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Abstract

We investigate under which assumptions an orientable pseudo-Riemannian geodesic
foliations by circles is generated by an S1-action. We construct examples showing that,
contrary to the Riemannian case, it is not always true. However, we prove that such an
action always exists when the foliation does not contain lightlike leaves, i.e. a pseudo-
Riemannian Wadsley’s Theorem. As an application, we show that every Lorentzian sur-
face all of whose spacelike/timelike geodesics are closed, is finitely covered by S1 × R. It
follows that every Lorentzian surface contains a non-closed geodesic.

1 Introduction

Wadsley’s Theorem states that a foliation by circles is a foliation by closed geodesics of some
Riemannian metric if and only if the circles have locally bounded length. Besides its sig-
nificance in its own right, Wadsley’s Theorem is a cornerstone in the study of Riemannian
manifolds all of whose geodesics are closed. See [1] for an overview of the subject.

The year following Wadsley’s article ([9]), Sullivan gave in [8] the first examples of compact
manifolds endowed with a foliation by circles of unbounded length. Sullivan’s article contains
also a modification of his construction by Thurston. Thurston’s example has the additional
properties of being real-analytic and explicitly given.

Wadsley’s Theorem implies that there are no Riemannian metrics making Sullivan’s or
Thurston’s examples geodesic. Of course, there exists connections making them geodesic (it
is true for any foliation). But are there interesting ones? For example, we could wonder, as
Epstein in [1], if there is a flat connection making any of them geodesic.

In this paper, we will focus on pseudo-Riemannian connections. First we prove an analog
of Wadsley’s Theorem for geodesic foliations that do not contain any lightlike leaves (see
Theorem 2.1). Hence, a geodesic foliation by circles of unbounded length has to have lightlike
leaves. With the help of Thurston’s example, we prove:

Theorem 1.1. There exists a smooth foliation by circles of unbounded length, denoted F , on
a smooth compact pseudo-Riemannian manifold (M,g) such that the leaves of F are geodesics
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of g. The foliation F and the metric g can be chosen so that all the leaves of F are lightlike
or so that there exist leaves of F of any type. Moreover, in the lightlike case F and g can be
chosen to be real-analytic.

The type changing situation is perhaps the more interesting. To begin with, no example
of type changing geodesic foliations by circles was known to us. Moreover, this case is related
to the existence of pseudo-Riemannian manifolds all of whose geodesics are closed. Indeed,
if (M,g) is a pseudo-Riemannian manifold, then there exists a pseudo-Riemannian metric ḡ
(called the Sasaki metric) on its tangent bundle TM such that the orbits of the geodesic flow
of (M,g) are geodesics of ḡ (see Proposition 2.7). If we were able to find a non-Riemannian
manifold (M,g) so that all its geodesics are closed, then (TM, ḡ) would have a type changing
geodesic foliation by circles.

Furthermore, it is interesting to note that type changing geodesic foliations satisfy what
could be called an “anti-Wadsley’s Theorem”. By this we mean that a type changing geodesic
foliation is never generated by an action of S1 (see Proposition 2.4). Applying this result to
geodesic flows gives:

Theorem 2.7. A pseudo-Riemannian manifold having a geodesic flow that can be periodically
reparametrized is Riemannian or anti-Riemannian.

Hence, if there exists a (non-Riemannian) pseudo-Riemannian manifold all of whose geodesics
are closed it has to be quite complicated.

In opposition, there exists a well-known family of pseudo-Riemannian manifolds all of
whose spacelike geodesics are closed. It is the family of pseudo-spheres (r > 0):

Sn
ν (r) :=

{
x ∈ Rn+1

∣∣ 〈x, x〉ν = −
ν∑

i=1

(xi)2 +
n+1∑

i=ν+1

(xi)2 = r2

}

It is elementary to see that all spacelike geodesics of Sn
ν (r) are closed. By inverting all signs

these examples can be modified to yield examples of pseudo-Riemannian manifolds all of whose
timelike geodesics are closed. Note that Sn

ν (r) is diffeomorphic to Rν × Sn−ν , where Sn−ν is
the (Euclidean) unit sphere of dimension n− ν. There also exists a classical family of pseudo-
Riemannian metrics all of whose lightlike geodesics are closed. This is the family of metrics
in the conformal class of Sq × Sp endowed with the metric gSq − gSp (when p = 1 it is called
the q + 1-Einstein’s universe).

Our main result on this problem is the following (compare with [5]):

Theorem 6.1. If (M,g) is a Lorentzian 2-manifold all of whose timelike (respectively space-
like) geodesics are closed, then (M,g) is finitely covered by a timelike-SC-metric (resp. space-
like SC-metric) on S1 × R.

