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Abstract

In this paper a new nonparametric functional method is introduced
for predicting a scalar random variable Y on the basis of a functional
random variable X. The prediction has the form of a weighted average of
the training data yi, where the weights are determined by the conditional
probability density of X given Y = yi, which is assumed to be Gaussian.
In this way such a conditional probability density is incorporated as a key
information into the estimator. Contrary to some previous approaches,
no assumption about the dimensionality of E(X|Y = y) or about the
distribution of X is required. The new proposal is computationally simple
and easy to implement. Its performance is assessed through a simulation
study.

1 Introduction

The fast development of instrumental analysis equipment and modern mea-
surement devises provides huge amounts of data as high-resolution digitized
functions. As a consequence, Functional Data Analysis (FDA) has become a
growing research field [1, 2]. In the FDA setting, each individual is treated as
a single entity described by a continuous real-valued function rather than by
a finite-dimensional vector: functional data (FD) are then supposed to have
values in an infinite dimensional space, typically a Hilbert space X with scalar
product 〈·, ·〉.

Specifically, in functional regression analysis one intends to predict a random
scalar variable (response variable) Y from a functional random variable (predic-
tor) X (e.g., with values in X = L2 ([a, b])). That is, the goal is to estimate the
regression function γ(x) = E(Y |X = x), where E(Y |X) denotes the conditional
expectation, on the basis of a sample (xi, yi)i=1,...,n of independent realizations
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of (X,Y ). Equivalently, the aim is to fit the functional regression model

Y = γ(X) + ǫ,

where ǫ is a real random variable independent of X . Several approaches have
been proposed for this problem, which can be classified into three main families:

a) Linear regression methods. Earlier work were focused on linear regression
models where the regression function γ takes the linear form

γ(x) = c+ 〈β, x〉,

where c ∈ R and β ∈ X are unknown parameters. A review of approaches
for estimating this model can be found in [1]; see also, [3, 4, 5, 6, 7, 8, 9].

b) Nonparametric regression methods. A drawback of linear regression methods
is that they can not deal with nonlinear dependencies between the predictor
and the response variables. To overcome this, a number of nonparametric
approaches has been proposed. We review the most important approaches
developed in the past few years in that area.

The first approach, introduced in [2], is the use of functional kernel regression
estimators:

γ̂(x) =

∑n
i=1 K(d(xi, x)/h)yi∑n
i=1 K(d(xi, x)/h)

,

where h > 0 is the kernel bandwidth, d is a semi-metric on X and K : R+ →
R is a suitable kernel function. This kind of estimators allows for great
flexibility in fitting nonlinear models. However, their consistency properties
have been demonstrated only for restricted classes of kernel functions such
as those of types I and II in [2]; furthermore, the data-driven selection of the
kernel bandwidth h is a difficult problem, especially for this high dimensional
setting.

Another class of nonparametric regression estimators are the Functional Neu-
ral Networks proposed by Rossi et. al. [10]. In particular, the single hidden
layer perceptron is defined by

γ̂(x) =

q∑

j=1

âjT (ûj + l̂j(x)),

where T : R → R is a given activation function, (lj)j are unknown linear
functionals to be estimated (e.g., lj(x) = 〈wj , x〉 with wj ∈ X ) and (aj)j ,
(uj)j ⊂ R are unknown parameters that also have to be estimated. Func-
tional perceptrons have the universal approximation property that makes it
possible to represent a wide variety of nonlinear functionals. But notice that
they depend on a quite large number of parameters (wj)j , (aj)j , (uj)j , which
greatly increases with the number of neurons, q, and that their estimation by
the optimization of the least square error leads to local minima issues. Also,
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the number of neurons has to be tuned which is a computationally difficult
task. In the same spirit, functional versions of the radial basis functions
neural networks have been introduced in [11].

Also, the general framework of function approximation in Reproducing Ker-
nel Hilbert Spaces (RKHS) has been used [12, 13] to introduce functional
regression estimators, which have the general form:

γ̂(x) =

n∑

i=1

âiK(xi, x),

where K is a reproducing kernel on X , and (ai)i ∈ R. In this framework can
be included functional versions of support vector regression [13] and radial
basis functions [12]. The latter has the specific form:

γ̂(x) =

m∑

i=1

âiφ(d(x, ci)),

where φ is the adopted radial basis function, c1, ..., cm ∈ X are given centers,
d is a distance defined on X , and (ai)i are unknown parameters.

