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Université Toulouse 1 - Manufacture des tabacs,

21 allées de Brienne, 31000 Toulouse - France

Thibault.Laurent@univ-tlse1.fr
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Abstract

Un nombre croissant de données sont modélisées sous la forme

d’un graphe, éventuellement pondéré : réseaux sociaux, réseaux bi-

ologiques... Dans de nombreux exemples, ces données relationnelles

peuvent être accompagnées d’une information supplémentaire, ou

étiquette, sur les nœuds du graphe : il peut s’agir de l’appartenance à

telle ou telle organisation pour un réseau social ou bien l’appartenance

à une famille de protéines pour les réseaux d’interactions de protéines.

Dans tous les cas, une question importante est de savoir si la distribu-

tion des valeurs de cette étiquette est influencée par la structure même

du réseau. Nous proposons des outils d’exploration de cette ques-

tion, basés sur des tests issus du domaine de la statistique spatiale.

L’utilisation de ces tests est illustrée au travers de plusieurs exemples,

tous issus du domaine des réseaux sociaux.

Mots-clés : données relationnelles, réseaux sociaux, I de Moran,

statistiques de comptage, test de permutations, diagramme de Moran,

sommets influents

Abstract

A growing number of data are modeled by a graph that can some-

times be weighted: social network, biological network... In many real

world situations, additional information is provided with these rela-

tional data, related to each node of the graph. For instance, the nodes

of a social network can be labeled by their membership to a social

group or, the nodes of a proteins interaction network can be labeled by



proteins families. In this framework, an important question is to under-

stand if the labels of the nodes are, somehow, related to the network

topology. To address this question, this paper presents exploratory

tools that are based on tests coming from spatial statistics. The use

of these tests is illustrated on several examples in the social network

framework.

Key-words: relational data, social network, Moran’s I, join count,

permutation test, Moran’s plot, influential nodes

1 INTRODUCTION

A growing number of real situations are modeled through relational data,

i.e., data where the objects under study are not (only) described by infor-

mation that fits the standard data analysis framework (numerical variables

or factors) but also by the knowledge of a kind of relationships between the

objects. In particular, these data include social networks, constructed accord-

ing to a given kind of interactions between persons, or biological networks,

where genes or proteins interact to cause a desirable or an unwanted biolog-

ical consequence. This paper deals with relational data that can be modeled

by a (possibly weighted) graph whose nodes are labeled by an additional in-

formation. This information can be either a factor or a numerical value and

the underlying problem is to understand if the labels are linked to the rela-

tions between the nodes in the network: this question can help to understand

the reasons underlying the relations in the network or, with an opposite point

of view, it is a prior step before any prediction strategy for unlabeled nodes.

Among works that deal with network having labeled nodes, are the epi-

demic propagation models: for instance, [25] deals with the SIR model

where differential equations model the spread of a disease’s states (suscepti-

ble / infective / removed) through a network. These approaches are mostly

used for simulation purposes and not for real data analysis. Other approaches

involve linear models to explain the spread of a factor information through

social relationships: in [9], the evolution of obesity in a large social net-

work is modeled by a logistic regression having as a covariate the fact that a

connected individual is or is not obese; [29] models women’s contraceptive

use in Cameroon by a diffusion model which is simply a logistic regression

taking into account the network auto-correlation effect. More recently, pro-

file alignment in social networks has raised an increasing interest: analyzing

Club Nexus, an online community at Standford University, [1] show an in-

creasing similarity between individuals having a small social distance. From

a dynamic point of view, [12, 2] show an increasing similarity between peo-

ple after their connections in an online community (Wikipedia and aNobii).

All these work are based on the simple study of the correlation between the

similarity profiles and the distance in the network.

In this paper, we concentrate on an exploratory analysis purpose in the

case where we do not observe a spread through a network over the time but



the status of its nodes at a given moment. An approach is proposed, that

combines the topology of the network and the labels of its node in a unique

measure, coming from the field of spatial statistics. Spatial statistics deal

with geographical entities that are related to each others by a spatial relation-

ship. [13] decomposes the spatial analysis in three main topics depending

on the nature of the data: geostatistical data, lattice data and point patterns.