It follows that every Lorentzian surface contains non-closed geodesics (Theorem 6.4). Fi-
nally we extend a theorem of Guillemin (see [6] p.4) concerning compact surfaces, stating that,
up to a finite cover, any Lorentzian surface all of whose lightlike geodesics are closed is in the
conformal class of the 2-dimensional Einstein universe.

Notation

Throughout the entire text we will assume that M is a connected smooth (i.e. C∞) manifold.
Further “smooth” is synonymous for C∞.
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2 Wadsley’s Theorem for pseudo-Riemannian Manifolds

Let F be a smooth foliation by circles of M . We can give the following generalization of
Wadsley’s Theorem as formulated in [1]:

Theorem 2.1. The following conditions are equivalent:

(1) There is a smooth pseudo-Riemannian metric making F a geodesic foliation by non-
degenerate geodesics of the same causal character, i.e. g(γ̇, γ̇) > 0 or g(γ̇, γ̇) < 0 for all
geodesics γ parameterizing leaves of F .

(2) For any compact subset K of M , the circles meeting K have bounded length with respect
to some (hence every) Riemannian metric.

(3) Let M̃ be the double cover of M obtained by taking the two different possible local ori-

entations of the leaves. There is a smooth action of the orthogonal group O(2) on M̃

and the non-trivial deck transformation σ : M̃ → M̃ is an element of the non-trivial
component of O(2). Each orbit under the O(2)-action consists of two components and
each component is mapped diffeomorphically onto a leaf of F by the covering projection.

This formulation of Wadsley’s Theorem differs from the formulation in [1] only in the
replacement of “Riemannian” by “pseudo-Riemannian” in part (1) and the condition that all
geodesics are nonlightlike. Hence the theorem will follow directly from Wadsley’s Theorem as
formulated in [1] and the following proposition.

Proposition 2.2. Let G be a 1-foliation of a manifold M . Then the following assertion are
equivalent:

(1) There exists a pseudo-Riemannian metric g on M turning G into a g-geodesic foliation
by non lightlike geodesics.

(2) There exists a Riemannian metric h on M turning G into a h-geodesic foliation.

Proof. (1) ⇒ (2): Consider the g-orthogonal complement G⊥ of TG, the bundle of tangent
spaces to the leaves of G, and the orthogonal projection PG : TM → G⊥. Note that both G⊥

and PG are globally well defined, no matter if G is orientable or not. Choose any Riemannian
metric h0 on M and set

h := h0(PG ., PG .) + g(X, .)⊗ g(X, .)

where X is any choice of g-unit tangent vector in TG, i.e. g(X,X) = ±1. Since we assumed
that all leaves of G are nonlightlike geodesics, it follows that g|TG×TG 6= 0. Consequently G⊥

is transversal to TG and h is a Riemannian metric.
Let U ⊆ M be open such that G|U is orientable. Choose a g-unit vector field X ∈ Γ(TU)

tangent to G. Since the flowlines of X are g-geodesics we have with Koszul’s formula

0 = g(∇XX,Z) = 2X(g(X,Z))−Z(g(X,X))+g([X,X], Z)−2g([X,Z],X) = −2g([X,Z],X)

if Z is orthogonal to X everywhere.
It is obvious that X is an h-unit vector field and the orthogonal complement of TG w.r.t.

g and h coincide. For the Levi-Civita connection ∇h of h we have

h(∇h
XX,Z) = 2X(h(X,Z)) − Z(h(X,X)) + h([X,X], Z) − 2h([X,Z],X)

= −2h([X,Z],X) = h0(PG [X,Z], PGX) + g([X,Z],X)g(X,X) = 0
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if Z is orthogonal to X everywhere. Since by construction h(X,X) ≡ 1 it follows that
∇h

XX ⊥ X w.r.t. h. This implies that ∇h
XX = 0 and G is h-geodesic.

(2) ⇒ (1): Since we consider Riemannian metrics as pseudo-Riemannian as well, the claim
is immediate.

We will need the following refined version of one implication in Wadsley’s Theorem. It
follows from Proposition 2.2 and Theorem A.26 p. 220 from [1].

Theorem 2.3. Let (M,g) be a pseudo-Riemannian manifold with a smooth unit (i.e. g(X,X) =
±1) vector field X such that every flowline is a geodesic circle. Then X is the derivative of a
smooth circle action on M (i.e. its flow is periodic).

As we said in the introduction, not only the leaves of a type changing geodesic foliation
by circles can have unbounded length but they have to. It is actually a consequence of the
results of Wadsley ([9]) and Theorem 2.1.

Proposition 2.4. Let F be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian
manifold (M,g). If the leaves of F are circles with locally bounded length then they all have
the same type.

Proof. For any x ∈ M we denote by Fx the leaf of F containing x. According to Theorem
2.1, there exists a vector field Z tangent to F such that the flow of Z is 2π-periodic (i.e. the
leaves of F are the orbits of an action of S1). We endow M with an auxiliary Riemannian
metric h, such that h(Z,Z) = 1. Hence, for any x ∈ M , the length of Fx divides 2π.