An important advantage of the RKHS approach is that the resulting esti-
mator is linear with respect to the unknown parameters (ai)i: their estima-
tion by least squares optimization thus reduces to solve an algebraic linear
problem. However, contrary to standard RKHS methods for approximating
multivariate functions (e.g., standard multivariate splines and radial basis
functions such as thin-plate splines), in the FDA setting the smoothness
properties of γ̂ as a functional on X have not been yet defined. Hence, the
selection of suitable reproducing kernels and radial basis functions is still an
open issue.

Finally, more recently, k-nearest neighbors regression has been generalized
to functional data [14, 15]. This approach leads to the following regression
function:

γ̂(x) =
1

k

k∑

i=1

y(i,x)

where y(i,x) is the value of Y for the i-th nearest neighbors of x among
(xi)i=1,...,n. The consistency, as well as a rate of convergence, is given for
this approach, depending on regularity conditions on γ.

c) Functional Inverse Regression (FIR) methods. More recently, an alternative
methodology has been introduced that can be regarded as a compromise
between too restrictive parametric methods (such as linear regression) and
nonparametric ones (such as kernel methods). This is called Functional In-
verse Regression (FIR or FSIR) [16, 17, 18], and constitutes a functional
version of the Sliced Inverse Regression (SIR) previously proposed for multi-
variate regression models [19]. The FIR approach assumes that the following
model holds:

Y = g(〈β1, X〉, ..., 〈βd, X〉) + ǫ,
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where d is the so-called effective dimension and g : Rd → R is an unknown
function. Under some additional assumptions (which are guaranteed if X
has an elliptic distribution, e.g., a Gaussian distribution in the Hilbert space
X ) the directions (βj)j can be estimated from the spectral decomposition of
the covariance operators V (X) and V (E (X |Y )). The latter involves to fit
the mean function of the “inverse” model

X = µ(Y ) + e, (1)

where e is a random element in X with zero mean, not correlated with Y .
More specifically, to estimate (βj)j and g, the following steps are carried out:

1. Obtain an estimate of µ(Y ) = E(X |Y ) by regressing each component of
X versus Y through any univariate nonparametric regression method.

2. Obtain estimates of the covariance operators Γ = V(X) and Γe =
V(E(X |Y )) on the basis of the results of step (1), and carry out the spec-
tral decomposition of the operator Γ−1/2ΓeΓ

−1/2. (βj)j are estimated as
the eigenfunctions corresponding to the d first greatest eigenvalues.

3. Finally, estimate g through a d-variate nonparametric regression method.

In this semi-parametric approach, the dimension, d, is an hyper-parameter
of the model. Several methods have been proposed to find a good d, such as
the one proposed in [20].

In this paper, a new functional regression method to estimate γ(X) is in-
troduced that also relies on regarding the inverse regression model (1). Its
main practical motivation arises from calibration problems in Chemometrics,
specifically in spectroscopy, where some chemical variable Y (e.g., concentra-
tion) needs to be predicted from a digitized function X (e.g., an spectrum).
In this setting, said “inverse” model represents the physical data generation
process in which the output spectrum X is determined by the input chemical
concentration Y , and e is a functional random perturbation mainly due to the
measurement procedure. Though Y and X could have unknown complex prob-
ability distributions, it is a common assumption that the perturbation e follows
a Gaussian distribution P0, and so that the conditional distribution P (·�y) of
X given Y = y is a Gaussian distribution on X with mean µ(y). This suggests
the following estimate of γ(x):

γ̂ (x) =

∑n
i=1 f̂ (x�yi) yi

f̂X (x)
,

where f̂ (x�y) is an estimate of the density f (x�y) of P (·�y) with respect
to the measure P0. This regression estimate will be refereed to as functional
Density-Based Inverse Regression (DBIR). If X was a scalar variable, this would
reduce to the approach for univariate calibration proposed in [21]. It requires
more specific assumptions about the distribution of the perturbation e in the
inverse model (1) (e.g., Gaussian distribution) but it has a number of appealing
features in comparison with other approaches:
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• Likewise other nonparametric approaches, it allows one to capture non-
linear regression functions.

• Likewise the FIR approach it requires to estimate the mean function µ
of the inverse model and some covariance operator (specifically, V(e)).
µ should be estimated through a nonparametric regression method but,
contrary to the classical nonparametric functional regression, this function
is defined on R (and not in a infinite dimensional Hilbert space) and the
estimation task is thus much easier, as well as the issue of tuning the
hyperparameters (if so) in the chosen nonparametric regression method.
Moreover, no other parameter have to be estimated. In particular, unlike
functional kernel regression, this approach does not require the selection
of the bandwidth for a kernel on an infinite dimensional space. Also, it
does not involve a large number of parameters related in a non quadratic
way to the functional to optimize, contrary to, e.g., the case of functional
perceptrons. DBIR is thus computationally very easy to use.

