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Abstract

The endocrine control of the reproductive function is often studied from the analysis of luteinizing
hormone (LH) pulsatile secretion by the pituitary gland. Whereas measurements in the cavernous
sinus cumulate anatomical and technical difficulties, LH levels can be easily assessed from jugular
blood. However, plasma levels result from a convolution process due to clearance effects when LH
enters the general circulation. Simultaneous measurements comparing LH levels in the cavernous
sinus and jugular blood have revealed clear differences in the pulse shape, the amplitude and the
baseline. Besides, experimental sampling occurs at a relatively low frequency (typically every 10
min) with respect to LH highest frequency release (one pulse per hour) and the resulting LH
measurements are noised by both experimental and assay errors. As a result, the pattern of plasma
LH may be not so clearly pulsatile. Yet, reliable information on the InterPulse Intervals (IPI) is a
prerequisite to study precisely the steroid feedback exerted on the pituitary level. Hence, there is
a real need for robust IPI detection algorithms.

In this article, we present an algorithm for the monitoring of LH pulse frequency, basing ourselves
both on the available endocrinological knowledge on LH pulse (shape and duration with respect to
the frequency regime) and synthetic LH data generated by a simple model. We make use of synthetic
data to make clear some basic notions underlying our algorithmic choices. We focus on explaining
how the process of sampling affects drastically the original pattern of secretion, and especially the
amplitude of the detectable pulses. We then describe the algorithm in details and perform it on
different sets of both synthetic and experimental LH time series. We further comment on how to
diagnose possible outliers from the series of IPIs which is the main output of the algorithm.
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Introduction

The neuroendocrine axes play a major part in controlling the main physiological functions (me-
tabolism, growth, development and reproduction). The connection between the central nervous
system and the endocrine system takes place on the level of the hypothalamus, where endocrine
neurons are able to secrete hormones that target the pituitary gland. In birds and mammals, a
dedicated portal system (the pituitary portal system) joins the hypothalamus and pituitary gland
together. The anterior lobe of the pituitary gland (adenohypophysis) produces different hormones,
which target either other endocrine glands (releasing their hormones directly into the bloodstream),
exocrine glands (releasing their hormones into dedicated ducts) or non-secreting organs.

We will be particularly interested in the gonadotropic axis, that is named according to its most
downstream component, the gonads (ovaries in females, testes in males). The reproductive axis is
under the control of the gonadotropin-releasing hormone (GnRH), which is secreted in pulses from
specific hypothalamic areas. GnRH effects on its target cells depend critically on pulse frequency
and ultimately result in the differential secretion patterns of the luteinizing hormone (LH) and
follicle-stimulating hormone (FSH). LH secretion pattern is clearly pulsatile, while FSH pattern is
not. LH and FSH control the development of germinal cells within the gonads and the secretory
activity of somatic cells. In turn, hormones secreted by the gonads (steroid hormones such as an-
drogens, progestagens and oestrogens or peptidic hormones such as inhibin) modulate the secretion
of GnRH, LH and FSH within intertwined feedback loops.

Whereas measurements of GnRH levels (in either the pituitary portal blood or the cerebrospinal
fluid) cumulate anatomical and technical difficulties, LH levels can be easily assessed from jugular
blood. In females, there is a clear modulation of LH pulse frequency along an ovarian cycle [9].
Pulse frequency is much lower in the luteal, progesterone-dominated phase compared to the fol-
licular, oestradiol-dominated phase. Apart from the period surrounding ovulation, there is a good
correlation between GnRH and LH pulses [7, 8], so that a precise determination of LH pulse fre-
quency is valuable to investigate the feedback effects of gonadal hormones in different physiological
or pathological situations.

LH plasma levels result from a convolution process. The instantaneous LH release rate from the
pituitary gland is pulsatile, but as soon as LH enters the general circulation, it is subject to clearance
effects. Simultaneous measurements of LH levels in the cavernous sinus and jugular blood [3] have
revealed clear differences in the pulse shape and amplitude as well as in the baseline. Besides,
experimental sampling occurs at a relatively low frequency (typically every 10 min, [1,2,4]) with
respect to LH highest frequency release (one pulse per hour) and the resulting LH measurements
are noised by both experimental and assay errors. As a result, the pattern of plasma LH may be
not so clearly pulsatile. Yet, reliable information on the interpulse intervals (IPI) is a prerequisite
to study precisely the steroid feedback exerted on the pituitary level. Hence, there is a real need
for robust IPI detection algorithms.

In this article, we present an algorithm for the monitoring of LH pulse frequency, basing ourselves
both on the available endocrinological knowledge on LH pulse (shape and duration with respect to
the frequency regime) and synthetic LH data generated by a simple model. We make use of synthetic
data to make clear some basic notions underlying our algorithmic choices. We focus on explaining
how the process of sampling affects drastically the original pattern of secretion, and especially the
amplitude of the detectable pulses. We then describe the algorithm in details and perform it on
different sets of both synthetic and experimental LH time series. We further comment on how to
diagnose possible outliers from the series of IPIs which is the main output of the algorithm.



Methods

A mathematical generator of synthetic LH time series

Basing ourselves on a simple model of plasma LH level introduced in [12], we illustrate the effects
of the sampling process upon a LH signal. This model combines a representative function of the
pulsatile LH secretion by the pituitary gland with a term accounting for the clearance from the
blood. The synthetic sampling process is designed to reproduce as close to experiments as possible
the variability in the sampling times and measurements. The different steps of this construction,
as well as the links between the mathematical objects and what they represent in the biological
context, are illustrated in the diagram of Figure 1.

Model of Luteinizing Hormone secretion

The pituitary gland releases LH into the blood as successive spikes characterized by a quasi-
instantaneous increase followed by slower (yet quite fast) decrease (see [3]). Hence, in our model,
the LH release along a spike is approximated by a discontinuous function of time: the jump ac-
counting for the instantaneous increase in the LH release is followed by a fast exponential decrease.
The interspike interval is controlled by a function of time Py (t) accounting for the varying release
frequency. The spike amplitude is also subject to an inter-spike variability as well as to long-term
changes partly due to the time variations in the stock of LH available for release. In our model,
the amplitude is controlled by another function of time Mgy (t). Hence, the instantaneous release
of LH (expressed in ng/ml/min) in the blood by the pituitary gland is given by:

t
LH(t) = Mspike(t) €xXp |:_khl (t - \‘J Pspike(t))] (1)
P, spik:e(t)

where |z] refers to the greatest integer smaller than x (integer part). The ky; stiffness coefficient
is directly linked to the spike half-life, 73;, by the following relation:
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We based our choice of parameter values on the few experiments that have investigated the LH
release by the pituitary gland in the ewe from synchronous sampling in the jugular blood and
cavernous sinus [3]. Accordingly, we chose a spike half-life 77,; = 20 min (i.e. kp; ~ 0.03466 min~—1).
We represent the continuously measured LH blood level (expressed in ng/ml) as the solution of:

dLH,
dt

(t) = LH(t) — aLHy(t) (2)

where the LH release rate LH(t) is given by equation (1). Parameter « represents the instantaneous
LH clearance rate from the blood. To be consistent with the one hour half-life of LH pulses in the

jugular blood, we have fixed & = 6 min~!.

Sampling protocol and assay variance

To mimic the experimental protocol for LH data acquisition, we extract time series from the fine
step numerical integration of equation (2). This process is intended to obtain a time series of N



consecutive samples similar to experimental results, i.e. a finite sequence of N couples (t;, A;), with
i=1,2,...N, where A; is the measured LH level at time ¢;.

Pituitary gland
Eq. (1
L
Y
Peripheral blood Solution
LH,(¢) of eq. (2)
Y
Theoretical time-series [ Solution of eq. (2) |
(without any variability) computed at times
(LHp(ti))?’:l | givenbyeq. (3)
Y
Time-series with variability [ Solution of eq. (2) |
in the sampling times computed at times
(LHy(t: + prme ()Y given by eq. (4

Time-series with variability in

both the sampling times and assays Eq. (5)
it

(LHp(ti + Prime (D) -(1 + Passay (),

Figure 1: Diagram of the synthetic sampling process.

In most experiments, the LH data are retrieved at a fixed frequency. We describe below the
corresponding synthetic process: the samples are obtained each T minutes from the starting time
t = r min. Hence, the sampling times are

ti=r+T(i—1), i=12 .N. (3)

Note that the first sample is retrieved at time ¢; = r. Parameter r € [0, Ts] allows one to shift the
beginning of the sampling process while using the same set of data simulated from equation (2).
To take into account the inherent variability of the experimental sampling times, we compute times
7; near the theoretical sampling time #;:

T; :ti—i-ptime(i), i1=1,2,...N. (4)

The random numbers pgime(i) € [—f, f], f > 0, are generated from an almost uniform distribution
(using the Mersenne Twister algorithm [6]). Then, we can compute the value LH,(7;) of the solution
of equation (2) at each of these times.

