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Abstract. We undertake the mathematical analysis of a model describing

equilibrium binary electrolytes surrounded by charged solid walls. The problem is

formulated in terms of the electrostatic potential and the ionic concentrations which

have prescribed spatial mean values. The free energy of the system is decomposed as

the difference of the internal energy and entropy functionals. The entropy functional is

the sum of an ideal entropy and an excess entropy, the latter taking into account non-

ideality due to electrostatic correlations at low ionic concentrations and steric exclusion

effects at high ionic concentrations. We derive sufficient conditions to achieve convexity

of the entropy functional, yielding a convex-concave free energy functional. Our main

result is the existence and uniqueness of the saddle point of the free energy functional

and its characterization as a solution of the original model problem. The proof hinges

on positive uniform lower bounds for the ionic concentrations and uniform upper

bounds for the ionic concentrations and the electrostatic potential. Some numerical

experiments are presented in the case where the excess entropy is evaluated using the

Mean Spherical Approximation.
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1. Introduction

The motivation for this work is the underground storage of radioactive waste in clay

host rocks, whereby a thorough understanding of the clay behavior is of paramount

importance. Clays are complex multiscale media. At the scale of one to several

nanometers, they can be viewed as a porous medium in which a negatively charged solid

matrix confines an electrolyte consisting of a solvent (water) and dissolved ionic species.

Confined electrolytes are encountered in many other fields of application with significant

interest, e.g., semiconductor devices and chemical engineering. In this work, we consider

equilibrium electrolytes, that is, at steady state and no flow. The properties of such

systems constitute the first step to understand more complex chemical and mechanical

behaviors. For a recent numerical analysis of the coupling with the flow equations, we

refer to Prohl and Schmuck [18].

In continuum models, equilibrium electrolytes can be described by the electrostatic

potential and the ionic concentrations. For nanometric confinements, the classical

Poisson–Boltzmann theory, where the electrostatic potential ψ solves a Poisson equation

while the ionic concentrations (ci)1≤i≤M of the M species follow the Boltzmann

distribution, is not sufficient. A first possibility is to resort to direct molecular

simulations (see, e.g, Dufrêche et al. [6]) with suitable interaction potentials, but,

at nanometric scales and beyond, this approach entails substantial computational

costs. An alternative approach is to enrich the Poisson–Boltzmann theory by a more

elaborate microscopic description. In what follows, we focus more specifically on ion-ion

interactions. In the so-called primitive model, ions are described by charged hard-spheres

of diameter (σi)1≤i≤M , and the correlations between the ions are evaluated using the

Ornstein–Zernike integral equation linking the direct and indirect correlation functions

(see, e.g, the reference textbook [8]). This allows one to derive the excess free-energy of

the equilibrium system. The Ornstein–Zernike integral equation needs a closure relation

to be solved. Various approaches can be adopted. Without being exhaustive, we mention

the Hyper-Netted Chain approximation (HNC), which is a numerical approach, and the

Mean Spherical Approximation (MSA) derived by Lebowitz et al. [13, 14] and Blum [3],

which is analytical in some physical cases. The interesting feature of the MSA is that it

generalizes the Debye–Hückel theory of electrolytes to the case of nonzero ion diameters.

Brownian dynamics simulations (where the solvent is a continuum but the ions are still

charged explicit particles) within the primitive model have been performed by Jardat et

al. [10] and compared to direct molecular simulations and to continuum models within

the MSA.

The goal of the present work is to analyze mathematically equilibrium electrolytes

including non-ideal effects due to electrostatics correlations at low to intermediate ionic

concentrations and steric exclusion effects at high ionic concentrations. We consider

binary electrolytes consisting of a counter-ion (cation) and a co-ion (anion); we denote

the respective concentrations by c := (c+, c−). Non-ideal effects are described by activity

coefficients in the electrochemical potentials. Electrostatic correlations are modelled
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through an activity coefficient log γ0 which depends on a so-called screening length

which itself can be evaluated in terms of the ionic concentrations. This model includes

in particular the case where the MSA is used to evaluate the screening length (see §2.2

below for further description). Additionally, we account for a hard-sphere contribution

which is modelled here as the lowest order term in the Percus–Yervick approximation,

leading to a quadratic term in the ionic concentrations.