Let U = {x ∈ M, g(Z,Z) 6= 0}, it is an open saturated (i.e. a union of leaves of F) subset
of M . We can suppose that U is not empty (otherwise there is nothing to prove). Let Z0 be
the vector field on U defined by Z0 = 1/

√
|g(Z,Z)|Z. Let U0 be a connected component of

U . According to Theorem 2.3, there exists T > 0 such that φ, the flow of Z0, is T -periodic on
U0. We define a function ν on U0 by

ν(x) =

∫ T

0

√
hφt(x)(Z0, Z0)dt.

For any x ∈ U0, ν(x) is a multiple of the length of Fx, therefore there exist n(x) ∈ Q such
that ν(x) = 2πn(x). The function ν being continuous it follows that n(x) is constant on U0

(actually it follows from Theorem 2.3 that if 2π and T are the least periods of the flows of Z
and Z0 then n(x) = 1). But when x tends to a point of ∂U0, g(Z,Z) tends to 0 uniformly
on Fx and therefore ν(x) tends to +∞. Hence ∂U0 = ∅ i.e. U = M and F does not change
type.

Hence, the foliation constructed in section 5 is probably not far from being the simplest
type changing geodesic foliation by circles on a compact manifold. However, it is perhaps
possible to find a 4-dimensional example using the example of Epstein and Vogt (see [4]). For
lower dimensions, we have:

Corollary 2.5. If (M,g) is a 2 or 3 dimensional compact pseudo-Riemannian manifold and
if F is a geodesic foliation by circles then the leaves of F do not change type.

Proof. It is an immediate consequence of Proposition 2.4 and Epstein’s Theorem (see [3])
saying that the leaves of a foliation by circles on a compact 3 dimensional manifold have
bounded length.
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We have the following “signature-rigidity” Theorem:

Theorem 2.6. A pseudo-Riemannian manifold (M,g) having a geodesic flow that can be
periodically reparametrized is Riemannian or anti-Riemannian.

Proposition 2.7. Let (M,g) be a pseudo-Riemannian manifold. Then there exists a pseudo-
Riemannian metric g on TM such that the tangent curve of every geodesic of (M,g) is a
geodesic of (TM, g) of the same causal character.

Proof. The Levi-Civita connection of (M,g) induces a (fiber-wise linear) connection map
Kg : TTM → TM with image transversal to the fibers of the bundle πTM : TM → M .
Therefore every tangent space of TM is isomorphic to the product ker(πTM )∗⊕kerKg. Further
ker(πTM )∗ as well as kerKg is isomorphic to a tangent space TMp. Define the metric g such
that the map (πTM )∗×Kg : T (TMp)v → TMp×TMp becomes an isometry where TMp×TMp

is equipped with the product metric g ⊕ g.
Note that πTM : (TM, g) → (M,g) is a pseudo-Riemannian submersion. Now the claim

follows similar to Lemma 9.44 in [2] since the tangent curves of geodesics are parallel lifts of
the geodesics to the tangent bundle.

Further note that ((πTM )∗ × Kg)(γ̈) = (γ̇, 0), if γ is a geodesic. This implies that the
causal character of the tangent curve is the same as the causal character of the underlying
geodesic.

Remark. g is called the Sasaki metric of TM .

Proof of Theorem 2.6. We denote by F the foliation on TM that is generated by the geodesic
flow of g. According to Proposition 2.7, the leaves of F are geodesics of the Sasaki metric g
and all causal type appear in F . It follows from Proposition 2.4 that if F can be periodically
reparameterized (i. e. if the leaves of F are closed and have locally bounded length) then it
does not change type. But as it takes all the possible types, it means that g is Riemannian or
anti-Riemannian.

3 Thurston-Sullivan Example

We start by recalling Thurston’s example of a real-analytic foliation by circles of unbounded
length on a compact manifold. The presentation we are giving is elementary but it has
the drawback that the geometric ideas behind the construction are hidden. For a geometric
description the reader is invited to look at [8] or [1] p. 222.

Thurston’s flow lives on the manifold N × S1 × S1 where N is the quotient of H the
3-dimensional Heisenberg group,

H =







1 x z
0 1 y
0 0 1


, (x, y, z) ∈ R3



 ,

by the left action of the lattice Γ given by

Γ =







1 a c
0 1 b
0 0 1


, (a, b, c) ∈ Z3




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and the circles S1 are identified with R/2πZ. We denote by p the projection from H × R2 to
N × S1 × S1. Let (t, u) be the coordinates on R2 (thus we have coordinates (x, y, z, t, u) on
H × R2). Let V1 and V2 be the vector fields on H × R2 given by

V1 = cos(t)∂x + sin(t)(∂y + x∂z),

V2 = − sin(t)∂x + cos(t)(∂y + x∂z).