• Finally, unlike the FIR approach, few assumptions are required: in partic-
ular, γ does not need to be a function of a finite number d of projections
nor X has to follow an elliptical distribution (or any other given distribu-
tion). Also notice that DBIR does not requires the additional multivariate
nonparametric fitting step (c) aforementioned.

This paper is organized as follows. Section 2 defines the functional Density-
Based Inverse Regression (DBIR) estimator. Section 3 carries out a simulation
study in order to asses the feasibility and performance of the DBIR method.
Finally, some conclusions are given in Section 4.

2 Functional Density-Based Inverse Regression
(DBIR)

2.1 Definition of DBIR in an abstract setting

Let (X,Y ) be a pair of random variables taking values in X ×R where (X , 〈., .〉)
is the space of square integrable functions from R to R (X = L2([a, b])). Suppose
also that n i.i.d. realizations of (X,Y ) are given, denoted by (xi, yi)i=1,...,n. The
goal is to build, from (xi, yi)i, a predictor of the value of Y corresponding to
a future observed value of X . This problem is usually addressed through the
estimation of the regression function γ(x) = E(Y |X = x).

For this, the functional Density-Based Inverse Regression (DBIR) approach
fits the inverse regression model:

X = F (Y ) + ǫ, (2)

where ǫ is a random process (perturbation or noise) with zero mean, independent
of Y , and y → F (y) is a function from R into X . As was stated in Section 1,
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this is the commonly assumed data generating model in calibration problems
[22].

Additionally, the following assumptions are made:

1. it exists a probability measure P0 on X (not depending on y) such that the
conditional probability measure of X given Y = y, say P (·�y), has a density
f (·�y) with respect to P0; i.e.,

P (A�y) =

∫

A

f (x�y)P0 (dx)

for any measurable set A in X ;

2. it is assumed that Y is a continuous random variable, i.e., its distribution
has a density fY (y) (with respect to the Lebesgue measure on R).

Under these assumptions, the regression function can be written

γ (x) =

∫
R
f (x�y) fY (y) ydy

fX (x)
,

where

fX (x) =

∫

R

f (x�y) fY (y)dy.

Hence, given an estimate f̂ (x�y) of f (x�y), the following (plug-in) estimate
of γ (x) can be constructed from the previous equation:

γ̂ (x) =

∑n
i=1 f̂ (x�yi) yi

f̂X (x)
, (3)

where

f̂X (x) =

n∑

i=1

f̂ (x�yi) .

2.2 Specification in the Gaussian case

The general estimator given in Equation (3) will be here specified for the case
where, for each y ∈ R, P (·�y) is a Gaussian measure on X = L2[0, 1]. P (·�y)
is then determined by its corresponding mean function µ (y) ∈ X (which is
then equal to F (y) according to Equation (2)) and a covariance operator r (not
depending on y), which is a symmetric and positive Hilbert-Schmidt operator on
the space X . Thus, there exists an eigenvalue decomposition of r, (ϕj , λj)j≥1

such that (λj)j is a decreasing sequence of positive real numbers, (ϕj)j take
values in X and r =

∑
j λjϕj ⊗ϕj where ϕj ⊗ϕj(h) = 〈ϕj , h〉ϕj for any h ∈ X .

Denote by P0 the Gaussian measure on X with zero mean and covariance
operator r. Assume that the following usual regularity condition holds: for each
y ∈ R,

∞∑

j=1

µ2
j (y)

λj
< ∞,
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where
µj (y) = 〈µ (y) , ϕj〉 .

Then, P (·�y) and P0 are equivalent Gaussian measures, and the density f (·�y)
has the explicit form:

f (x�y) = exp





∞∑

j=1

µj (y)

λj

(
xj −

µj (y)

2

)
 ,

where xj = 〈x, ϕj〉 for all j ≥ 1. This leads to the following algorithm to
estimate f (x�y):

1. Obtain an estimate µ̂ (·) (t) of the function y → µ (y)(t) for each t ∈ R. This
may be carried out trough any standard nonparametric method for univariate
regression based on the data set (yi, xi (t))i=1,...,n, e.g., a smoothing kernel
method:

µ̂(y) =

∑n
i=1 K

(
yi−y
h

)
xi∑n

i=1 K
(
yi−y
h

) (4)

as proposed in [23] (note that, in this case, the bandwidth h has a common
value for all t).