Spatial analysis studies spatial entities by using the traditional techniques of

statistics and taking into account the topological, geometric or geographic

properties of the data. Besides, spatial analysis developed its own methods

for detecting and modeling spatial autocorrelation or spatial heterogeneity in

the data. One common way to model the proximity between two geographic

entities is to define a matrix, W , which contains adjacency information (0/1)

or some numerical similarity that is usually a decreasing value of the geo-

graphic distance. As pointed out in [15],

“Spatial systems and social networks are virtually equivalent

phenomena as both can be represented by the adjacency matrix

W used to define the spatial or network structure of a system

[...]”

But, until very recently, exploratory tools developed in the field of spatial

statistics were not used in social network mining, despite the fact that lin-

ear “spatial” models (i.e., models including an auto-correlation part based

on the network adjacency matrix) are of a very common use in social net-

work modeling (see [14, 22, 21], among others). A few examples of the

use of some of the spatial auto-correlation measures presented in this pa-

per can be found in the literature: in the free statistical software R [28], the

package sna, dedicated to social network analysis [8], contains a function

that calculates autocorrelation indexes, such as Moran’s I (see Section 3) and

Geary’s G. In the marketing discipline, [18] illustrates the use of these two

indexes to explain the behavior of a telecommunication company customers.

The present article intends to push this application further, not only by il-

lustrating the usefulness of classical spatial autocorrelation measures under

various circumstances but also by providing a wider range of tools, including

graphical tools such as the Moran’s plot and influence measures to highlight

important individuals in a social network.

In the following, the relational data are represented by G = (V,W ),
a weighted graph with vertexes V = {x1, . . . , xn} and weights W =
(Wij)i,j=1,...,n such that Wij ≥ 0 (and Wij > 0 indicates that there is an

edge between nodes xi and xj) and Wij = Wji (the weights are symmetric

and thus the graph is undirected). Typical examples of such graphs are used

to model, for instance, social networks (in this case W is the number or the

intensity of the relation between two persons).

In addition to the graph, a function C, standing for the labels on the nodes,

is also known:

C : xi ∈ V → C(xi) = ci.



In this paper, ci is supposed to be a binary information (see Section 2) or a

numerical information (see Section 3). Two types of tests, corresponding to

these two cases, are presented in the paper. The use of the tests are illustrated

with several examples, relying on a Monte Carlo simulation which is based

on the repetition of the realization of a random process (here the random per-

mutation of the labels among the nodes) to be able to assess its distribution.

The examples are all related to social networks.

2 CASE OF BINARY LABELS

In this section, C is supposed to take values in {0, 1} (without loss of gen-

erality, this case models any binary labeling).

2.1 Join count test based on Monte Carlo simula-
tions

Dealing with data indexed by spatial units (i ∈ I), [23] introduced a gen-

eral method to analyze the spatial interaction for a binary variable. More pre-

cisely, suppose now that (ci)i∈I is a binary variable those values are given

for spatial units indexed by the finite set I; suppose also that some of these

spatial units are linked and that others are not. The “join count” statistic is

defined as:

JC =
1

2

∑

i 6=j

Wijcicj , (1)

in the case where Wij ∈ {0, 1} encodes the fact that the spatial units i and j

are linked (Wij = 1) or not (Wij = 0). Then, [10] extended this measure to

arbitrary (and possibly non symmetric) weights able to model more precisely

the perception of the geographical space; a large literature is devoted to the

choice of relevant weights to encode spatial relationships.

This statistic became very popular as [27] proved its asymptotic normal-

ity (when n tends to infinity) under the assumption of the independence of

(cicj)ij for distinct pairs of observations. A test for the spatial correlation

of (ci)i was derived from this result. It relies on the calculus of the mean

and standard deviation of the asymptotic law under the null hypothesis and

additional assumptions on the sampling distribution.