The mathematical study of critical points of the free-energy of equilibrium

electrolytes has been addressed previously in the literature, either in the Poisson–

Boltzmann setting or some of its generalizations. In [16], Li analyzes the generalized

Poisson–Boltzmann theory with implicit solvent. This formulation, also considered by

Borukhov, Andelman, and Orland [4], accounts for steric exclusion effects, but not for

electrostatic correlations. For an electrolyte with M species, the solvent concentration

c0 is introduced such that

σ3c0 := 1 −
M
∑

i=1

σ3ci,

where σ > 0 represents the mean ionic diameter, and the ideal contribution of the

solvent concentration, c0(log(σ3c0) − 1), is included in the entropy functional. The

mathematical analysis has been extended to different ionic diameters by Li [15]. The

critical points of the free-energy are sought in a convex set enforcing ci ≥ 0 for all

0 ≤ i ≤ M , so that the ionic concentrations are a priori bounded from above. One

important result in the analysis of [15, 16] is the proof that these constraints are not

active, that is, that all the ci’s, 0 ≤ i ≤M , are bounded uniformly away from zero. The

technique of proof, which consists in further optimizing the free-energy by modifying

the ionic concentrations at extreme values if the above abounds are not satisfied, will

be adapted here to the present context. This extension is not straightforward owing

to the coupling of all ionic concentrations in the non-ideal terms. Furthermore, the

work of Carlen et al. [5] addresses a similar model using the Green operator for the

Poisson equation. The analysis is concerned with nonlinearities of the same kind as those

described by the implicit solvent. The mathematical analysis shows that L∞-bounds on

the concentrations can be enforced in the convex set where the minimization is taken, but

also shows that under a doubling condition on both the ideal and steric exclusion terms,

L∞-bounds can be achieved [5, Theorem B.1]. Moreover, the work of Looker treats the

case of the Poisson–Boltzmann free-energy in the ψ-formulation [17]. The same model

is considered by Allaire, Mikelić, and Piatniski [2] in view of homogenization of confined

electrolytes coupled with Stokes flow.

Our main result, Theorem 1 below, states that there is a unique saddle point

(ψ, c) of the free-energy for an equilibrium binary electrolyte confined by charged

walls. The electrostatic potential ψ is sought in the Sobolev space H1 with zero

mean-value, while the ionic concentrations c = (c+, c−) are sought in the closed convex

subset of L2 × L2 consisting of nonnegative ionic concentrations with prescribed mean-

value. Moreover we prove that ψ and c± are in L∞(Ω), and that c± are uniformly
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bounded away from zero. Theorem 1 is established under four main assumptions

stated in §3.1. The first two assumptions are the classical bulk electro-neutrality

condition on the prescribed mean ionic concentrations and elliptic regularity for the

Poisson problem governing the electrostatic potential (with non-homogeneous Neumann

boundary conditions). The other two conditions are formulated in an abstract setting

for the activity coefficient log γ0 describing non-ideal electrostatic correlations. These

conditions, which in particular encompass the MSA setting, require a sublinear growth

condition at large ionic concentrations for log γ0, and a lower bound on the derivative

of log γ0 with respect to the ionic strength. This last condition is important to assert

the convexity of the entropy functional. Indeed, the ideal entropy and the hard-sphere

contribution, which dominate respectively at very low and large ionic concentrations,

are both convex, but the electrostatic correlations lead to a nonconvex contribution to

the entropy functional. Note that we do not need to enforce a priori L∞-bounds on the

concentrations. To the best of our knowledge, the present analysis, together with the

ongoing work [1] investigating the role of non-ideality for homogenized ion transport in

porous media, is the first to address mathematically the critical points of the free-energy

in the presence of electrostatic correlations.

This work is organized as follows. In §2, we give some details on the electrochemical

model, including the modelling of non-ideality, the non-dimensionalization of the

governing equations, and the free-energy and entropy functionals. Then, in §3, we

state the mathematical assumptions together with our main result, and we present the

main steps of its proof. We devote §4 to the proof of various technical lemmas, dealing in

particular with the convexity of the entropy functional and the a priori bounds on the

electrostatic potential and ionic concentrations. Finally, some numerical illustrations

are presented in §5; a more detailed discussion of the electrochemical aspects of these

results will be reported elsewhere.

2. Electrochemical model

2.1. Geometry and conservation equations

We consider a periodic setting with elementary cell [0, L∗]
d, d ∈ {2, 3}, with length scale

L∗ (expressed in m). The elementary cell contains inclusions ΩS whose boundary ∂ΩS

contains negative charges with surface density ΣS (expressed in Cm−2) (see Figure 1 left).

