pk, q,η ) =
1

1 + d1q−1 + d2q−2

which represents the situation So ∈ M. In analog, the
LPV Simplified Closed-Loop Refined Instrumental Variable
approach (LPV-SCLRIV) is used with the following LPV-
OE model:

MLPV−SRIV

θ







A(pk, q
−1, ρ) = 1 + a1(pk)q

−1 + a2(pk)q
−2

B(pk, q
−1, ρ) = b0(pk)q

−1 + b1(pk)q
−2

H(pk, q,η ) = 1

which represents the case when Go ∈ G, Ho /∈ H. In both
cases, full parametrization of the associated coefficient
functions is considered:

a1(pk) = a1,0 + a1,1pk + a1,2p
2
k (21a)

a2(pk) = a2,0 + a2,1pk + a2,2p
2
k (21b)

b0(pk) = b0,0 + b0,1pk + b0,2p
2
k (21c)

b1(pk) = b1,0 + b1,1pk + b1,2p
2
k (21d)

To provide representative results, a Monte-Carlo simu-
lation of NMC = 100 runs is accomplished at different
noise levels: 20dB, 15dB, 10dB and 5dB. In Table 1,
the norm of the bias (BN) ||ρo − Ē(ρ̂)||&2 and variance
(VN) ||Ē(ρ̂− Ē(ρ̂))||&2 norms of the resulting estimated
parameter vectors are given, where Ē is the mean operator
over the Monte-Carlo simulation. The number of itera-
tions (Nit) needed for convergence is also given. Table 1
shows that contrary to the LS method the IV methods
are unbiased which is in line with the theoretical results.
For SNR down to 5dB, the LPV-CLRIV produces a pa-
rameter variance very close to the one obtained with the
LS method. Although the statistical optimality of the
algorithm cannot be proved, this latter result shows on
this example, that the LPV-CLRIV algorithm results in
accurate estimates. The suboptimal LPV-CLSRIV method
offers satisfying results, considering that the used noise
model cannot capture the dynamics of vo. The variance
in the estimated parameters is twice as much as in the
LPV-CLRIV case but it is still close to the variance of the
LS method.

Table 1. +2-norm of the bias and variance of the
estimated parameters at different SNR levels.

Method 20dB 15dB 10dB 5dB
LS BN 1.5736 2.3922 2.0812 2.0908

VN 0.0092 0.0140 0.0253 0.0326

LPV BN 0.0067 0.0145 0.0125 0.0052
-SRIV VN 0.0011 0.0035 0.0110 0.0319

Nit 16 16 17 19

LPV BN 0.0060 0.0139 0.0185 0.0146
-RIV VN 0.000623 0.0018 0.0068 0.0206

Nit 19 19 20 22



6. CONCLUSION

In this paper, the extension of an LPV-RIV approach
has been introduced to provide an efficient solution for
the closed-loop identification of LPV systems with Box-
Jenkins type of noise models. The approach has been
formulated with the assumption of prior knowledge of the
controller but without any restriction on its structure like
LTI, LPV, nonlinear, etc. It has been shown that under
given conditions the proposed approach provides consis-
tent estimates and its performance has been demonstrated
on a representative example including a comparison to the
least-squares approach. The presented example has shown
that the proposed procedure is robust to noise and that
the obtained estimates are accurate.
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