The same approach can be directly applied to more general networks, in

particular social networks, where nodes (e.g., persons involved in the net-

work) play a role similar to spatial units and weights model the intensity of

the relations between two nodes, instead of the geographical similarity. Two

tests can be derived from the JC index:

– by calculating the index expressed in Equation (1), which is simply:

JC1 =
1

2

∑

i 6=j, ci=cj=1

Wij ,



one can test if the number of nodes valued 1 and related to nodes valued

in the same way is significantly different (greater or smaller) to what

would be expected if there was no correlation between labels of linked

nodes;

– by calculating an index similar to Equation (1) but replacing ci by c̃i =
1− ci, the following index is obtained:

JC0 =
1

2

∑

i 6=j, ci=cj=0

Wij .
4

This index is used to test if the number of nodes valued 0 and related

to nodes valued in the same way is significantly different (greater or

smaller) to what would be expected if there was no correlation between

labels of linked nodes.

Unfortunately, these tests are based on the approximation of the distribu-

tion of JC by the Gaussian law, which is only valid in an asymptotic way

and under other mild conditions. For small networks, this approximation

can be bad and a usual method to circumvent this difficulty is to estimate

the distribution of JC by a Monte Carlo simulation: the distribution of JC

is approximated by the empirical distribution of JC for P permutations of

the values of C among the nodes of the network (where P is large). This

aims at approximating JC distribution under the assumption that the labels

are randomly distributed on the network, provided the network topology and

the number of labels of each kind (contrary to the test based on the asymp-

totic distribution). Through several simulation studies, [10] showed that this

approach gives accurate results.

The following subsections respectively illustrate the use of this index on a

small social network and on a medieval social network.

2.2 Example 1: Gender distribution in “Les
Misérables”

This first example aims at illustrating the use of the join count test for a

small social network used as a simple example. This example is described in

[20] and is extracted from the famous French novel “Les Misérables”, written

by Victor Hugo. From the novel, a weighted graph was built, counting simul-

taneous appearances of the 77 characters of the novel in the same chapter 5.

A gender information (which is clearly bimodal), about the characters, was

added. This information is not given with the original data but can be found,

4. Note that, similarly, JC0−1 =
∑

i, j: ci=0, cj=1
Wij can be used to test the signifi-

cance of the proximity between nodes valued with 0 and nodes valued with 1 but these results

can be deduced from the other tests as JC0 + JC1 + JC0−1 = 2m where m is the number

of edges of the network.

5. The original data are available at http://www-personal.umich.edu/˜mejn/

netdata/lesmis.zip



as well as the code used to perform the simulations related to this network,

in supplementary material available at http://www.nathalievilla.

org/suppmaterial-I3/. The whole graph (network data and addi-

tional gender information) is displayed in Figure 1. The graph contains 26
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Figure 1: Co-appearance network from “Les Misérables” with gender labels

(red or pink: women and blue: men).

(33.8%) women and 51 men. The join count statistic can be used to test four

different assumptions:

– Is the number of men (M) related to another man significantly greater

to what would be expected if labels of connected nodes were not corre-

lated?

– Is the number of women (F) related to another woman significantly

greater to what would be expected if labels of connected nodes were

not correlated?

– Is the number of men related to men significantly smaller to what would

be expected if labels of connected nodes were not correlated?

– Is the number of women related to another woman significantly smaller

to what would be expected if labels of connected nodes were not con-

nected?

The R package spdep [6] can be used to compute the test statistic and

the p-values (i.e., the probability to obtain the observed value of the statistic

under the null assumption) based on the comparison with the empirical dis-

tribution of JC for P permutations of the values of the genders among the

nodes of the network (with the function joincount.mc; P = 1 000 was

used). Figure 2 gives the empirical distribution of join count JCF and JCM

(respectively, relations between women and relations between men). This

figure shows that the number of relations between women in the network
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Figure 2: Empirical distributions and true values (in red) of the join count for

the relations “F-F” (left) and “M-M” (right) in the network “Les Misérables”.

tends to be small compared to what is obtained by randomizing the genders

among the nodes whereas the number of relations between men tends to be

large. Additionally, Table 1 provides the corresponding values for the join

count statistic and the p-values associated to the four questions listed above.

This table shows that only a relation is significant (with a p-value equal to

Sex Join count value Greater Less

F 55 0.7932 (NS) 0.2068 (NS)

M 520 0.0224 (**) 0.9755 (NS)

Table 1: Join count statistic and p-values for the gender relations in the net-

work “Les Misérables”. NS means non significant, * means significant at a

level of 10%, ** significant at a level of 5% and *** significant at a level of

1%.