Our approach also applies to other settings, e.g., confined electrolytes in nanochannels

(see Figure 1 right). The problem is posed in the domain Ω := [0, L∗]
d \ΩS and consists

in finding the electrostatic potential ψ (expressed in V) and the ionic concentrations

c = (c+, c−) (each concentration is expressed in m−3) such that

− ∆ψ =
e

ε

∑

i=±

Zici in Ω, (1a)

µ+(ψ, c) and µ−(ψ, c) are constant in Ω, (1b)
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Figure 1. Geometries for Ω: periodic media with negatively charged inclusions (left);

nanochannel with negatively charged walls (right)

where e is the elementary charge (expressed in C), ε = ε0εr the solvent permittivity

with ε0 the vacuum permittivity (expressed in CV−1m−1) and εr the solvent relative

permittivity (dimensionless), Zi the valence (dimensionless) of species i = ±, while the

electrochemical potentials µ±(ψ, c) are given by

µi(ψ, c) = kBT log(σ3ci) + kBT log(γi(c)) + Zieψ, i = ±, (2)

where kB is the Boltzmann constant (expressed in JK−1), T the temperature (expressed

in K), σ the mean ionic diameter (expressed in m), and γi(c) the activity coefficient

(dimensionless) of species i accounting for non-ideal behavior (γi(c) ≡ 1, i = ±, in the

ideal case). Boundary conditions enforce that

ψ is periodic on ∂Ω \ ∂ΩS, (3a)

∇ψ · n = −
1

ε
ΣS on ∂ΩS, (3b)

where n denotes the unit outward normal to ∂Ω. Additionally, we prescribe the mean

ionic concentrations in the form

〈ci〉Ω = c0i , i = ±, (4)

where c0+ and c0− are given positive real numbers and where, for any function f ∈ L1(Ω),

〈f〉Ω :=
1

|Ω|

∫

Ω

f. (5)

We assume that c0± satisfy the bulk electro-neutrality condition

∑

i=±

Zic
0
i =

1

|Ω|

∫

∂Ω

1

e
ΣS, (6)

which is a necessary and sufficient condition for the solvability of the Poisson

equation (1a) together with the boundary conditions (3) for the electrostatic potential ψ

given the ionic concentrations c. Finally, since the electrostatic potential is determined

up to an additive constant, we require that

〈ψ〉Ω = 0.
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2.2. Modelling of non-ideality

For each species i = ±, its activity coefficient γi(c), which depends on both ionic

concentrations c±, is split into two parts in such a way that

log(γi(c)) = log(γCoul
i (c)) + log(γHS(c)), i = ±. (7)

The first contribution accounts for Coulomb interactions, while the second is a hard-

sphere term introducing steric effects which dominate at high ionic concentrations.

For the Coulomb term, we consider the mean spherical approximation (MSA)

hinging on the screening parameter ΓMSA (expressed in m−1) such that

Γ2
MSA = πLB

∑

i=±

Z2
i ci

(1 + σiΓMSA)2
, (8)

where LB is the Bjerrum length defined by LB :=
e2

4πεkBT
. Recalling that, in the present

work, we consider the mean ion diameter approximation σ± = σ, equation (8) can be

solved explicitly. For convenience, we introduce the ionic strength function I : R
2
≥0 → R

(expressed in m−3) such that, for all c ∈ R
2
≥0,

I(c) :=
∑

i=±

ηici, ηi :=
1

2
Z2
i . (9)

Then, the screening parameter ΓMSA solving (8) is given by ΓMSA = ΥMSA(I(c)) with

the function ΥMSA : R≥0 → R≥0 such that, for all θ ∈ R≥0,

ΥMSA(θ) :=
1

2σ

(

√

2σ(4πLB)1/2(2θ)1/2 + 1 − 1

)

. (10)

The activity coefficients γCoul
i (c), i = ±, depend on c only through the ionic strength

I(c) and are given by

log(γCoul
i (c)) = −Z2

i

LBΥMSA(I(c))

1 + σΥMSA(I(c))
, i = ±. (11)

It is convenient to introduce the function γ0 : R≥0 → R≥0 such that, for all θ ∈ R≥0,

log(γ0(θ)) := −
LBΥMSA(θ)

1 + σΥMSA(θ)
, (12)

so that

log(γCoul
i (c)) = Z2

i log(γ0(I(c))), i = ±. (13)

The hard-sphere contribution stems from the lowest order term in the Percus–

Yervick approximation, that is,

log(γHS(c)) :=
4πσ3

3
(c+ + c−). (14)

Such expressions have been derived, e.g., by Waisman and Lebowitz [13, 14] and in the

form presented above by Blum [3] who treated the case of asymmetric electrolytes for

the unrestricted primitive model.
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Remark 1 (Debye–Hückel limit) For extremely low values of the mean ionic

diameter, σ → 0, we recover for log γ0 the expression derived in the Debye–Hückel

theory, namely log γ0(θ) = −(2πL3
Bθ)

1/2.