We also reproduce the LH assay variance by applying a multiplicative noise on each sample. We

compute:
Aj = LHy(7:)(1 + passay(i)), i=1,2,..N, (5)



where the random numbers pggsqy(i) € [—0,b], b > 0, are also generated from an almost uniform
distribution (Mersenne Twister algorithm). The output of the sampling process is the time series
defined by the N couples (t;, A;), i = 1,2,..., N, of times and corresponding measured LH levels.
Figure 2 illustrates the construction of the i-th sample in a time series.

Plasma LH (ng/ml)
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Figure 2: Computation of a synthetic sample. Solution LH(t) of equation (2)
(green curve), retained sampling time t; (blue dotted line), real sampling time 7; (red
dotted line) randomly chosen in [t; — f,t; + f] (blue interval), exact value LH,(7;) of
LH level at time 7; (green dotted line), retrieved LH level A; (red dotted line) randomly
chosen in [LHp(7;)(1 —b), LHy(7;)(1 +b)] (green interval). The output of the i-th step of
the sampling process is the couple (¢;, A;) (magenta disc) of time and corresponding LH
level.

In the context of an experiment, there may be some uncertainty on the exact sampling times
(i.e. the precise times at which the samples are retrieved). On the contrary, in our model of the
sampling process, we can retrieve the sequence of effective sampling times (7;) for a given synthetic
experiment. Figure 3 allows us to visualize the sequence (7;) (red dotted lines) compared to the
registered sampling time sequence (t;) (blue dotted lines). Here, we set the sampling period to
Ts = 10 min and the shift constant » = 1 min, hence:

t;=10i+1, i=1,2,..,.N

The maximal error is fixed to 15% of T, so that f = 1.5 min and, for each 7 from 1 to N,
T; € [ti —1.5,t; + 15]

Moreover, Figure 3 compares the results obtained without any variability on the sampling times
(blue time series) with those obtained with an error of +15% (red time series). It illustrates that
this variability can occasionally imply a great difference near a pulse maximum. The 6th blue
sample, obtained at ¢ = tg = 51 min, corresponds to the theoretical pulse maximum around 2.3
ng/ml. Yet the 6th red sample, obtained one minute earlier due to the variability of the sampling
time, corresponds to the preceding minimal LH level. Consequently, the local maximum of the blue



time series, obtained with the 6th sample, is noticeably greater than the local maximum of the red
time series, which is obtained with the 7th sample.

Plasma LH (ng/ml)
T T

Figure 3: Effect of the variability of the sampling times upon the synthetic
time series. The 7;, ¢ = 1...9, are the effective sampling times leading to the red-
colored LH time series. The ¢;, ¢ = 1...9, are the expected sampling times leading to the
blue-colored LH time series. The original, non-sampled time series corresponds to the
green line.

One can observe an instance of great discrepancy between the LH level measured at time
76, which corresponds to the very beginning of the ascending part of a pulse, and the LH
level measured at time tg, which corresponds to the maximum of the same pulse.

Model outputs

On the endocrinological ground, a LH pulse is an increase in LH blood level triggered by the
quick release of LH by the pituitary gland. As illustrated in the preceding section, the moderate
clearance rate of LH from the blood underlies the specific asymmetric shape of the pulses, which is
characterized by a fast increase immediately followed by a slower decrease. This property has been
highlighted in dedicated studies using high frequency sampling (for instance [5]: horse, 2 samples
per minute) of LH level during a short interval of time.

However, in long-time experiments, the sampling frequency is usually of the order of one per
10 minutes. Consequently, the precise shape and quantitative properties of the pulses are non
longer obvious in the time series. In particular, the theoretical pulse amplitude (theoretical highest
level hit during a pulse event) is most of the time not properly reflected by the highest sample
obtained during the corresponding event. In the following, we introduce few notions allowing us
to differentiate the properties of a theoretical pulse from those of the corresponding pulse obtained
from a time series.

The advantages of synthetic time series is that the underlying signal of LH release (LH(t)) and
the theoretical continuously measured blood LH level (LHp(t)) are available. This corresponds
to the ideal experimental situation where one could get high-frequency sampled, variability-free
time series retrieved at the same time from the cavernous sinus and jugular blood. With synthetic
data, we dispose of reference sets that allow us to identify both LH spikes and pulses without any
ambiguity.



Moreover, we can easily test different experimental protocols by changing the value of the paramet-
ers controlling the sampling properties (T, r, f,b ) and choosing various functions Mpre and Pspige
that determine the time-varying amplitude and frequency of LH spikes released by the pituitary
gland.

Definitions For sake of clarity, we specify a few notions and terms that will be used in what
follows. The definitions are illustrated by Figure 4. For a theoretical pulse (i.e. a peak in the signal
LH,(t) triggered by a spike in LH(t)), we define:

e the theoretical pulse amplitude as the maximal value hit during the event.
e the theoretical pulse time as the time at which the level hits the theoretical pulse amplitude.
For a pulse in a time series (corresponding to a theoretical pulse), we define:

e the pulse amplitude as the maximal sample obtained during the pulse event,

e the pulse occurrence as the sample time at which the time series hits the pulse amplitude.

Plasma LH (ng/ml)
T

Theoretical Pulse 251 i
Amplitude

Pulse Amplitude

1.5

0 | . | |
0 50 / WO 150 200
t (min)

Pulse Time Pulse Occurrence

Figure 4: Definition of pulse properties in the theoretical case versus experi-
mental case. For a theoretical pulse (i.e. a local maximum in the LH,(t) signal triggered
by a spike in LH (t)), we call “pulse time” the time at which LH),(t) admits a local max-
imum and “theoretical pulse amplitude” the value of LH), at this time. In a time series
(either obtained from simulation and synthetic sampling protocol or experimental data),
we call “pulse occurrence”, the time at which the time series admits a local maximum
and “pulse amplitude” the corresponding value. Both the time values and the amplitude
values are different in the theoretical and the experimental cases.

Synthetic LH time series obtained from constant spike amplitude and frequency. We
first examine the effects of parameters r, f and b in case of a constant spike amplitude Mgp;re = 15
ng/(ml.min) and constant interspike interval Pp;z. = 100 min for a same sampling period Ts = 10
min:



e Case A: r =1min, f=0min, b=0;

)

e Case B: r =4 min, f =0 min, b=0
e Case C: r =4 min, f =1.5min, b=0;

e Case D: 7 =4 min, f = 1.5 min, b = 10%.

The top panel of Figure 5 displays the solution LH,(t) (green curve) of equation (2), i.e. the
theoretical continuously measured LH blood level. Each panel from A to D shows the time series
(blue stars) obtained through the sampling protocol for the values of parameters r, f and b specified
above.
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Figure 5: Effect of the sampling process upon a LH level signal with constant
amplitude and pulse frequency. In all panels, Mgk = 15 ng/(ml.min), Pspixe = 100
min, Ty = 10 min. Top panel: theoretical continuously measured LH blood level. Panels
A, B, C, D: sampling points (blue stars) of the time series obtained from the top panel
signal through the sampling protocol. Panel A: first sampling time at » = 1 min, without
any variability in the sampling process. Panel B: first sampling time at » = 4 min, without
any variability in the sampling process. Panel C: first sampling time at » = 4 min, with
variability in the sampling times (£1.5 min). Panel D: first sampling time at r = 4 min,

with variability both in the sampling times (£1.5 min) and the assays (£10%).



Figure 6 details, for each time series obtained in case C or D, the distribution of LH pulse amplitude
(blue bars in left panels), i.e. local maxima, and LH levels at the basal line (blue bars in right
panels), i.e. local minima. For sake of comparison, the constant amplitudes obtained in cases A
and B have been marked with red and green bars respectively.
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Figure 6: Histograms of LH pulses and basal line amplitudes in simulated LH
series with constant amplitude and pulse frequency. Left panels correspond to
the maximal value (pulse amplitudes) distribution whereas right panels correspond to
the minimal value (basal line amplitude) distribution measured from the four cases of
figure 5. The A and B time series, that only differ in the first sampling time, display
constant (yet different) pulse amplitude. Red bars stand for case A (r = 1 min) value of
the pulse (2.425) and basal line (0.107) amplitudes. Green bars stand for case B (r = 4
min) value of the pulse (2.188 ng/ml) and basal line (0.096 ng/ml) amplitudes. Blue
bars stand for case C (r = 4 min; f = 1.5 min) and case D (r = 4 min; f = 1.5 min;
b = 10%, i.e. a variability of £10% in the LH assays) distributions of LH pulse and
basal line amplitudes. Case D pulse (max = 2.486 ng/ml; min = 1.940 ng/ml) and basal
line (max = 0.108 ng/ml; min = 0.082 ng/ml) amplitude distributions are wider than
case C pulse (max = 2.266 ng/ml; min = 2.092 ng/ml) and basal line (max = 0.101
ng/ml; min = 0.092 ng/ml) amplitude distributions, due to combined variabilities in the
sampling times and assays.