0.0224): the number of men related to another man in the network is signifi-

cantly greater than what was expected in an independent framework. Hence,

in the novel of Victor Hugo, not only are the men more numerous but they

also tend to interact more often with other men than with women.

2.3 Example 2: Geographical locations in a medieval
social network

The data used in this example are similar to the data described in [7]

and come from the corpus of documents available at http://graphcomp.

univ-tlse2.fr 6. More precisely, the network was built from medieval

6. Project “Graph-Comp” funded by the ANR, number ANR-05-BLAN-0229.



agrarian contracts: the vertexes of the network are peasants involved in the

contracts and the edges model common quotes in the same contract (the

edges are weighted by the number of common quotes). The network is re-

stricted to peasants having at least one activity between 1295 and 1336 (just

before the Hundred Years’ war). Additionally, the main geographical loca-

tion of each peasant is also available.

The final graph has 877 vertexes and has a density equal to 12.0 %. It is

displayed in Figure 3 (left) by using a force directed algorithm (Fruchterman

and Reingold as implemented in the R package igraph, see [16]). 2 ver-

texes, that are disconnected from the rest of the graph, were removed from

the analysis. 22 geographical locations, all corresponding to villages (“lieu

dit” or “paroisse”) situated in the seigneury of Castelnau Montratier (Lot, a

French “département” in the South of France) are cited and distributed as

in Figure 4. The 5 most frequently cited locations (Saint-Daunes, Cazillac,

Saint-Martin de Valausi, Saint-Julien and Saint-Martin de La Chapelle) are

displayed on the network in Figure 3 (right).

Figure 3: Medieval social network based on common quotes in agrarian con-

tracts (left) and information about the geographical locations of the peasants

involved in the network (right). Only the 5 most frequently cited geographi-

cal locations are displayed: see Figure 4 for the distribution of all geograph-

ical locations in the network.

For these data, the correlation of each of the 5 most frequent geographical

locations to the network topology was tested. More precisely, we tested the

assumption that the people living in one of those 5 places tend to be more

connected (or less connected) to other people living in the same place. To

that aim, the join count test was used with 5 binary variables corresponding

to the location in each of the 5 most frequently cited places. The results are

given in Table 2 for W being the number of contracts between two peasants

(weighted graph) and in Table 3 for W being the corresponding binary re-

lation (non weighted graph, i.e., only the fact that two peasants have made



Figure 4: Distribution of the geographical locations in the medieval social

network represented in Figure 3.



at least a common contract together is used). The most obvious conclusion

Location Join count value Greater Less

Saint-Daunes 110 892 0.0010 (***) 0.999 (NS)

Cazillac 24 461 0.0010 (***) 0.999 (NS)

Saint-Martin de Valausi 19 996 0.0010 (***) 0.999 (NS)

Saint-Julien 1 172 0.988 (NS) 0.0120 (**)

Saint-Martin de la Chapelle 10 200 0.0010 (***) 0.999 (NS)

Table 2: Join count statistic and p-values for the 5 most frequently cited

geographical locations in the weighted medieval social network. NS means

non significant, * means significant at a level of 10%, ** significant at a level

of 5% and *** significant at a level of 1%

Location Join count value Greater Less

Saint-Daunes 11 669 0.0010 (***) 0.999 (NS)

Cazillac 2 543 0.0010 (***) 0.999 (NS)

Saint-Martin de Valausi 1 337 0.0010 (***) 0.999 (NS)

Saint-Julien 754 0.0010 (***) 0.999 (NS)

Saint-Martin de la Chapelle 777 0.0010 (***) 0.999 (NS)