2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j
of the covariance r on the basis of the empirical covariance of the residuals
êi = xi − µ̂ (yi), i = 1, ..., n

r̂ =
1

n

n∑

i=1

(êi − ē)⊗ (êi − ē)

with ē = 1
n

∑n
i=1 ei. Only the first p eigenvalues and eigenfunctions are

retained, where p = p(n) is a given integer, smaller than n.

3. Estimate f (x�y) by

f̂ (x�y) = exp





p∑

j=1

µ̂j (y)

λ̂j

(
x̂j −

µ̂j (y)

2

)
 , (5)

where µ̂j (y) = 〈µ̂(y), ϕ̂j〉 and x̂j = 〈x, ϕ̂j〉.

Finally, substituting (5) into (3) leads to an estimate γ̂ (x) of γ (x), which
will be referred to as the DBIR estimator. It can be proved that this estimator
is consistent (limn→∞ γ̂(x) =P γ(x)) under mild regularity assumptions.

3 A simulation study

In this section, the feasibility and the performances of the nonparametric func-
tional regression method described in Section 2 is discussed through a simulation
study.
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3.1 Data generation

The data were simulated in the following way: values for the real random vari-
able Y were drawn from a uniform distribution in the interval [0, 10]. Then, X
was generated by 2 different models or settings:

M1 X = Y e1 + 2Y e2 + 3Y e5 + 4Y e10 + ǫ,

M2 X = sin(Y )e1 + log(Y + 1)e5 + ǫ,

where (ei)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e., e2k−1 =√
2 cos(2πkt), and e2k =

√
2 sin(2πkt)), and ǫ a Gaussian process independent

of Y with zero mean and covariance operator Γe =
∑

j≥1
1
j ej ⊗ ej . More pre-

cisely, ǫ was simulated by using a truncation of Γe, Γe(s, t) ≃
∑q

j=1
1
j ej(t)ej(s)

by setting q = 500. From these two designs, training and a test samples were
simulated with respective sizes nL = 300 and nT = 200.

Figures 1 and 2 give examples of realizations of X obtained under the first
and the second model, respectively, for three different values of y. They also
represent the underlying (non noisy) functions, F (y). In the case of model M2,
the simulated data have a high level of noise which makes the estimation a hard
task.
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Figure 1: Model M1. True function F (y) (smooth continuous line), simulated
data X (gray rough line) and approximation of X using B-splines (rough black
line) for three different values of y.

Finally, to apply the DBIR method, the discretized functionsX were approx-
imated by a continuous function using a functional basis expansion. Specifically,
the data were approximated using 128 B-spline basis functions of order 4: Fig-
ures 1 and 2 show the comparison between the raw functions and their B-spline
approximation.

3.2 Simulation results

The conditional mean µ(y) was estimated by a kernel smoothing (such as in
Equation (4)). Two hyperparameters were to be tuned in this approach: the
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Figure 2: Model M2. True function F (y) (smooth continuous line), simulated
data X (gray rough line) and approximation of X using B-splines (rough black
line) for three different values of y.

bandwidth parameter for the estimation of µ(y) and the number, p, of eigen-
functions involved in Equation (5). These two parameters were selected by a
10-fold cross-validation minimizing the mean square error (MSE) criterion on
the training sampling.

3.2.1 Linear case: M1

This section gives the results obtained in the first simulated model, which
presents a linear relation between the real explanatory variable and functional
response variables in the inverse model of Equation (1). From Figure 1, it can
be notice that the level of noise in the data is greater for small values of Y .

The estimation of the conditional mean using a kernel estimator (Equa-
tion (4)) is shown in Figure 3. A comparison between true values and estimated
values of F (y)(t) are given for various values of y (top) and for various values
of t (bottom). The linearity of the inverse model of Equation (1) is illustrated
by the linear F (y) in the bottom part of this figure. In general, the estimates
are good but, in some cases (e.g., bottom right) the level of noise appears to be
too high and the true mean (as a function of y) it is not as well estimated as in
the other cases.