In cases A and B (f = b = 0), one obtains a strictly periodic pattern of sampled LH levels since
Pypike is a multiple of T;. However, depending on the beginning of the sampling process r (1 min
in time series A and 4 min in time series B), the maximum sample value varies from 2.425 ng/ml
in case A (red bars in left panels of Figure 6) to 2.188 ng/ml in case B (green bars). This shows
the importance of the phase between the pulsatile LH signal and the periodic sampling process in
the resulting observed pulse amplitude. It is worth noticing that this phase cannot be controlled at
all in experimental conditions since the delay elapsed from the last pulse time is not known at the
beginning of the experimental sampling process. The dependence of the basal line on this phase is
weaker but still exists: it varies from 0.107 ng/ml in time series A to 0.096 ng/ml in time series B.
By comparing panels B and C of Figure 5, we can observe the impact of the variability in the
sampling times (f = 0 min and f = 1.5 min in time series B and C respectively). With variable
sampling times, the pulse amplitude along time series is also variable, although the original con-
tinuous signal LH)(t) is perfectly periodic. This variability is shown in the top panels of Figure
6: the various LH pulse (resp. basal line) amplitudes obtained in case C (blue bars) are scattered
around the constant case B pulse (resp. basal line) amplitudes (green bar).

The impact of the variability in the assays is illustrated by the enhanced dispersal of the LH pulse
and basal line amplitudes obtained in case D (blue bars in bottom panels of Figure 6) for which
b = 10% compared to the case C amplitudes (b = 0).

In any case of either shifted (case B) or noised (cases C and D) time series, the pulse amplitudes
are undervalued with respect to the genuine amplitude (correctly assessed only in case A). It may
nevertheless happen that the effective sampling time coincides with a (genuine) pulse time. In that
case, the pulse amplitude can be overvalued if the sign of the assay error is positive (instance of
the blue bar on the right of the red bar in the left panel of case D).

Synthetic LH time series obtained from time-varying spike amplitude and frequency.
We now further examine the effects of the sampling process upon theoretical continuously measured
LH level with time-varying pulse amplitude and frequency:

e Case E: constant spike amplitude My;r. = 15 ng/(ml.min) and decreasing interspike interval
Pypike(t) = 100 — 3—% (expressed in min);

e Case F: decreasing spike amplitude Mgyke(t) = 15 — 8.7 1073t (expressed in ng/(ml.min))
and decreasing interspike interval Pypie(t) = 100 — 55 (expressed in min).

The sampling period is the same in both cases: Ty = 10 min.

Figure 7 gives some examples of time series obtained in cases E and F. In each case, the green curve
represents the solution LH,(t) (theoretical continuously measured plasma LH level) and the blue
stars represent the time series obtained through the synthetic sampling protocol. Figure 8 details,
for cases E and F, the distribution of LH pulse amplitudes (left panels) and successive LH levels
at the basal line (right panels) both for the theoretical continuously measured LH blood level (top
panels, green bars) and the time series obtained through the sampling protocol (bottom panels,
blue bars).

In case E, the spike frequency increases from 1 spike per 100 min to 1 spike per 50 min. Hence, the
spike release arises more and more often along time, so that the LH blood pulses are successively
triggered from a higher and higher basal level. Consequently, the basal line and, in a lesser extent,
the pulse amplitude of the theoretical LH level undergo a small and smooth increase. Moreover,
the number of samples per pulse decreases drastically as the pulse frequency increases, so that the
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Figure 7: Effect of the sampling process upon a LH level signal with regular
increasing sampling frequency. Case E: the pulse amplitude remains almost constant
and the basal line regularly increases. Case F: the pulse amplitude regularly decreases
and the basal line regularly decreases. The top panels represent the fine step simulation
of plasma LH level. The middle panels represent the time series (blue stars) along the
theoretical continuously measured plasma LH level (green curve). The bottom panels
represent the resulting LH measured time series (measured LH levels versus sampling
times linked with segments). In both cases, the sampling period is Ts = 10 min. In case
E, the initial time sampling occurs at the first minute of the simulation (r = 1 min),
without any sampling time (f = 0 min) or assay (b = 0) variability. In case F, the initial
time sampling occurs at the fourth minute of the simulation (r=4 min), with sampling
time (f = 2 min) and assay (b = 5%) variability.
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Figure 8: Histograms of LH pulses and basal line amplitudes in simulated LH
series with increasing pulse frequency. Left panels correspond to the maximal value
(pulse amplitude) distributions whereas right panels correspond to the minimal value
(basal line amplitude) distributions, measured from the two cases of figure 7. Top panels
(green lines) display the initial LH plasma level distributions whereas the bottom panels
(blue lines) display the resulting LH time series. A zoom on the amplitude distribution is
shown as an insert in case E of the top left panel (left arrow). While the distributions are
regular in the theoretical time series, they become completely irregular in the sampled
time series. As a result, the range of amplitudes is shortened. Regarding the pulse
amplitude distribution in case F, it is worth noticing that all measured values (max =
1.959 ng/ml, min = 0.302 ng/ml) are lower than the corresponding theoretical values
(max = 2.315 ng/ml, min = 0.353 ng/ml). In case E, the theoretical pulse amplitudes
vary from 2.425, to 2.379 ng/ml whereas measured pulse amplitudes vary from 2.395 to
1.447 ng/ml. On the contrary, regarding the basal line amplitude distribution, it is worth
noticing that all the measured values (E: max = 0.519 ng/ml, min = 0.125 ng/ml; F:
max = 0.258 ng/ml, min = 0.094 ng/ml) are greater than the theoretical minimal values
(E: max = 0.434 ng/ml, min = 0.098 ng/ml; F: max = 0.171 ng/ml, min = 0.075 ng/ml).
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LH time series looks noisier at the end than at the beginning of the time series (Figure 7). This
effect implies that the pulse amplitudes are spread out by the sampling protocol much stronger in
case E (from 2.395 to 1.447 ng/ml) than in cases C and D (Figure 8). Hence the time variations in
the pulse frequency enhances the variability brought about by the sampling process.

Case F represents a situation that is naturally encountered in the physiological dynamics of LH
secretion: the same increase in the spike frequency as in case E, combined with a decrease in the
amplitude. As in the preceding cases, each of the LH pulse amplitude in the time series is smaller
than the corresponding one in the theoretical LH level. Additionally in case F, the amplitude at
the basal line is sensibly raised up by the sampling protocol. Hence, the difference between the
pulse amplitude and the basal level is strongly deprecated, which adds to the noisy character of
the ending of the time series.

Pulse detection algorithm

In the context of automatic pulse detection in a time series, a pulse is a peak (i.e. a local maximum
of the time series) fulfilling given criteria. The most challenging issue in the algorithm design
consists in formalizing the biologically relevant criteria that discriminate the pulses from other
peaks. Among these criteria, the amplitude is the most obvious. However, as illustrated in the
preceding section, it cannot be used as an infaillible criterium for automatic pulse detection since
the quantitative features of a pulse (absolute amplitude, amplitude from baseline, ...) are really
altered in an unknown way by the sampling process.

For sake of robustness and acuteness of our pulse detection algorithm, we have introduced a selection
process based on multiscale criteria involving different properties of the peaks. Besides the series
of pulse occurrences, the main output of our algorithm is the series of the corresponding InterPulse
Interval (IPI) together with a tunnel of confidence (IPI tunnel) related to the regularity of the pulse
frequency variations.

Algorithm foundations

Notations and definitions We consider a time series of N points obtained with a Ts-periodic
sampling process and we note the sampling times:

ty=(k—1T,, k=1,2,...N.

Hence, the k** sampling time is (in particular, the first sampling time is t; = 0). We note
either Ay, or A(t;) the value corresponding to the k** sample and call k a “time index”. For sake of
simplicity in the following explanations, we will refer either to the time index k or the corresponding
time tg.

The pulse detection algorithm is based on a sequence of different processes. Some of them consist in
researching high amplitude peaks that can potentially be classified as pulses, others aim to remove,
among the formerly selected peaks, those that do not fit other properties met by genuine pulses. In
the following, we note P = (p;)i1<;<s(p) the vector storing dynamically the time indexes at which
the algorithm detects the summit of a potential pulse. s(P) is the size (number of elements) of P.
The algorithm modifies vector P in such a way that indexes p; are always sorted in increasing order.
Hence, at any time along the algorithmic process, s(P) pulses are detected, tp, is the occurrence of
the i*" detected pulse and Ap, is the amplitude of the ith detected pulse.