Table 3: Join count statistic and p-values for the 5 most frequently cited

geographical locations in the non weighted medieval social network. NS

means non significant, * means significant at a level of 10%, ** significant

at a level of 5% and *** significant at a level of 1%

is obtained for Saint-Daunes, Cazillac, Saint-Martin de Valausi and Saint-

Martin de la Chapelle: for these places, the number of contracts related to

people living in the same village is significantly larger than what was ex-

pected in the case where the peasants living in these villages would have no

special tendency to interact with people living inside or outside their own vil-

lage. For Saint-Julien, the conclusion is a bit harder to understand: the first

test, based on the weighted graph (Table 2), shows that the peasants living

in Saint-Julien tended to interact significantly less often with people having

the same geographical location but the test based on the non weighted graph

leads to the opposite conclusion. A further analysis helps to explain this dif-

ference: the JC value obtained for Saint-Julien in Table 3 means that 754

couples of peasants living in this town made at least one transaction. But, the

JC value obtained for Saint-Julien in Table 2 indicates that the total number

of transactions between these couples is equal to 1 172, i.e. 1.5 contracts

per couple on average. This value is very low compared to the other ratios

(15 in Saint-Martin de Valausi, 13 in Saint-Martin de la Chapelle, 9.5 in

Saint-Daunes and Cazillac). Hence, the small value of the join count statistic



reported in Table 2 is due to the fact that the peasants in Saint-Julien made

only few contracts, even if these contracts were mainly made with people

living in the same village (as reported in Table 3).

This simple example illustrates the fact that the use of a weighted or a non

weighted graph for the join count statistic can have a strong impact on the

result, depending on the question under focus: the number of connections

between peasants living in Saint-Julien is significantly greater than what was

expected but the number of contracts between peasants living in Saint-Julien

is significantly smaller to what was expected because the peasants in Saint-

Julien tended to make much less contracts with the people they were con-

nected to, than the peasants living in the other villages did.

3 CASE OF NUMERICAL LABELS

In this section C takes values in R.

3.1 Moran’s I and test based on Monte Carlo simula-
tions

In the spatial statistics framework, the influence of the spatial location on

a numerical variable is often assessed through a generalization of the join

count statistic of Equation (1). Indeed, [24] introduced the Moran’s I statistic

which is equal to

I =
1

2m

∑
i 6=j Wij c̄ic̄j

1

n

∑
i c̄

2

i

where m = 1

2

∑
i 6=j Wij and c̄i = ci − c̄ with c̄ = 1

n

∑
i ci. As for the join

count statistic, this index was extended to arbitrary weights by [10]. Under

spatial independence of C, I is also asymptotically distributed as a Gaussian

random variable.

Similarly as JC, I can be used to test the correlation between labels of

connected nodes. Moreover, under the assumption of the independence be-

tween labels and connections, the distribution of I can be approximated by

random permutations of C among the nodes of the network. This leads to

the definition of a permutation test which is available through the function

moran.mc in the R package spdep. Note that in the case of the permuta-

tion test, the distribution of I is the same, up to a scaling factor, than those

of
∑

i 6=j Wij c̄ic̄j (as 2m
n

∑
i c̄

2

i is constant over all the permutations). This

makes this test a direct extension of the permutation join count test presented

in Section 2.

As for the join count test, two assumptions can be tested: the first one

corresponds to the case where I is significantly greater that the expected

value, which means that, for connected nodes, the values of C are very similar

and much larger or lower than the mean. On the contrary, if I is significantly



smaller than the expected value, nodes having strong and opposite values of

C compared to the mean, tend to be connected.

3.2 Moran’s plot and influential nodes

Another very common tool to analyze spatial auto-correlation of numeri-

cal variables is the Moran’s plot (see [3]): it displays, for the variable under

study, the original value on the horizontal axis and the sum of values ob-

served among the neighbors (according to the adjacency matrix W ) on the

vertical axis. This last quantity is called the lag. If W is row normalized

(i.e., each row of W is scaled such that it sums to 1; see Section 3.4 for

an application), the vertical axis displays the average value of the variable

over the neighbors of a node, according to the weights W . In the case of a

centered variable, Moran’s I is exactly the slope of the linear trend of the

Moran’s plot. Moran’s plot is usually divided into four quadrants that corre-

spond to different types of spatial correlation. Spatial clusters in the upper

right (High-High) and lower left (Low-Low) quadrants, and spatial outliers

in the lower right (High-Low) and upper left (Low-High) quadrants:

– quadrant H-H contains nodes, xi, for which ci is above the mean c̄ and

for which the average (or the sum if W is not row-normalized) value of

(cj)j , for (xj)j connected to xi, is also above the mean;

– quadrant H-L contains nodes, xi, for which ci is above the mean c̄ but

for which the average value of (cj)j , for (xj)j connected to xi, is below

the mean;

– quadrant L-H contains nodes, xi, for which ci is below the mean c̄ but

for which the average (or the sum if W is not row-normalized) value of

(cj)j , for (xj)j connected to xi, is above the mean;

– finally, quadrant L-L contains nodes, xi, for which ci is below the mean

c̄ and for which the average (or the sum if W is not row-normalized)

value of (cj)j , for (xj)j connected to xi, is also below the mean.