We note that the vector fields V1, V2, ∂z, ∂t and ∂u are everywhere independent and that they
are invariant by the action of Γ′ = Γ × (2πZ)2. Thus, they define a moving frame on the
manifold N × S1 × S1.

We will denote by X Thurston’s vector field on H × R2, it is defined by:

X = sin(2u)V1 + 2 sin2(u)∂t − cos2(u)∂z .

We see that X is also Γ′-invariant.
In what follows, we will denote by the same letter a Γ′-invariant vector field on H × R2

and its projection on N × S1 × S1.
There is an easy way to see that the foliation spanned by X on N × S1 × S1 has closed

leaves of unbounded length. On U = {(x, y, z, t, u) ∈ H × R2, u 6≡ 0 (modπ)} we define the
vector field W by

W =
1

2 sin2(u)
X =

1

tan(u)
V1 + ∂t −

1

2 tan2(u)
∂z.

We can easily compute φ, the flow of W :

φs(x, y, z, t, u) =
(
sin(t+s)−sin(t)

tan(u) + x, cos(t)−cos(t+s)
tan(u) + y,

z + sin(2t)−sin(2t+2s)
4 tan2(u)

+ (cos(t+s)−cos(t))(sin(t)+x tan(u))
tan2(u)

, t+ s, u
)
.

Hence, it is clear that the projection of W on N × S1 × S1 is a vector field defined on p(U)
which has a 2π-periodic flow. It follows that the integral curves of X on p(U) are all closed and
that their length is unbounded (if we choose a Riemannian metric h such that h(X,X) = 1,
their length is equal to 2π/ sin2(u)). To conclude, we need to check that the integral curves
on N × S1 × S1 \ p(U) are also closed. It is true because on this closed subset (known as
the “bad set”) X = ∂z and because there is an element of Γ acting by translation along the
coordinate z.

In what follows, we will principally use a smooth deformation of X, denoted Xξ, instead
of X itself. This vector field is defined by:

Xξ = 2ξ(u) cos(u)V1 + 2ξ2(u)∂t − cos2(u)∂z ,

where ξ : R → R is the smooth, 2π-periodic function defined by ξ(u) = e−1/ sin2(u) if 0 < u < π
and by ξ(u) = −e−1/ sin2(u) if −π < u < 0. We remark that ξ(k)(nπ) = 0 for any k ∈ N and
any n ∈ Z, consequently |ξ| is also smooth.

As above, we define Wξ as 1
2ξ2

Xξ. The flow of Wξ is very similar to the flow of W , in
particular it is also periodic, therefore Xξ also generates a foliation by circles with unbounded
length. This foliation is no more real-analytic.
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Figure 1: The graph of ξ

4 The Lightlike Construction

In this section, we construct a real-analytic Lorentzian metric g on N × S1 × S1 such that
DXX = 0 (where D is the Levi-Civita connection of g) and g(X,X) = 0 everywhere. First,
we remark that the vector fields X, V1, V2, 2∂t + ∂z and ∂u are everywhere independent and
therefore they define a moving frame on N × S1 × S1. Then, we define g as the metric which
is given in the moving frame (X, ∂u, V1, V2, 2∂t + ∂z) by the matrix




0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

This is clearly a real-analytic Lorentzian metric. The 1-form X♭ (defined by X♭(v) = g(X, v))
is du and therefore is closed. For any vector field Z, we have:

0 = dX♭(X,Z) = X · g(X,Z) −W · g(X,X) − g(X, [X,Z])

= g(DXX,Z) + g(DZX,X) = g(DXX,Z) +
1

2
Z · g(X,X)

= g(DXX,Z).

Hence DXX = 0.
Let us remark that the Riemannian metric on the distribution spanned by {V1, V2, 2∂t+∂z}

can be replace by any pseudo-Riemannian metric. As there is so many metrics making X
geodesic, we may wonder if there is a best one (as for example a flat one).

5 The Type Changing Construction

In this section, we will provide a metric g such that DXξ
Xξ = 0 and such that g(Xξ ,Xξ)

changes signs. We start the construction in a neighborhood of the bad set i.e. for u close to
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0 (modπ). As above we use a moving frame to write the metric. Let g0 be the symmetric
2-tensor field whose expression in the moving frame (∂t, V1, V2, ∂z, ∂u) is given by the following
matrix (denoted G0):




1
4 cos

4(u) |ξ(u)|
2 cos(u) 0 1

2 cos
2(u)ξ2(u)− ξ(u)|ξ(u)|

cos2(u) 0
|ξ(u)|

2 cos(u) 0 1
2

|ξ(u)|ξ2(u)
cos3(u)

0

0 1
2 0 ξ(u)

cos(u) 0

1
2 cos

2(u)ξ2(u)− ξ(u)|ξ(u)|
cos2(u)

|ξ(u)|ξ2(u)
cos3(u)

ξ(u)
cos(u) ξ4(u) −1

0 0 0 −1 1




For u = 0 (modπ), it is easy to verify that this matrix defines a symmetric bilinear form of
signature (3, 2) (in particular non degenerate). It follows by continuity that there exists η > 0
such that g0 is a well defined pseudo-Riemannian metric of signature (3, 2) on N×S1× ]−η, η[
and on N × S1× ]π − η, π + η[.