In order both to moderate the importance of the amplitude and to account for several characteristics
of the pulse shape, we need to introduce the notions of “height” and “magnitude” of a peak as well
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as that of “relative magnitude” between two peaks. Let us suppose that the i-th sample of the time
series (occurring at time ¢;) corresponds to a peak (i.e. A;—1 < A; and A;41 < A;). The height of
this peak is defined as the difference between its amplitude A; and the lowest value of A; within
the sampled time series, denoted by A4, i.e.:
Hi = A,L —]glllI}VA] = Az —A.

Let us assume additionally that a set of potential pulses P is identified from the time-series and
the closest pulses registered in P before and after ¢; occur at ¢ = t; and t = ¢; respectively (see
Figure 9). We define the two minimal values of the time series between ¢, and ¢; on one hand, and
between t; and ¢; on the other hand:

B = min Ay
je{(k+1),(k+2),...,(:—1)}
By = min Ay

e{(i41),(i42),s(1—1)}

Then, we define the magnitude of the peak corresponding to the i-th sample as the geometric mean
of Az - Bl and Az - BQ, i.e. \/(Az - Bl)(Al - BQ)

5 Plasma LH (ng/ml)
T T

1
0 th 20 40, 60 80 100 t 120 140

Figure 9: Definition of the magnitude of a peak. Let P be a given vector of
potential pulses. Considering the peak occurring at ¢; = 43 min, we assume that P
contains the pulses just before and after ¢; occurring at ¢, = 4 min and ¢; = 108 min. We
define U (resp. V) as the difference between the peak amplitude (A; = 2.2 ng/ml) and
the minimum value By (resp. Bs) of the time series between ¢ and ¢; (resp. t; and ¢;) :
B; = 0.8 ng/ml (resp. Bz = 0.4 ng/ml). The magnitude of the peak occurring at ¢; is the
geometric mean between U (1.4 ng/ml) and V' (1.8 ng/ml). Here, the peak magnitude is
equal to 1.587 ng/ml.

Finally, let us consider two peaks occurring at t; and ¢; with ¢; < t;. Let us call By the minimal
value of the time series between t; and t;:

0 = min Ag
jE{(k-‘rl),(k’—i—Q),...,(l—1)}
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We call “relative magnitude” between the two peaks the geometric mean between Ay — By and
A; — Byg.

The notion of peak height does not depend on the vector of potential pulses. It represents a
normalization of the amplitude among the time-series with respect to the lowest value of the time
serie. The peak magnitude can change as the vector P of identified pulses evolves and, consequently,
will be used to compare a peak with its direct neighbors. The interest of the magnitude is to take
into account the local baseline, without being sensitive to differences in the baseline from one side
or the other of a peak. The relative magnitude between two peaks gives a semi-local reference
for the pulse magnitude. In particular, the magnitude of a pulse can be usefully compared to the
relative magnitude between its direct neighbors (i.e. the pulses just before and after it).

Pulse selection process

e Initialization: We first fill vector P by selecting time indexes corresponding to great height
samples. Even if, at this stage, we intend to recover a large enough set of potential pulse
indexes, the time intervals between pulses should be consistent with the maximal frequency.
Accordingly, we introduce a parameter 7T}, called the nominal period, defined as the smallest
time duration in which, from one pulse occurrence, one expects the following one.

Starting from the time index p; of the maximal sample in [0, 27},], we locate the time index mg
of the minimal sample in [t,,,t,, +T}] and then we retrieve the time index py of the maximal
sample in [tym,,tm, + Tp]. We iterate the process along the whole time series to obtain the
initial guess of potential pulse indexes P = (p;).

This method is a trade-off between selecting all the peak indexes in the time-series (with the
drawback that there will be too many of them if the time series is noisy) and selecting only
local maxima corresponding to great amplitudes (with the drawback that there will be too
few of them if the time series is smooth and the pulse frequency is low).

e Remove too small peaks: Once vector P is initialized, some of the registered indexes may
correspond to small sample values. As illustrated in the first section, the pulse amplitude is
strongly altered by the sampling process and, consequently, it cannot be used as an infallible
criterium to select the pulses. Hence, we use multi-scale criteria based on the notions of
height and magnitude to determine which indexes corresponds to too small peaks and to
remove them from vector P.

— Global relative criterium: We aim to remove peaks whose height is small in compar-
ison with the height of all detected pulses. We define the “median height” as the median
of the detected pulse heights. For each pulse, if the ratio between its own height and
the median height is less than a threshold parameter ., it is removed from P.

We have chosen the median instead of the (arithmetic or geometric) mean since it is less
sensitive to the presence of great height peaks..

— Semi-local relative criterium: We compare the magnitude of each peak with the
relative magnitude between the immediately preceding and following pulses. If this
comparison is not conclusive with respect to the threshold )\, introduced above, we
remove the peak index from vector P.

It is worth noticing that the geometric mean used to define the magnitudes provides
robustness (compared to arithmetic mean, for instance) to this criterium with respect
to possible local variations of the base line.
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— Global absolute criterium: We compare the magnitude of each pulse to an absolute
threshold A,. If the comparison is not conclusive, the corresponding time index is re-
moved from vector P.

This criterium precludes non significant elevations in the baseline to be considered as
potential pulses. Hence, parameter A\, corresponds to the assay detection threshold.

At this level of the selection process, vector P only contains the time indexes corresponding
to peaks with sufficiently great height and magnitude (with respect to threshold A, and \,)
to be classified as pulses. However, as the initial guess for P may have skipped some potential
pulses, the next step of the selection process consist in retrieving the missed pulses.

Retrieve missed pulses: Between each pair of successive pulses registered in P, we examine
each peak. If this peak fulfills the semi-local relative criterium, the corresponding time index
is added to vector P.

By construction, such a retrieved peak almost automatically fulfills the other two global
criteria.

Shape-based criterium: The pulse duration has to be consistent with available knowledge
on pulse half-life. For a fixed sampling rate, a detected pulse should extend over a minimum
number of consecutive experimental data. Consequently, we intend to remove what we call
“3-point peaks” for which the immediately preceding and following samples are local minima
of the time series (see top panel of Figure 10).
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Figure 10: Identification of a 3-point peak pattern. Parameter A3, corresponds to
the ratio between the arithmetic mean of the amplitude of the neighboring points of rank
2 (green lines) and the geometric mean of the amplitude of the immediate neighbors (red
lines). Panel A: the selected pulse (dashed vertical line) is identified as a genuine 3-point
peak. Panel B: the selected pulse (solid vertical line) is not identified as a 3-point peak,
since it belongs to a genuine, asymmetric LH pulse with an exponential decrease, albeit
locally noised.
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However, due to possible noise in the time-series, a pulse may appear as a 3-point peak.
But, in this case, the pulse is expected to be not “too sharp” (see bottom panel of Figure
10). Thus we remove from P the time indexes corresponding to peaks with a “sharpness
coefficient” greater than a chosen threshold As,.

The precise definition of “sharpness coefficient” will be detailed in Step 5 of the algorithm (see
next subsection “Algorithmic pulse detection”). We only enlighten here that this criterium
is based on the asymmetric shape of a pulse and allows one to get rid of the genuine peaks
produced by occasional experimental errors.

Vector of InterPulse Interval (IPI) and IPI tunnel At a given step, we define the vector
of InterPulse Intervals (IPI) from the current P vector by:

O = (0i)1<i<s(p)—1 With 0; =t — 1,

Pi+1

I

As we aim to apply the algorithm mainly to hormonal time series, we designed a process to take
into account some degree of regularity in the rate of change in the pulse frequency. Hence, given
a vector P = (p;) of identified potential pulses, we introduce a cubic function ¢ (i) fitted to 6; in a
least squares sense. Function ¢ gives an averaged, yet time evolving representation of the IPI built
from the global sequence O.
Then, we build a tunnel in [t,,,t,_ ( P)] xRy delimited by the graphs of two piecewise linear functions
of time i and g, built from function ¢. Precisely, for each pulse time ¢,, (i = 2...s(P)), we
define Vi ¢(tp,) = (1 — a)p(i — 1) and Ysup(ty,) = (1 + B)é(i — 1) to draw the lower and upper
boundaries of the tunnel. Thus, parameters « and 8 tune the width of the so-called “IPI tunnel”
; they represent a quantification of the pulse frequency regularity. The tunnel allows one to assess
the regularity of the IPI time variations and can help the user to (i) classify a specific pulse as
a potential outlier with respect to the pulse frequency properties of the series, (ii) identify and
localize a possible rupture in the secretion rhythm.
To illustrate the use of the IPI tunnel, let us consider a time series for which the sequence of pulse
indexes @) = (¢;) is easy to find by sight. We assume that the time series displays regular pulsatility,
i.e. the pulse frequency undergoes smooth variations along time. Under this condition, function ¢
is a good approximation of the IPI sequence.
Let us first consider the case of a lack of detection: let P be the vector formed by the pulse indexes
in @ except one (the if)h). In the course of the automatic pulse detection, this case may happen if
the maximum amplitude corresponding to this pulse is low. Then, the corresponding IPI sequence
(6F) is given by:

09 if2<i<ig—1,

6 = ‘91’6(2) + 91‘%—‘,—1 if 4 = o, (6)
602, ifig+1<i<s(@Q—1=s(P).