In addition, as Moran’s plot stands in the linear model framework, influ-

ence measures are often calculated: these identify the nodes that have a

strong influence on several indexes, for example the value of the slope of

the linear trend (those that would lead to a large change in the value of the

slope if removed from the dataset). Unlike node degrees, influence mea-

sures are global network measures: they take into account the whole dis-

tribution of the labels values all over the network. Moreover, the function

influence.measures calculates 6 influence measures: the impacts of a

single observation on each regression coefficient is shown by the DFBETA

(dfb.1 for the y-intercept and dfb.x for the slope). The COVRATIO mea-

sure (cov.r) estimates the effect of the observation on the efficiency of the

estimation process in the linear model. The Cook’s distance (cook.d) cap-

tures the impact of an observation from two sources: the size of changes in

the predicted values when the case is omitted (outlying studentized residuals)

as well as the observation’s distance from the other observations (leverage).



The DFFIT measure (dffit) indicates how much the fitted values change

when the case is deleted. The diagonal of the hat matrix (hat) is a measure

of the distance of the observation from the mean center of all observations;

large values also indicate that the observation is disproportionately responsi-

ble (compared to the other nodes) for the prediction of the dependent variable

value (see [5, 11, 19] for further details about these measures).

Moreover, the function provides a facility to identify cases that are influen-

tial with respect to any of these measures: as shown in the following exam-

ples, these nodes may have a special behavior in the network and their iden-

tification can provide useful directions for the interpretation. The following

subsections provide examples of the use of Moran’s I as well as illustra-

tions of the way the Moran’s plot can be interpreted in the social network

framework.

3.3 Example 1: dates in a medieval social network

The first example relies on the network that was described in Section 2.3.

Here the additional information given for each node is the median of the

dates where an activity (i.e., a citation in a contract) is reported for the given

node (i.e., a peasant). A simple analysis of this variable is given in Figure 5

where the median dates are given for each node of the network (left) as well

as the histogram of the median dates in the network (right). Because peas-

Medians of the dates where an activity is recorded
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Figure 5: Representation of the median date for activity (left) and distribution

of the median dates (right).

ants having an activity centered around 1320 are more likely than others to

make contracts during the period (by definition), they have a larger number

of connections. Thus, to avoid this size effect, we used a row normalized



network, i.e., we used the network weighted by:

W̃ij =
Wij∑n

k=1
Wik

where Wij is equal to 1 if nodes i and j are linked and to 0 otherwise (hence,

W is the adjacency matrix of the unweighted graph described in Section 2.3).

Note that W̃ , which is of a common use in spatial statistics, is not symmetric.

As the set of all permutations of the dates among the nodes of the network

is much larger than the set of all permutations of a binary variable, we used

P = 10 000 random permutations for the Monte Carlo simulation (instead

of 1 000 in Section 2.3). In this case, Moran’s I based on the unweighted

graph is equal to I = 0.4232 whereas the largest value for the Moran’s I

calculated over the 10 000 permutations is only equal to 0.0342. This means

that the peasants in the network tend to be strongly connected to peasants

having very close median dates of activity. But the whole studied period is

only a century long and most people have a median date of activity between

1290 and 1340. Moreover, the average length of activity for the peasants

in the network is more than 25 years (for peasants having at least two dates

reported): this could mean that there is a strong generation impact in the way

the peasants interact between each others.

Figure 6 (left) gives the Moran’s plot which exhibits a good linear trend

and helps to emphasize characters (influential nodes) having a tendency to

interact mainly with people having an earlier (or a later) median date of ac-

tivity than the one expected. In Figure 6 (right), 67 peasants are identified
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Figure 6: Moran’s plots for the median dates of activity (left) and influential

nodes on the medieval network (right).

as influential nodes and are displayed with a color corresponding to their

quadrant. As the database contains some errors related to a large number of

namesakes, these nodes are good candidates for a further study and check of



the validity of the information recorded (especially those of quadrants H-L

and L-H). Such an automatic procedure is very useful in that context.