Applying G0 to (2ξ2(u), 2ξ(u) cos(u), 0,− cos2(u), 0), we get

(2ξ(u)|ξ(u)|, 0, 0, 0, cos2(u)).

It implies that g(Xξ ,Xξ) = 4ξ3(u)|ξ(u)| (and therefore g(Wξ,Wξ) =
|ξ(u)|
ξ(u) = ±1) and that

X⊥
ξ = span

{
V1, V2, ∂z ,− cos2(u)∂t + 2ξ(u)|ξ(u)|∂u

}
.

At this time, the metric g0 is only defined on a neighborhood of the bad set. In order
to extend it, we write it in the moving frame (W,V1, V2, ∂z,− cos2(u)∂t + 2ξ(u)|ξ(u)|∂u). It
reads: (

|ξ(u)|
ξ(u) 0

0 L(u)

)
,

where L(u) is the following matrix:



0 1
2

|ξ3(u)|
cos3(u)

− cos(u)
2 |ξ(u)|

1
2 0 ξ(u)

cos(u) 0
|ξ3(u)|
cos3(u)

ξ(u)
cos(u) ξ4(u) − cos4(u)

2 ξ2(u)− 2ξ(u)|ξ(u)|
− cos(u)

2 |ξ(u)| 0 − cos4(u)
2 ξ2(u)− 2ξ(u)|ξ(u)| 1

4 cos
8(u) + 4ξ4(u)



.

When u ∈ ]0, η[∪ ]π−η, π[, the matrix L(u) lies in the space on bilinear forms of signature
(2, 2) i.e. in SL(4,R)/SO(2, 2). As this space is a connected manifold there exists a smooth
map M : ]0, π[→ SL(4,R)/SO(2, 2) such that M and L coincide on ]0, η/2[∪ ]π− η/2, π[. Let
g1 be the metric on N×S1× ]0, π[ whose matrix in the moving frame (W,V1, V2, ∂z,− cos2(u)∂t+

2ξ(u)|ξ(u)|∂u) is

(
1 0
0 M(u)

)
.

When u ∈ ] − π,−π + η[∪ ] − η, 0[, the matrix L(u) lies in the space on bilinear forms
of signature (3, 1) i.e. in SL(4,R)/SO(3, 1). As SL(4,R)/SO(3, 1) is a connected manifold
there exists a smooth map N : ] − π, 0[→ SL(4,R)/SO(3, 1) such that N and L coincide on
] − π,−π + η/2[∪ ] − η/2, 0]. Let g2 be the metric on N × S1× ]− π, 0[ whose matrix in the

moving frame (W,V1, V2, ∂z ,− cos2(u)∂t + 2ξ(u)|ξ(u)|∂u) is

(
−1 0
0 N(u)

)
.
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We can now give the metric, we are looking for. By construction the metrics g0, g1 and
g2 glue together in a smooth metric g on M × S1 × S1. Moreover on p(U) = N × S1 × (] −
π, 0[∪ ]0, π[), we have:

g(Wξ,Wξ) = ±1

X⊥
ξ = span{V1, V2, ∂z ,− cos2(u) ∂t + 2ξ(u)|ξ(u)| ∂u}

We have to prove now that the foliation generated by Xξ is geodesic. It will be done with
the help of the following facts:

Fact 5.1. DXξ
Xξ = 0 on N × S1 × S1 if and only if DWξ

Wξ = 0 on p(U).

Proof. As Xξ = 2ξ2(u)W and Xξ.ξ
2(u) = 0, we have DXξ

Xξ = 4ξ4(u)DWξ
Wξ therefore the

equivalence is clear on p(U). But p(U) is dense in N × S1 × S1 and DXξ
Xξ = 0 on p(U) is

also equivalent to DXξ
Xξ = 0 on the whole manifold.

Koszul’s formula entails easily the next fact, the proof of which is left to the reader.

Fact 5.2. Let Z be a vector field on a pseudo-Riemannian manifold (M,g) such that g(Z,Z) =
±1. We have DZZ = 0 if and only if Z preserves its orthogonal distribution.

As W⊥
ξ is spanned by V1, V2, ∂z ,− cos2(u) ∂t + 2ξ(u)|ξ(u)| ∂u, facts 5.1 and 5.2 imply:

Fact 5.3. DXξ
Xξ = 0 if and only if

g(Wξ , [Wξ, V1]) = g(Wξ, [Wξ, V2]) = g(Wξ , [Wξ, ∂z])

= g(Wξ, [Wξ,− cos2(u) ∂t + 2ξ(u)|ξ(u)| ∂u]) = 0.