Under the regularity assumption, each IPI #; should be close to (or even in) the range delimited by
the values of its neighbors 6;_1 and 6;1;. On the contrary, in the case of vector P, the (ig — 1)th
IPI (9{; ) is noticeably greater than the maximum of its neighbors. More precisely, its value is twice
the mean of its neighbors and, consequently, is approximately twice the ¢ value.

Now, let us consider the case of an over-detection: let P be the vector formed by the pulse indexes
in @ plus an extra pulse occurring at time ¢ = t; lying between the (ig — 1) and the if)h pulse
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times stored in vector Q). Hence, gj,—1 < k < gj,. Then:

P _ 09 if2<i<ig—1,
69, ifip+2<i<s(Q)+1=s(P),

1

and moreover:

9{; + 9£+1 = 92-%.
Under the regularity assumption, either 05 or 9213 41 1s too small compared to the expected IPI
range delimited by ‘91!3 1= 92‘3_1 and sz 42 = 0;7 1. In the less discriminating case, the extra pulse
lies close to the middle of its neighbors (gi,—1 + ¢,)/2. Then, Hf; and 0F 41 are almost equal to

0
the half of the expected IPI Qg. Hence, even if several combinations of 95 and 95 41 values exist,

depending on the position of time k compared to g;,—1 and g;,, one of the IPIs is always less than
the half of the ¢ value, which indicates a potential over-detection.

Finally, an appropriate choice of the values of a and S allows one to discriminate the pulses that
break the frequency regularity and indicate a rupture in the secretion rhythm.

Algorithmic description

Overview of the algorithm. Besides the time series of N samples and the sampling period T5,
the user is asked to enter values of four parameters that rule the acuteness of the detection process
and two parameters that define the width of the IPI tunnel. We use the parameter names in the
following algorithm description. We give a tutorial in the result section for helping the users to
choose the appropriate values.

1. The nominal period T}, represents the smallest duration in which, from one pulse occurrence,
one expects the following one. In what follows, we note:

k= EPJ . (8)

Note that the time interval [tx41,t; + Tp] contains the k, time indexes {k +1,....,k + kp}.
2. The relative magnitude threshold: A,
3. The absolute magnitude threshold ratio: A,,
4. The relative magnitude threshold ratio for 3-point peaks: A3,
5. The ratios defining the edges of the IPI tunnel: «, .

The algorithm body is segmented into 6 steps. The third step is itself segmented into 3 substeps.
Each step is described in detail below with an accompanying box enunciating the corresponding
pseudo-code.

The output of the algorithm consists in:

1. The set of detected pulse occurrences (P),

2. the corresponding sequence of IPIs (©),
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3. the lower and upper edges of the IPI tunnel (respectively ¥ins and ¢sup),
4. the sets of lower and upper outliers (P, and P,p).
and associated graphical outputs (of which we make an intensive use in the result section):
1. the sampled time series (A4;)}_; versus the sampling times with identified pulse occurrences,

2. the graph of the IPI versus the corresponding pulse occurrences (more precisely: (p;+1, Hi)fg)_l)

together with the IPI tunnel.

Input data: (A4;)",, T, Tp, A, Aas Asp, @, B.

Algorithm step 1

Algorithm step 6

OUtPUt data: P7 67 ¢infa wsupy Ploun Pup'
Related graphical outputs:
e the time series (¢;, A;)_; with vertical bars indicating the detected pulse occurrences,

e the graph of the IPI versus the corresponding pulse occurrences and the IPI tunnel:
P)—
(pi+170i)fi1) 17 winf and wsup'

Notations In the following, we search iteratively for a time index corresponding to the minimal
(resp. maximal) value of a subset of time series Ay. When there are several time indexes verifying
this condition, we choose the smallest one. Hence, for I a subset of {1,2,..., N}, we define the
following notations:
argmin Ay = min{j € I|A; = min A
el i e1l4, kel 3

a ax Ay = min{j € I|A; = max A
repay A = minfy € 114, = o Ac)

Step 1: Search for the first pulse. Under the assumption that the maximum value of Ay
retrieved from a sufficiently large time window coincides with a pulse occurrence, the first pulse is
detected by searching for the maximum value of Ay for k € {1,2,...,(2ky,)} (where k, = |T,,/T5]).
The choice of the time window size (twice nominal IPI) containing 2k, samples is a trade-off between
the risk of missing the first pulses (encountered when the window is too large) and the risk of false
detection (encountered when the window is too small).

Step 1: Find the first pulse occurrence index p; by searching for the maximum value of the
sampled time series Aj, within the first 2k, data samples:

= ar max A
b1 gkeu,z,...,(%p)} k
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Step 2: Search for the pulses following the first one. After the detection of the first pulse
located at k = p1, the second one could be detected by searching for the maximum value of Ag
for k € {(p1 +1),(p1 +2),...,(p1 + kp + s)}, where some margin value s should be chosen for
the trade-off between over-detection and under-detection. To reduce the risks of misdetection,
instead of searching for the maximum value of A at this stage, the minimum value of Ay for
ke{(p1+1),...,(pm +kp)} is first looked for. Let k = mg be the location of this minimum, then
the second pulse is searched for within the window {(m2 +1),...,(m2 + kp)}. These searches are
made within windows of size k), (see Figure 11). As the minimum and the maximum being searched
for are expected to be inside the windows of size k,,, there is no need to choose a margin value. The
following pulses are then searched for similarly.

Step 2: Find the following pulse occurrences p; by alternatively searching for the minimum and

maximum values of the sampled time series in a moving window covering k,, data samples:
1:=1

while p; + £k, < N do

Mjy] ‘= arg min A
ke{pi+1,pi+2,....pi+kp}

if mi+1 + k‘p < N then

Pit1 = arg max Ay
ke{mipi+1mip1+2,...,mip1+kp}
end if
1:=1+1
end while
spi=1—1

P = {pla" . 7p8p}
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Figure 11: One iteration of the forward research of pulses. For a given value of
i in the iterative process (initialized with ¢ = 1), the algorithm searches for the index
m;1 of the minimal sample from the p;-th sample in the window defined by the nominal
period T}, i.e. among the k, samples (under the green segment) directly following the
pi-th sample. Then, the algorithm searches for the index p;11 of the maximal sample
among the k, samples (under the blue segment) directly following the m;1-th sample.
Index p;41 is stored in vector P and the process is iterated with ¢ incremented by 1 until
the end of the time series.

Step 3: Remove too small peaks by various thresholding methods.

Step 3.1: Pulse height median-based thresholding. Several methods are used to remove
small pulses possibly resulting from false detections. The first method is based on a threshold
applied to the heights of the detected pulses. We recall that the height of the i-th pulse is defined
as the difference between its amplitude A,, and the lowest value of Aj within the sampled time
series, denoted by A. If the height of a pulse is lower than the median of the heights of all the
detected pulses multiplied by a ratio A, then it is removed from the set of detected pulses.

Step 3.1. Pulse height median-based thresholding:

A:= min A

k€l2,...,.N
P:={p; € P: Ap, — A> N\ (median(4,,,..., 4p, ) — A)}
sp = s(P)
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Step 3.2: Local relative magnitude-based thresholding. The second method for removing
false pulses is to compare the magnitude of each pulse with those of its neighbors. Let B; and
Bs be respectively the minimum values of Ay for p;—1 < k < p; and p; < k < p;11. The local
magnitude of the i-th pulse is defined as the geometric mean of (A,, — By) and (A,, — B2). Let By
be the lowest value out of By and B, The local magnitude of the i-th pulse is compared with the
geometric mean of (A,,_, — By) and (A, , — By), relatively to a threshold A,. The comparison of
geometric means is equivalent to the comparison of arithmetic means in the logarithmic scale, so
that it tends to favor smaller quantities.