3.4 Example 2: relating the number of connections
of the nodes to the network structure

In this section, we first illustrate the use of Moran’s I and of the Moran’s

plot with the same simple example as in Section 2.2 7 and with an additional

(larger) real social network but in a different framework than in the previ-

ous section: the labels of the nodes are their degrees and are thus related to

the network structure. The underlying issue is then to answer the following

question:

Do nodes having many connections have a tendency to be connected to

each others?

This is a well known fact that high degree nodes tend to attract relations [4].

But, knowing this structural property, do nodes having a high degree tend

to be related to each others more than they should? As pointed out by an

anonymous reviewer, in this situation, Monte Carlo simulations should not

be performed by permuting values of the degrees of the nodes because such

a process does not respect the structural relation between the degrees and

the network topology. The natural dependency of the labels (degrees) and

the network topology results in a larger Moran’s I value than with any other

label not related to the network topology: there is indeed a natural network

auto-correlation for degrees because nodes having a large degree are easier to

be connected with 8. Hence, Monte Carlo simulations should be performed

by randomly permuting edges (instead of labels) while keeping the degree of

each node. Indeed, this provides the Moran’s I distribution under the null

model where the degree distribution is known but the edges in the network

are displayed totally at random according to that distribution. This is the

same null model than the one used to compute the modularity criterion for

clustering the vertexes of the graph [26]. Compared to the previous case

where there was no relation between the network topology and the labels of

the nodes, the empirical distribution does not aim at approximating the same

null assumption:

– when permuting nodes labels, the null assumption is that of a random

distribution of the labels among the nodes given the network topology.

Hence, this makes no sense when the labels actually depend on the net-

work topology itself;

7. The code used to perform the analysis of this network is available as supplementary ma-

terial at http://www.nathalievilla.org/suppmaterial-I3.

8. note that expected values for Moran’s I could be calculated by a direct analytical approach

for random graph models where the dependency structure between weights is known but this

issue is out of the scope of this paper



– when permuting edges while keeping the same degrees, the null assump-

tion is that of a random distribution of the links given the degree distri-

bution. This case is unusual in spatial statistics because links are direct

consequences of the geographical properties of the spatial entities.

This question is first illustrated by the non-weighted symmetric graph de-

duced from the co-appearance network in “Les Misérables”. More precisely,

if W is the adjacency matrix of the graph described in Section 2.2, the graph

used in this section is the one having for adjacency matrix W̃ where W̃ij = 1

if Wij > 0 and W̃ij = 0 otherwise. The numerical variable of interest is

simply the number of persons known by each character of the novel (hence,

the degree of the node). The underlying question addressed by Moran’s I is

then:

Do people having many connections in the novel have a tendency to be

connected to each others?

Figure 7 (left) displays the number of connections for each character in the

co-appearance network; most nodes have a small number of connections (one

or two) whereas a few numbers of characters have a much larger number of

connections: Valjean (who is the main character of the novel), Gavroche and

Marius (see Figure 1 for the complete correspondence between the nodes

and the names). In this example, the Moran’s I is equal to 0.5148 which is
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Figure 7: Left: Number of connections for each character in the co-

appearance network from “Les Misérables” (dark colors correspond to char-

acters having many connections). Right: Histogram of the 5 000 I values

calculated over the Monte Carlo simulation and true I (red vertical line).

The names of the characters are given in Figure 1.

significantly smaller than the expected value under the null assumption (the

estimated p-value is equal to 2.2%). This dependency is illustrated by the his-

togram given in Figure 7 (right): it shows that the real I is smaller than most



of those found by randomly permuting the edges of the network 5 000 times

and leads to the conclusion that the main characters tend to mainly interact

with less important characters. This result could be a consequence of the star

shaped structure observed around important characters in the network.