Computing the brackets above, we find:

[Wξ, V1] = V2,

[Wξ, V2] =
cos(u)

ξ(u)
∂z − V1,

[Wξ, ∂z ] = 0,

[Wξ, Y ] = −2ξ(u)|ξ(u)| ∂u ·
cos(u)

ξ(u)
V1 +

cos3(u)

ξ(u)
V2 + ξ(u)|ξ(u)| ∂u ·

cos2(u)

ξ2(u)
∂z,

where Y = − cos2(u) ∂t + 2ξ(u)|ξ(u)| ∂u. All these brackets are tangent to W⊥
ξ therefore, by

fact 5.3, DXξ
Xξ = 0.

It is not difficult to modify the metric g in order to have DXX = 0 (i.e. to make Thurston’s
flow geodesic and not a smooth modification of it). At the beginning of the construction, we
just have to replace the function ξ by the function sinus and to remove the absolute values.
The metric becomes real-analytic in the neighborhood of the bad set but is only smooth
globally (the gluing process is unchanged). Unfortunately, in that case we have g(X,X) ≥ 0,
the vector field X is nowhere timelike.

To conclude this section, we prove that Xξ preserves the volume form of g i.e. that divXξ =
0. We do it because the geodesic flow of any pseudo-Riemannian manifold is divergence free.

Proposition 5.4. The vectorfield Xξ is divergence free.
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Proof. We denote the volume form associated to g by ωg. We want to compute LXξ
ωg =

d(iXξ
ωg). We see that, if S and T are two vector fields chosen among ∂t, V1, V2, ∂z and

∂u, then [S, T ] belongs to span{V1, V2, ∂z}. It means that all the ”brackets terms” in the
computation of d(iXξ

ω) (∂t, V1, V2, ∂z , ∂u) vanish. Moreover, the function ωg(∂t, V1, V2, ∂z, ∂u)
is clearly constant on the submanifolds N × S1 × {u}. Therefore:

d(iXξ
ω) (∂t, V1, V2, ∂z, ∂u) = ∂u · ωg(Xξ , ∂t, V1, V2, ∂z) = 0.

6 The 2-Dimensional Case

Adapting the terminology of [1], we will say that a pseudo-Riemannian metric is a timelike-
SC-metric (respectively spacelike-SC-metric) if all its timelike (resp. spacelike) geodesic are
simply closed geodesic with the same (pseudo-Riemannian) length.

Theorem 6.1. If (M,g) is a Lorentzian 2-manifold all of whose timelike (respectively space-
like) geodesics are closed, then (M,g) is finitely covered by a timelike-SC-metric (resp. space-
like SC-metric) on S1 × R.

Remark. (i) The assumption on the topology of M cannot be removed as S2
1 is diffeomorphic

to R × S1 and all spacelike geodesics are simply closed. Further S2
1 admits non-orientable

quotients. So M can be diffeomorphic to the Möbius strip.
(ii) The quotient of the pseudo-sphere S2

1 by a finite order subgroup of its group of direct
isometries gives an example of a metric on S1 ×R all of whose spacelike geodesics are closed.
However, when the subgroup is not trivial this metric is not a spacelike-SC-metric.

(iii) It is not possible to extend theorem 6.1 to a density result for non-closed geodesics,
since one can construct pseudo-Riemannian metrics on any surface M with with an open set
of directions U ⊆ TM such that any geodesic with tangents in U are closed.

We split the proof of Theorem 6.1 into two cases. One proving the closed case and the
other proving the non-compact case.

Proof of theorem 6.1 for the non-compact case. We start the proof by giving two lemmas.

Lemma 6.2. Let (M,g) be a Lorentzian 2-manifold and γ, η : S1 → M homotopic, inter-
secting, smooth, regular and spacelike/lightlike/timelike curves. Then γ and η have the same
causal type.

Proof. We prove the claim by contradiction. Assume that there exist two closed, homotopic,
intersecting, smooth, regular and spacelike/lightlike/timelike curves γ resp. η with different
causal types.

Let η̃ and γ̃ be lifts of these curves to M̃ (the universal cover of M) with a non empty
intersection. First note that γ̃ and η̃ do not self intersect. This can easily be seen from the
theorem of Poincaré-Bendixson. We can therefore extend the tangents of both γ̃ and η̃ to
non singular vector fields of the respective causal type. Orienting TM̃ at one intersection of
γ̃ and η̃ such that { ˙̃γ, ˙̃η} forms a positively oriented basis, induces, via the vector fields, an
orientation on all of M̃ .