Step 3.2. Local relative magnitude-based thresholding:
fori=2,...,(sp—1) do

Bl =

= min Ap
ke{(pi—1+1),(pi—1+2),....,(pi—1)}

By = min
By := min(By, Bs)

if (Api - Bl)(Api - BQ) < >‘72~(Ap¢71 - BO)(Api+1 - BO) then
Erase p; from P
end if
end for

sp = s(P)

Step 3.3: Local magnitude absolute thresholding. The third method for removing false
pulses is based on some prior knowledge about the magnitudes of the pulses. Let B; and By be
respectively the minimum values of Ay, for p;_1 < k < p; and p; < k < p;41. If the local magnitude
of the i-th pulse (the geometric mean of A, — By and A,, — By) is smaller than a chosen threshold
A, then it is removed from the set of detected pulses.

Step 3.3. Local magnitude absolute thresholding:
fori=2,...,(s,— 1) do

By = min Ag
ke{(pi—1+1),(pi—1+2),...,(pi—1)}
By : min Ay

- ke{(pi+1),(pi+2),..,(pi+1—1)}

if (Ap, — B1)(Ap, — B2) < A2 then
Erase p; from P
end if
end for




Step 4: Retrieve missed pulses. To retrieve possible missed pulses, the data points lying
between each pair of detected pulses are examined. For each sample index j lying between the
pulse occurrences p; and p;41, the relative height of the sample A; is defined as the geometric mean
of A; — By and A; — By, where By and B are respectively the lowest values of Ay, for p; <k < j
and for j < k < p;+1. The sample exhibiting the maximum relative height between p; and p;41 is
compared with the geometric mean of A(p;) — By and A(p;+1) — Bo, where By is the lowest sample
value between p; and p;+1. If the comparison with respect to the threshold A, is conclusive, a
new pulse is added to the set of detected pulses. This process is repeated three times to deal with
the case where several pulses might have been missed between two consecutive previously detected
pulses..

Step 4. Retrieve missed pulses.
for k=1,2,3 do
J=10
fori=1,...,(sp — 1) do
if p; +3 < p;11 then
for j = (pi+2),...,(pi+1 —2) do

B = min Ay
k€{(pi+1),...5}
BQ = min Ak

- ke{j,....,(pix1—1)}

end for

j = arg max C;
e JE{Pi+2)mn(pis1—2))

BQ = min(Bl, BQ)

if Cj > N2(A(p:) — Bo) (A(pis1) — Bo) then
Insert jmax into J
end if
end if

end for

Insert J into P

sp = s(P)
end for
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Step 5: Removal of 3-point peaks. When the rhythm of the hormonal pulses accelerates,
the IPI may approach the sampling period T, to the point that it becomes impossible to reliably
detect pulses. In such situations, the sampled time series may exhibit local maxima supported by
3 consecutive data samples. To avoid false detections, pulses detected upon 3 points are identified
and possibly removed. For a pulse detected at k = p;, if p; — 1 and p; + 1 are local minima “sharp”
enough, in the sense that A(p; —2) — A(p; — 1) and A(p; +2) — A(p; + 1) are large enough compared
to A(p;) — A(p; — 1) and A(p;) — A(p; +1), then A, is considered as a peak detected upon 3 points
(referred to as “3-point peak”) and is removed from the set of detected pulses.

Step 5. Remove pulses detected upon 3 data points:

sp == s(P)
fori=1,...,s,do
plz?’u and pZSN_27
if ¢ and A(p; —2)> A(pi—1), and A(p;) > A(pi — 1), then
and  A(pi) > A(pi + 1), and  A(pi +2) > A(pi+1)

{[A(pi —2) — A(pi — )] + [A(pi +2) — A(pi + 1)]}/2

R .=
VIAPp:) — Alpi — D][A(pi) — Api +1)]

if R > A3, then
FErase p; from P
end if
end if
end for

Step 6: IPI sequence and tunnel construction. Under some regularity assumptions of the
IPIs, the detected pulses leading to IPI outliers should be corrected. For this purpose, a cubic
polynomial 8+ 61z + 6222 + 0323 is first fitted to the IPIs where z is equal to the shifted pulse index
i. Let (fy, ..., 03) be the value of (g, ..., 03) fitted to the segmented IPIs and ¢(z) = Og+ 012+ 0oz +

93;1:3. The lower and upper edges of the IPI tunnel are defined respectively by ¢ (x + s”—;l) (1—a)

sp—1

and ¢ (;v + =5 ) (1 — B). The centering of the i-indexes (leading to x;) is for the purpose of a

better numerical accuracy.

Step 6. IPI sequence and tunnel construction:
sp == s(P)
fori=1,...,s,—1do
qi ‘= Pi+1 — Di
-1
T =1— °p
2
end for
sp—1
AoA A 2
0o, 01,04,03) = ar min O + 012; + 0222 + 0523) — ¢
(6o, 01,02,03) g(eov.“’%)ew ; [(60 + 612 + O22] + O327) — ¢4
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Experimental data provided to the algorithm

We have run the algorithm on either experimental or synthetic LH time series. Experimental
time series included nineteen ewes, distributed over two different protocols. All procedures were
approved by the “Direction Départementale des Services Vétérinaires d’Indre-et-Loire” (approval
number C37-175-2) for the agricultural and scientific research agencies INRA (French National
Institute for Agricultural Research) and CNRS (French National Center for Scientific Research),
and conducted in accordance with the Guide for the Care and Use of Agricultural Animals in
Research and Teaching. Blood samples from a first group of ten estrus-synchronized ewes (Lacaune
breed, [4]) were collected via jugular venous cannula every 10 min for a period of 24 h during the
follicular phase. A second group of nine ovariectomized Ile-de-France ewes were collected during
anestrus season for blood sampling every 10 min over a period of 15h. Ewes received an agonist of
somatostatin type 2 receptor via intracerebroventricular injection between 5 and 10h after sampling
start (Courtesy of A. Caraty, unpublished data). All blood samples were collected into heparinized
tubes and then centrifuged for 20 min at 400 g. Plasma was stored at —20° C until hormone
assays [4].

Results

The output of our algorithm consists of the IPI series, providing the number of detected peaks with
respect to the time series indexes. Moreover, the IPI tunnel has been used on the LH time series
according to the assumption of regularity in their frequency modulation. The sampling period and
the absolute magnitude threshold A,, corresponding to the minimal detectable concentration, are
provided by the protocol specifications. The default set, proposed in Table 1, has been used in all
the cases: nominal period, T}, equal to 40 min, relative magnitude threshold, A, equal to 0.2, (20%
of the geometric mean of the neighbors), both the lower and upper bound of the IPI tunnel equal
to 0.6. The choice of the default parameter set is explained.

The InterPulse Interval (IPI) series

Figures 12 and 13 correspond respectively to LH synthetic and experimental series. The left panels
display the LH plasma level time series.Vertical lines correspond to the pulse occurrences. Stars
on the time series correspond to the points of sampled measures. The right panels display the
resulting IPT series, indexed by the number of the pulse occurrence (each IPI is represented by a
black diamond).

On the synthetic LH series (Figure 12), the left panels display the following cases. Panel A repres-
ents a theoretical plasma level series, that would be retrieved in case of continuous monitoring. The
pulse frequency increases whereas the pulses amplitude decreases along time. Panels B, C and D
are the corresponding sampled series with a respective sampling period of 1, 5 or 10 min. The first
sampling time occurs at the first minute of the simulation (r = 1 min), and there is variability both
in the sampling times (f is equal to 15% of the sampling period, corresponding to 0.15 min for B,
0.75 min for C and 1.5 min for D) and the assays (b = 5%). On the right panels, the theoretical IPI
series are represented by a continuous green curve, superimposed on the IPI series of measured LH
series (black diamonds). Comparisons between the successive panels allow us to assess the influence
of the sampling period on the IPI series. The number of detected peaks (16) is the same, and the
patterns of regular acceleration are identical, whatever the sampling period is.

25



LH (ng/ml) Inter Pulse Interval duration (min)

25 TTTTTT ‘ 85
A
0 N Y YN NYNYNYN ‘ 30
2.5
8 [y,
B \ \ LA

a »
P e i s

85
)
"G#
L S
[} [
[ R S
1600
30

DA | e,

0 Time (min) 1000 1 Inter Pulse Interval number 16

0

Figure 12: IPI series from synthetic LH time series with different sampling fre-
quencies. Left panels: LH plasma level time series retrieved over 1000 min. Vertical lines
correspond to the pulse occurrences. Panel A: theoretical plasma level, corresponding to
a continuous monitoring. The pulse frequency increases, whereas the pulse amplitude
decreases along time. Panels B, C and D: sampled series, with a respective sampling
period of 1, 5 or 10 min. Stars on the time series correspond to sampled points. The first
sampling time occurs at the first minute of the simulation (r = 1 min), variability in the
sampling times is set to 15% of the sampling period (f = 0.15 min for B, f = 0.75 min
for C and f = 1.5 min for D) and the assay variability is set to b = 5%.