Moreover, Figure 8 provides the Moran’s plot for the number of connec-

tions in the graph. This figure exhibits a very good fit between the number

of connections and its lag (the total number of connections of the neighbors

for a given node), except mainly for Valjean whose lag is much smaller than

what was expected considering its degree (but remember that Valjean is the

most important character of the novel). In this plot, nodes having a large

influence for at least one of the 6 influence measures performed, are em-

phasized: three of them are central characters with large degrees: Valjean

(influential for all the 6 measures), Gavroche (influential for COVRATIO

and hat measures) and Javert (influential for COVRATIO). But the last one,

Myriel (influential for COVRATIO) is a much interesting case: he is an influ-

ential node because the total number of connections of his neighbors is much

smaller than what was expected from the linear trend between the number of

connections and the lag which makes it an influential node because it has a

substantial influence on the set of coefficients (both the y-intercept and the

slope). Myriel is a character surrounded by many unimportant characters

and can be seen as an outlier. This character wouldn’t have been highlighted

by usual network indexes (such as, e.g., degrees or betweenness) but is nev-

ertheless an important character in the novel (even if not one of the most

important): he plays a key role because he is the compassionate country

priest whose generosity is the origin of Valjean’s redemption. This small and
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Figure 8: Moran’s plot of the number of connections in the co-appearance

network in “Les Misérables” (left) and corresponding influential nodes em-

phasized on the network (right). The names of the characters are given in

Figure 1.



simple example illustrates how the influence measures can help to identify

important nodes and/or outliers that couldn’t have been identified obviously

otherwise.

A similar issue is addressed by the study of a larger network represent-

ing the email exchanges between members of the University Rovira i Virgili

(Tarragona), presented in [17] 9. The unweighted and symmetric graph com-

ing from that network is used in the simulations: it is connected and contains

1 133 nodes. Using the Moran’s I , the following assumption is tested:

Do people with a large number of contacts have a tendency to be connected

to each others?

The numerical variable tackled in this study is the the number of people with

which a given member of the University exchanges emails; hence, it is the

degree of the node.

As the number of nodes in this network is larger than in the previous sim-

ple example, 10 000 random permutations were used in the Monte Carlo

simulation. Among all these permutations, Moran’s I was never greater than

1.022 whereas the observed Moran’s I is equal to 1.081. Contrary to the pre-

vious example, this leads to the conclusion that people with a large number

of contacts have a strong tendency to be connected to each others. It would

be an interesting issue to check if the difference between the network coming

from “Les Misérables” and this real network is representative of a narrative

network structure versus a real world social network structure.

In addition, Figure 9 provides the Moran’s plot of the number of contacts

over the network and emphasizes the influential nodes on the emails ex-

change network. As in the previous simple example, the correlation between

the number of contacts and the lag is strong and several influential nodes

are identified. Some of them are nodes with a large number of exchanged

emails whereas others exhibit an unusual behavior, having a lag value (the

total number of contacts of the neighbors) either larger or smaller than what

was expected. 93 influential nodes are detected this way, providing tips to

identify important people in the network.

4 CONCLUSION

This paper illustrates how the use of spatial indexes can be useful for ex-

ploratory purpose in a network framework. More precisely, the distribution

of a given variable, that can be either a numerical variable or a factor, can

be related to the network structure, in a significant way, by a simple and

fast Monte Carlo approach. Moreover, the use of a linear model between a

numerical variable and its lag can help to visualize the strength of this depen-

dency and to identify influential nodes. However, one of the main drawback

9. available at http://deim.urv.cat/˜aarenas/data/xarxes/email.zip
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Figure 9: Moran’s plot of the number of contacts in the email network of the

University Rovira i Virgili (left) and corresponding influential nodes on the

network (right).

of this approach is that it is more suited to the case of a numerical labeling.

When the labels of the nodes are factors, the join count statistic can be useful

for binary labels or for labels having a small number of possible values (by

creating separate binary problems) but it is unworkable for tags or keywords

analysis (on web pages).

Further studies would lead to study local indexes (such as the local Moran

index; see [3]) or to clarify the relevance of the use of the weighted or un-

weighted adjacency matrix (see Section 2.3) of the network or of its row

normalized version (as in Section 3.3), in various applications. Finally, once

the dependency between the labels of the nodes and the network structure

is established, spatial linear models would be a relevant approach to define

predictive models able to infer the labels of unlabeled nodes.
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