As the loops γ and η are homotopic η̃ and γ̃ form a bigon D (i. e. η̃ and γ̃ intersect at
least twice). Now it is well known that at consecutive intersections the tangents of γ̃ and η̃
induce different orientations. This is clearly a contradiction.
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Our problem being invariant by finite covering, we only need to consider oriented and
time-oriented Lorentzian 2-manifolds.

Lemma 6.3. Let (M,g) be a pseudo-Riemannian manifold with a foliation by non-lightlike
closed geodesics. If the foliation is orientable, the fundamental class of any closed geodesic has
a multiple that lies in the center of π1(M).

Proof of lemma 6.3. Let X be a vectorfield tangent to the foliation and such that |g(X,X)| =
1. We know by Theorem 2.3 that under our assumption the flow of X exists and is T -periodic
for some T > 0, hence it induces a free R/TZ-action on M . We denote this flow by φ.
Hence, for all x ∈ M the curves φ[0,T ](x) are freely homotopic as closed curves. Denote the
fundamental class of those geodesics with σ.

Now let τ ∈ π1(M) be arbitrary. Choose any representative η of τ and define the map
F : S1 × R/TZ → M , (s, t) 7→ φt(η(s)). By construction we have F∗(e1) = τ and F∗(e2) = σ,
where e1 generates π1(S

1 × {1}) and e2 generates π1({1} × R/TZ), so that

σ ∗ τ = F∗(e2) ∗ F∗(e1) = F∗(e2 ∗ e1) = F∗(e1 ∗ e2) = F∗(e1) ∗ F∗(e2) = τ ∗ σ.

This shows that σ commutes with τ . Since τ was arbitrary, we see that σ lies in the center of
π1(M).

We assume that all spacelike geodesics are closed, since the other case follows by considering
(M,−g) instead of (M,g). Note that if M is oriented and (M,g) is time-oriented, the set of
timelike vectors T and the set of spacelike vectors S are fiber bundles isomorphic to a double
copy of the trivial fiber bundle M × R2. Therefore the projections induce isomorphisms
between π1(M) and the fundamental groups of each connected component of T and S. By
our assumption and Proposition 2.7 we know that each component of S is foliated by closed
non-lightlike geodesics, so we can apply Lemma 6.3. Thus the fundamental class of each closed
geodesic has a multiple that must be in the center of π1(M).

It is well known ([7]) that the fundamental group of a non-compact surface is free. Further
the center of a free group is trivial iff the group is generated by a single element. The
fundamental group of a non-compact surface is generated by a single element iff the surface
is diffeomorphic to either R2 or S1 × R.

It is further well known that no spacelike curve in a Lorentzian 2-manifold is contractible.
Therefore the fundamental class of the closed geodesics cannot be trivial. The only possibility
left is π1(M) ∼= Z, which implies M ∼= S1 × R.

Let (M̃, g̃) be the universal cover of (M,g). Let f be a generator of the fundamental group
of M seen as a group of isometries of (M̃, g̃). According to Theorem 2.3 there exist k ∈ Z and
T > 0 such that for any unit speed spacelike geodesic γ̃ of M̃ and any t0 ∈ R, we have

γ̃(t0 + T ) = fk(γ̃(t0)) (∗)

(fk corresponds to the homotopy class σ defined in the proof of Lemma 6.3). Hence, the group
generated by fk acts by translation on the spacelike geodesics.

Let M̂ = M̃/〈fk〉 and ĝ be the metric induced by g̃ on M̂ . Let γ̂ be a unit speed spacelike
geodesic of ĝ. Its lift to g̃ is a unit speed spacelike geodesic of M̃ . Let X be a nowhere zero
lightlike vector field on M̃ which is invariant by f . Let c be the integral curve of X containing
γ̃(0). As X is invariant by f , we know that fk(c) is an integral curve of X. Therefore c = fk(c)
or c∩ fk(c) = ∅. By Lemma 6.2, we see that c∩ fk(c) = ∅. It follows that c and fk(c) delimit
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a fundamental domain D for the action of 〈fk〉 on M̃ . Moreover, by recalling that (M̃ , g̃)
is time orientable as well as orientable and considering the angle between γ̃′ and X, we see
that γ̃ can intersect only once c or fk(c). Hence, the relation (∗) implies that γ̃([0, T ]) ⊂ D.
As a simply connected Lorentzian surface does not contain any closed spacelike curves, the
geodesic γ̃ does not self-intersect. It follows that γ̂([0, T ]) is a simply closed geodesic of length
T and that (M̂, ĝ) is the finite covering we were looking for.

Proof of Theorem 6.1 for the closed case. Assume that there exists a closed Lorentzian 2-
manifold (M,g) all of whose timelike or spacelike geodesics are closed. We will consider
the case of closed spacelike geodesics only, since the other case follows by considering (M,−g)
instead of (M,g).