Right panels: resulting IPI series, indexed by the number of the pulse occurrence (each
IPI is represented by a black diamond). The theoretical IPI series is the continuous green
curve, superimposed on the IPI series obtained after sampling. In any case, there are 16
detected peaks.

Moreover, the discretization of the initially continuous signal induces delays in the time occurrence
of pulses; the maximal delay corresponds to the sampling period. The higher the sampling period
is, the closer the measured IPI series are to the theoretical ones. On the experimental LH series
(Figure 13), three different pulsatile rhythms are displayed, with a 10 min sampling period. Panel
A illustrates the case of a stable rhythm with a final acceleration resulting in IPI shortening in
the last third of the series. Panel B illustrates the case of a progressive acceleration resulting in a
progressive shortening of the IPIs. Panel C illustrates the case of a fast deceleration in the second
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Figure 13: IPI series from experimental LH serieswith different pulsatile
rhythms. Left panels: LH plasma level time series with a 10 min. sampling period.
Vertical lines correspond to the pulse occurrences. Stars on the time series correspond
to sampled points. Right panels: resulting IPI series (black diamond), indexed by the
number of the pulse occurrence. Panel A: stable rhythm with final acceleration. Panel
B: progressive acceleration. Panel C: fast deceleration in the second half of the series.

half of the series resulting in increased IPIs. As the IPI series give information both on the num-
ber of detected peaks and the rhythm evolution, they are particularly useful for comparing the
rhythmicity of different series of the same duration (for instance, B is almost twice as fast as A).

The IPI tunnel

Due to the assumption of regularity in the frequency modulation of the LH time series, the IPI
tunnel has been used to point out situations where there may be a lack of detection or an over-
detection of pulses in the time series. In such situations, we can try to explain the detection error
and propose possible corrections. On the opposite, the IPI tunnel can detect genuine long or short
IPIs, and be used as a tool for analyzing sudden frequency breaks or accelerations in pulsatile
rhythms. In all examples the sampling period was equal to 10 min.
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Figures 14 and 15 display respectively apparent lacks of detection or over-detections in experimental
time series. The top panels display the LH plasma time series and vertical lines correspond to pulse
occurrences. The bottom panels display the resulting IPI series, indexed by the pulse time rather
than the pulse number in order to keep the same reference time in both the LH and IPI series. Each
IPI value (marked by a blue point) corresponds to the time elapsed between the current detected
pulse and the previous one. The IPI series are displayed together with the three curves delimiting
the tunnel: the dashed line represents the moving cubic function fitting the values of the IPI series,
the solid lines represent the lower (1,) and lower (¢)3) bounds of the tunnel.

Figure 14 displays two cases of apparent lack of detection, where the IPI outliers lie above the
upper bound. In case A, the outlier appears at minute 400 (black arrow, panel Al). Going back
and forth between the IPI series and the LH time series allows us to favor the hypothesis of a lack
of detection. Indeed, if we take into account the small amplitude pulse occurring at minute 340
(red arrow, panel Al), the exceedingly large IPI can be distributed over two consecutive IPIs of
100 and 60 min, whose duration are compatible with the local tunnel size (local upper bound of
123 min, local lower bound of 30.5 min), hence with the regularity assumption.
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Figure 14: IPI outliers lying above the upper bound of the tunnel. Example
of correction by decreasing the value of the relative magnitude threshold, A,.
Top panels: two experimental LH plasma time series, A (panels Al and A2) and B (panel
B). Vertical lines correspond to pulse occurrences. Bottom panels: resulting IPI series
indexed by time. Each IPI value (blue point) corresponds to the time elapsed between the
current detected pulse and the previous one. Dashed line: moving cubic function fitting
the values of the IPI series. Solid lines: lower (a-dependent function 1);,f) and upper (53-
dependent function tg,,) edges of the tunnel (o = 8 = 0.6). Black arrows: occurrences
of the outliers. Case A: outlier due to a lack of detection (missed pulse designed by a
red arrow); panel Al: initial IPI series with A, = 0.2 (default value); A2: corrected IPI
series; with A, = 0.1. Case B: genuine long IPI.
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A first correction step consists in decreasing the relative magnitude threshold (), set to the default
value of 0.2, in such a way that the missed pulse can be recovered without adding false detections.
Panel A2 illustrates the result of the correction: the missed pulse occurring at minute 340 was
recovered (red arrow) after decreasing the value of parameter A, to 0.1. In case B, the outlier
appears at minute 440 (black arrow, panel B). Going back and forth between the IPI series and the
LH time series allows us to favor the hypothesis of a genuine long IPI. There is not only no visible
pulse after the preceding detected pulse but the rhythm also remains slow after the long IPI.
Figure 15 displays some cases of over-detection, where the IPI outliers lie below the lower bound,
in two LH series A and B. The outlier occurrences are indicated by solid black arrows. It is worth
noticing that the two IPIs indicated by dashed arrows in case B (panel B1) are not classified as
outliers with the default set parameters (o = § = 0.6) but they are close enough to the tunnel
lower bound to draw the user’s attention. In this example, we considered them as IPI outliers.
In both cases, the patterns of some detected peaks suggest false detections possibly imputable to
measurement conditions.
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Figure 15: IPI outliers lying below the lower bound of the tunnel. Example of
correction by increasing the value of the relative magnitude threshold, \,.. Top
panels: two experimental LH plasma time series, A (panel A) and B (panels B1 and B2).
Bottom panels: resulting IPI series indexed by time. The vertical lines, the blue points,
the dashed line and the solid lines represent the same objects as in Figure 14. Panels A
and B1: initial IPI time series. Solid black arrows: occurrence of clear outliers. Dashed
black arrows: occurrence of IPIs that can be associated with over-detected peaks in the
LH series although they remain above the lower bound of the tunnel. Red arrows: peaks
lying on the middle of the descending phase of the preceding pulse. Green arrow: peak
lying on the middle of the ascending phase of the following pulse. Panel B2: B corrected
IPI series after increasing the relative magnitude threshold A, to 0.45. Two of the three
false peaks have been discarded.
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The IPT outliers in cases A (panel A) and B (panel B1) are either due to additional peaks lying on
the middle of the descending phase of the preceding pulse (red arrows) or to a peak lying on the
middle of the ascending phase of the following pulse (green arrow). A first correction step consists
in increasing the relative magnitude threshold (\,) in such a way that the peak can be discarded
without eliminating true detections. Increasing A, to 0.45, allows us to discard two false peaks in
case B (panel B2). Nevertheless, no change in A, can get rid of the IPI outlier in case A nor of
the third IPI outlier in case B without discarding genuine pulses at the same time. It appears that
the amplitude of the peaks underlying the IPI outlier is too close to that of their neighbors. It will
be up to the user to evaluate the influence of such IPIs on the characteristics of the series and to
follow the more appropriate strategy.

Figure 16 shows how the IPI tunnel can be used for detecting sudden frequency breaks. It displays
four different LH time series (left panels) retrieved from ewes subject to an experimental protocol
inducing a steep decrease in the pulse frequency.
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Figure 16: IPI-based study of the synchronization between LH series. The four
LH series are retrieved from ewes subject to an experimental protocol inducing a steep
decrease in the pulse frequency. Left panels: experimental LH plasma time series; vertical
lines correspond to pulse occurrences. Right panels: resulting IPI series indexed by time.
The vertical lines, the dashed line and the solid lines represent the same objects as in
Figure 14. Vertical dashed line: break in the dynamics of the IPI series corresponding to
the last IPI preceding the outlier.
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IPI series (right panels) are indexed by the pulse time in order to keep the same reference time
when studying variability between series. The break in the dynamics of the IPI series corresponds
to the occurrence of the last IPI preceding the outlier lying above the upper bound. Moreover,
identifying its precise location enables us to study the synchronization between the different time
series, as pointed out by the vertical dashed line.

User parameters: choice of a default set and robustness evaluation

Among the algorithm parameters (Table 1), two are provided directly by the protocol specifications:
the sampling period T and the absolute magnitude threshold ), corresponding to the assay detec-
tion threshold (minimal LH level that can be reliably measured). For T, an upper bound equal to
10 min is recommended (see the explanation below). Default values have been fixed for the other
five parameters of Table 1: nominal period (7}), relative magnitude threshold (), 3-point peak
threshold (A3p) and the lower (o) and upper () bounds of the IPI tunnel. The choice was based
on the observation of LH time series retrieved in 19 ewes distributed over two different protocols.