Figure 4 shows the estimated eigendecomposition of the empirical covariance
of residuals r (Section 2.2, step 2) and the predicted values of Y on the training
and test sets by using the DBIR estimator. More specifically, the comparison
between the true and the estimated eigenfunctions are shown in Figure 4 (a-c)
and the comparison between the true and the estimated eigenvalues in Figure 4
(d). The results show very good predictions in both the training and test sets
(Figure 4 (e-f)).
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Figure 3: Model M1. Top: True values (discontinuous lines) and estimates
(continuous lines) of F (y) for various values of y. Bottom: true values and
estimates of F (·)(t) for various values of t (bottom). The dots (bottom) are the
simulated data (xi(t))i in the training set.
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Figure 4: Model M1. (a-c): True (dashed line) and estimated eigenfunctions
(continuous line); (d): estimated vs. true eigenvalues and (e-f): predicted values
for Y vs. the true ones for training and test sets.
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3.2.2 Nonlinear case: M2

For this nonlinear model M2, Figure 2 shows that the level of noise is much
higher than for M1. In the same way as in the previous section, Figure 5
compares the true F (y)(t) to its estimated values for various values of y (top)
and for various values of t (bottom). The results are very satisfactory given
the fact that the data have a high level of noise (which clearly appears in the
bottom of this figure).
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Figure 5: Model M2. Top: True values (discontinuous lines) and estimates
(continuous lines) of F (y) for various values of y. Bottom: true values and
estimates of F (·)(t) for various values of t (bottom). The dots (bottom) are the
simulated data (xi(t))i in the training set.

Figure 6 shows the results of the steps 2-3 of the estimation scheme: the
estimated eigendecomposition of r is compared to the true one, and the predicted
value for Y are compared to the true ones, both on training and test sets. The
estimation of the eigendecomposition is also very satisfactory despite the high
level of noise, and the comparison between training and test sets shows that the
method does not overfit the data.

4 Conclusion

A new functional nonparametric regression approach has been introduced mo-
tivated by the calibration problems in Chemometrics. The new method, named
functional Density-Based Inverse Regression (DBIR) was fully described for the
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Figure 6: Model M2: (a-c): True (dashed line) and estimated eigenfunctions
(continuous line); (d): estimated vs. true eigenvalues and (e-f): predicted values
for Y vs. the true ones for training and test sets.

sample space X = L2([a, b]) under a Gaussian assumption for the conditional
law P (·�Y ) but it can be extended to other sample spaces and distribution
families. Two appealing features of the new method are its rather mild model
assumptions and its computational simplicity. The simulation study of DBIR
has shown that it performs well for both linear and nonlinear models. Thus,
DBIR can be considered as a promising functional regression methods, particu-
larly appealing for calibration problems.

References

[1] J. Ramsay and B. Silverman, Functional Data Analysis. Springer, New
York, second ed., 2005.

[2] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory
and Practice (Springer Series in Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006.

[3] T. Hastie and C. Mallows, “A discussion of a statistical view of some chemo-
metrics regression tools by i. e. frank and j. h. friedman,” Technometrics,
vol. 35, pp. 140–143, 1993.

[4] B. D. Marx and P. H. Eilers, “Generalized linear regression on sampled
signals and curves: a p-spline approach,” Technometrics, vol. 41, pp. 1–13,
1999.

12



[5] H. Cardot, F. Ferraty, and P. Sarda, “Functional linear model,” Statistics
and Probability Letter, vol. 45, pp. 11–22, 1999.

[6] H. Cardot, F. Ferraty, and P. Sarda, “Spline estimators for the functional
linear model,” Statistica Sinica, vol. 13, pp. 571–591, 2003.

[7] H. Cardot, C. Crambes, A. Kneip, and P. Sarda, “Smoothing spline estima-
tors in functional linear regression with errors in variables,” Computional
Statistics and Data Analysis, vol. 51, pp. 4832–4848, 2007.

[8] C. Crambes, A. Kneip, and P. Sarda, “Smoothing splines estimators for
functional linear regression,” The Annals of Statistics, 2008.

[9] C. Preda and G. Saporta, “Pls regression on stochastic processes,” Com-
putional Statistics and Data Analysis, vol. 48, pp. 149–158, 2005.

[10] F. Rossi and B. Conan-Guez, “Functional multi-layer perceptron: a non-
linear tool for functional data anlysis,” Neural Networks, vol. 18, no. 1,
pp. 45–60, 2005.

[11] F. Rossi, N. Delannay, B. Conan-Guez, and M. Verleysen, “Representation
of functional data in neural networks,” Neurocomputing, vol. 64, pp. 183–
210, 2005.

[12] C. Preda, “Regression models for functional data by reproducing ker-
nel hilbert space methods,” Journal of Statistical Planning and Inference,
vol. 137, pp. 829–840, 2007.

[13] N. Hernández, R. J. Biscay, and I. Talavera, “Support vector regres-
sion methods for functional data,” Lecture Notes in Computer Science,
vol. 4756, pp. 564–573, 2008.
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