By Theorem 2.1 and Proposition 2.7 the Riemannian arclength of the spacelike geodesics is
locally bounded. Therefore all closed spacelike geodesics of the common period are homotopic
as loops. Denote this homotopy class with σ.

Next note that every smooth non-self-intersecting compact spacelike curve can be extended
to a smooth spacelike 1-foliation. Furthermore, by imitating the end of the proof of the non
compact case, we see that there exists a finite covering M̂ of M that contains simply closed
spacelike geodesics. We choose a smooth spacelike simply closed geodesic η on M̂ . Extend η
to a spacelike foliation Fspace of M̂ .

Now it is easy to see that every spacelike geodesic γ intersecting η is tangent at one point
to Fspace. Lift γ and Fspace to the universal cover. Denote the lifts with γ̃, η̃ and F̃space.
Consider the function along γ̃ that associate to every point the Lorentzian angle between ˙̃γ(t)
and X(γ̃(t)) (X a given unit vector field tangent to F̃space). By construction γ̃ and η̃ will
intersect at least twice. But since the universal cover is homeomorphic to R2, the angle at two
consecutive intersections has to change sign (η̃ disconnects the universal cover). Therefore the
angle vanishes somewhere, i.e. γ is tangent to Fspace.

Note that the set of unit tangents T 1Fspace to Fspace forms a compact subset of the spacelike
vectors in TM . Hence, by Theorem 2.1, the set of unit spacelike geodesics intersecting Fspace

is a compact subset of the tangent bundle of M . But, we just proved that this set contains all
the unit spacelike geodesics that intersect η and this set is not contained in a compact subset
of TM (it contains the set of unit vectors above any point of η).

With Theorem 6.1 we can now answer the question of Lorentzian surfaces all of whose
geodesics are closed.

Theorem 6.4. Every Lorentzian surface contains a nonclosed spacelike or timelike geodesic.
Especially, there does not exist any Lorentzian surface all of whose geodesics are closed.

Proof. Any Lorentzian surface, all of whose spacelike geodesics are closed, is diffeomorphic to
S1 × R by Theorem 6.1. Now if there exists a Lorentzian surface all of time- and spacelike
geodesics are closed, there would exist intersecting closed geodesics in the same fundamental
class (Recall that no closed time- or spacelike curves is contractible in a Lorentzian surface).
Simply consider iterates of closed geodesics if necessary. But this is impossible by Lemma
6.2.

We close these notes with some comments on the case that all lightlike geodesics are closed
and the case that all geodesics are closed. In [6] a compact pseudo-Riemannian manifolds
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(M,g) is called “Zollfrei” if the geodesic flow restricted to the set H := {g(v, v) = 0, v 6= 0}
forms a fibration of H by S1’s. It is equivalent to the existence of a free action of S1 on
H whose orbits are the integral curves of the geodesic flow. For a Lorentzian surface, being
Zollfrei is equivalent (up to a finite cover) to having closed lightlike geodesics. The Zollfrei
metrics on surfaces are given by the following theorem. This result extends a theorem of
Guillemin (see [6] p.4) where the manifold is supposed to be compact.

Theorem 6.5. Let gE be the Einstein metric on S1 × S1, i.e. the metric gS1 − gS1 . Let
(X, g) be any Lorentzian surface all of whose lightlike geodesics are closed. Then there exists a
covering map p : S1 × S1 → X such that p∗g and gE are conformally equivalent. In particular
X is compact.

Proof. Let (X, g) be a Zollfrei surface. There exists a finite covering p0 : X̂ → X such that
p∗0g has two orientable lightlike linefields. We denote by F1 and F2 the foliations generated by
those linefields. As F1 is a transversaly oriented codimension 1 foliation by circles, the map
π : X̂ → X̂/F1 is a smooth fibration. Let F be a leaf of F2. The leaf F is compact therefore
π|F too is a covering of its image. It implies that π(F ) is a circle. Hence, X̂/F1 is also a circle
and X̂ has to be a torus.

Thus, X̂ is a compact foliated bundle with vertical foliation F1 and with horizontal foliation
F2. Otherwise said, there exist a diffeomorphism of S1 of finite order k, denoted by φ, and
a diffeomorphism X → (S1 × R)/G, where G is the group generated by the map f : (x, t) 7→
(φ(x), y + 1), that sends the foliations F1,2 to the horizontal resp. vertical foliation of (S1 ×

R)/G. Let Γ be the subgroup of G generated by fk, X̃ = (S1 × R)/Γ and p be the covering
X̃ → X̂. Clearly, the lifts to X̃ of the foliations Fi form a product. It means that there exists
a diffeomorphism h : X̃ → S1 × S1 such that h∗gE and p∗(p∗0g) are conformal.

Remark. We could combine Theorem 6.4 and Theorem 6.5 to the result stating: If all
geodesics of one causal type (timelike, spacelike, lightlike) are closed, then all geodesics of
all other types are non-closed.
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