Name Notation | Default set | A | B
Time series characteristics Sampling frequency T X | X
Absolute magnitude treshold Aa XX
Parameters Nominal period T, 40 X | X
Relative magnitude threshold Ar 0.2 X | X

3-point peak threshold A3p 0.1 X

Frequency regularity of pulsatility o, B 0.6 X

Table 1: Algorithm parameters and default set adapted to LH time series. De-
fault set for T and A\, are provided by the experimental protocol specifications. A: needed
parameters for time series characterized by a pulsatile pattern, an asymmetric shape of
pulses, some regularity in the time evolution of the pulse frequency (LH, GH, Insulin).
B: needed parameters for time series with no underlying assumption of symmetric shape
of the peaks or frequency regularity (intracellular calcium).

Nominal period (7)) 7}, is chosen so as to favor the maximal number of correct detections,
especially at the beginning of time series. According to the existence of high frequency series with
short IPIs, there is a risk to detect two consecutive pulses in the same window if it is too large.
T, has been set to 40 min, which is a value close to the minimal observed period. The number of
missed pulses is equal to 0 for T}, ranging from 40 to 70 min; it increases up to 2 for 7, = 80 min.
Even in that latest case, the number of missed pulses is small enough to guarantee the algorithm
robustness with respect to this parameter.

Relative magnitude threshold ()\,) Compared to the performances of the algorithm with the
Ar default value (0.2), a decrease down to 0.1 or an increase up to 0.3 increase the total number of
outliers (either false detections or missed detections). Moreover, this parameter can be adapted in
order to correct outliers lying outside the tunnel, as previously seen.
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3-point peak threshold (A3,) The 3-point peak threshold is introduced to prevent non-asym-
metric pulses from being detected. Figure 10 illustrates the identification of a 3-point peak pattern.
A3p is the ratio between the arithmetic mean of the amplitude of the neighboring points of rank 2
(green lines) and the geometric mean of the amplitude of the immediate neighbors (red lines). For
instance, based on that criterion, the peak selected on panel A (dashed vertical line), is identified
as a genuine 3-point peak. On the contrary, the peak selected on Figure 10, panel B (solid vertical
line) is not identified as a 3-point peak, since it belongs to a genuine, asymmetric LH pulse with
an exponential decrease, albeit locally noised (the LH level corresponding to the latter neighbor
of rank 2 is a little higher than expected for a smooth exponential decrease). Over 15 analyzed
potential 3-point peaks, the minimal A3, value corresponding to a genuine 3-point peak was equal
to 0.15, while the maximal A3, value corresponding to a locally noised, genuine asymmetric LH
pulse was equal to 0.07, so that there was no overlapping. Consistently, we chose a default set
value (0.1) lying within the [0.07,0.15] range. This parameter is embedded within the algorithm,
since there is no reason for the user to modify it. Indeed, the 3-point peaks rely on endocrinological
considerations and take into account, either directly or indirectly, the typical duration of a LH pulse
(around 30 min) and its asymmetric shape, that can be reconstructed from time series sampled at
least every 10 min.

Lower (a) and upper () bounds of the IPI tunnel For the lower bound «, the 0.6 default
value does not lead to any IPI outlier, whereas a value of 0.5 leads to classify two genuine pulses
as over-detected pulses, and a value of 0.4 leads to classify twelve genuine pulses as over-detected
pulses (among more than 300 pulses). For the upper bound f, the 0.6 default value allows one to
identify every genuine outliers, without generating false outliers, but changing the value to 0.5 led
to false additional under-detected pulses. However, the use of the tunnel bounds is mainly to draw
the user’s attention to possible events of interest, and there is no direct sensitivity of the algorithm
to their precise values.

Discussion

For hormonal time series as those studied in this article, an important particularity is the fact that
the signals are clearly subsampled due to the invasive nature of the sample collection procedure.
In this case the classical filtering methods cannot be successful. Specific methods have to be
developed to overcome this difficulty. There are two main approaches to study time series of
pulsatile hormones. One consists in trying to detect, as accurately as possible, the pulse peaks,
considered as discrete events [10], while the other is based on deconvolution principles and intend
to reconstruct the underlying secretion process [11]. The deconvolution approach might seem more
attractive, since it is susceptible to provide rich information on the hormonal signal, but it is
hampered by the lack of validation, since information on the “true” signal is almost never available
and cannot be directly compared to the reconstructed signal. Our own algorithm clearly belongs to
the category of discrete peak detectors. Whereas, to our knowledge, the other available algorithms
rely only on local and semi-local amplitude criteria, our algorithm combines local (on the data
point level), semi-local (on the level of -possibly moving- windows of consecutive data points), and
global (on the whole series level) amplitude criteria, with other criteria accounting for the pulse
duration and the relative regularity in the pulse frequency modulation. Hence, this is a multi-scale
and multi-criteria algorithm based on a dynamical selection process of the peaks.
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To design our algorithm, the first idea was to locate significant local maxima in the processed time
series, guided by the nominal IPI value so that the detected pulses have a reasonable rhythm. As
the nominal IPI value may be too large or too small for each actual IPI in the processed signal,
more steps were added to retrieve missed pulses and to remove false pulses. These extra steps are
mainly based on the height of each pulse candidate and its magnitude with respect to the relative
magnitude between neighbor pulses. The main advantage of these criteria is their weak dependence
on the baseline that is most of the time non-stationary in typical hormonal time series.

An original feature of our work is to combine mathematical modeling with signal processing. We
have used synthetic time series, generated by a simple dynamical model, to illustrate the funda-
mental concepts underlying our algorithmic choices, as well as to assess the robustness of the model
outputs with respect to the sampling rate and different sources of variability. Introducing uncer-
tainty on both the measured LH level (to mimic assay variability) and time of measurement (to
mimic possible hidden variability in the sampling chronology) allowed us to check that the ability
to detect the right number of events was not affected by the noise.

For a given time series, the outputs of the algorithm consists of a corresponding series of detected
IPI, structurally expressed as multiples of the sampling period. Hence, the algorithm provides
information on the evolution of the frequency regime along the series, which is essential for studying
the control of frequency encoding in endocrine systems.

We have run the algorithm on two different sets of experimental time series collected in sheep. Since
they have a large body size and a much longer ovarian cycle compared to rodents, domestic species
such as the ovine species are more suited to longitudinal endocrine studies and their reproductive
physiology is much closer to human reproductive physiology. We gave several instances showing
that the algorithm is able to adapt to different patterns of frequency modulation (more or less rapid
acceleration or deceleration) and also to detect breaks in the IPI rhythm. We then explained how
one can make use of the IPI tunnel to discriminate outlier pulses from genuine pulses corresponding
to a locally marked change in the frequency regime. On the whole, these results have shown that the
algorithm can be employed to study and understand the frequency encoding of hormonal signals.
To put the algorithm at the disposal of the user not familiar with computer programs, we intend to
develop a user-friendly interface to make our software easily available and ready for use. The aim
of this tool is to provide as much aid to decision as possible to the users together with guaranteeing
full understanding on the detection process and the effect of the parameter values on the output.
In addition to the time series, the sampling period T and the assay detection threshold A\, provided
directly by the protocol specifications, there are only 5 parameters to be set by the user: Tj, A,
A3p for the pulse detection itself, o and 3 for the definition of the IPI tunnel edges. A default set of
parameter values is proposed in the case of LH time series (Table 1). It was refined by performing
the algorithm on LH time series characterized by a pulsatile pattern with an asymmetric shape of
pulses and some regularity in the time evolution of the pulse frequency. LH can be considered as
the paragon of any hormone whose secretion pattern is pulsatile, so that the algorithm would also
be suited for other hormones (e.g. insulin or growth hormone). As for LH, one has to go through
the whole steps of the algorithm, including the removing of 3-point peak (needed parameter: Asz;,)
and tunnel-based identification of outliers (needed parameters: « and () for GH and insulin series
analysis. In the case of time series for which there is no underlying assumption of asymmetric
shape of the peaks or frequency regularity, such as intracellular calcium series, one only needs to
go through the first to the fourth steps of the algorithm.

On a more theoretical ground, an interesting question may be addressed in relation to the discretiz-
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ation of a continuous signal. A time series results from a sampling process applied to a continuous
signal, which implies that we have chosen (by default) to retrieve the sampling time corresponding
to a local maximum to define the time of pulse occurrence. Thus, each IPI is a multiple of the
sampling period. As illustrated in the first section, the corresponding theoretical pulse time differs
from the pulse occurrence. A deeper analysis of the effect of the sampling on the pulse shape
could be undertaken. This problem is hard to tackle since it mixes non linear dynamics, stochastic
process and statistical inference. However, results on this subject would give precious additional
knowledge on the location of the theoretical pulse time and could provide more acurate information
on the IPI sequence and the frequency encoding.
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