2.3. Scaling and non-dimensionalization

There are three length scales in the problem: the characteristic size of the elementary

cell L∗, the mean ionic diameter σ, and the Bjerrum length LB. It is convenient to

introduce the Debye length LD and the non-dimensional ratio λ such that

LD :=

√

L3
∗

4πLB

, λ :=

(

LD

L∗

)2

=
L∗

4πLB

. (15)

The Debye length represents the scale over which the ions screen out the electric field.

In what follows, we use L∗ as the characteristic length. Moreover, the reference

electrostatic potential is the so-called Zeta potential ψ∗ := kBT/e, the reference

electrochemical potential is µ∗ := kBT , the reference surface charge density is ΣS∗ :=

kBTε/(eL∗), and the reference ionic concentration is c∗ := L−3
∗ . Typical values for these

quantities are provided in §5. With these reference values, the governing equations are

recast into non-dimensional form, and to alleviate the notation, we use the same symbols

for non-dimensional quantities.

The Poisson problem for the electrostatic potential ψ takes the form

− λ∆ψ =
∑

i=±

Zici in Ω, (16a)

ψ is periodic on ∂Ω \ ∂ΩS, (16b)

∇ψ · n = −ΣS on ∂ΩS, (16c)

〈ψ〉Ω = 0. (16d)

The mean ionic concentrations c0± satisfy the bulk electro-neutrality condition

∑

i=±

Zic
0
i =

λ

|Ω|

∫

∂Ω

ΣS, (17)

and the electrochemical potentials are such that

µi(ψ, c) = log(σ3ci) + log(γi(c)) + Ziψ, i = ±. (18)

The activity coefficients γ±(c) are decomposed as in (7). The Coulomb term is still given

by (13) with the ionic strength evaluated as in (9) and the function γ0 : R≥0 → R≥0

now such that, for all θ ∈ R≥0,

log(γ0(θ)) := −
1

4πλ

ΥMSA(θ)

1 + σΥMSA(θ)
, (19)

with the function ΥMSA : R≥0 → R≥0 such that, for all θ ∈ R≥0,

ΥMSA(θ) :=
1

2σ

(

√

2σλ−1/2(2θ)1/2 + 1 − 1

)

. (20)

Finally, the hard-sphere term is still given by (14).
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2.4. Entropy and Free-Energy functionals

We define the ideal entropy sid : R≥0 → R such that, for all u ∈ R≥0,

sid(u) :=

{

u(log(σ3u) − 1), u > 0,

0, u = 0,
(21)

and the excess entropy sex : R
2
≥0 → R (resulting from non-ideality) such that, for all

c = (c+, c−) ∈ R
2
≥0,

sex(c) := 2Γ0(I(c)) +
2πσ3

3
(c+ + c−)2, (22)

where, for all θ ∈ R≥0,

Γ0(θ) :=

∫ θ

0

log(γ0(θ
′))dθ′ = −

1

4πσλ

(

θ −
8λσ

3
(ΥMSA(θ))3 − 2λ (ΥMSA(θ))2

)

. (23)

The ideal entropy is continuous in R≥0 and continuously differentiable in R>0, while the

excess entropy is continuously differentiable in R
2
≥0 with

∂sex

∂c+
(c) = log(γ+(c)),

∂sex

∂c−
(c) = log(γ−(c)). (24)

The entropy functional S is such that

S(c) = Sid(c) + Sex(c), (25)

with

Sid(c) :=
∑

i=±

∫

Ω

sid(ci), Sex(c) :=

∫

Ω

sex(c). (26)

Finally, the free-energy functional E is such that

E(ψ, c) = U(ψ) − S(c) − B(ψ, c), (27)

where

B(ψ, c) =
∑

i=±

∫

Ω

Ziciψ, (28a)

U(ψ) =
λ

2

∫

Ω

|∇ψ|2 + λ

∫

∂ΩS

ΣSψ. (28b)

To motivate the free-energy functional E , we observe formally that, if (ψ, c) is a saddle

point of E under the constraints 〈ψ〉Ω = 0 and 〈ci〉Ω = c0i , i = ±, and if E is differentiable

at (ψ, c), then (ψ, c) is a critical point of E . Differentiating E with respect to its first

argument shows that ψ solves the Poisson problem (16), while differentiating E with

respect to its second argument shows that the electrochemical potentials µ±(ψ, c) are

constant in Ω with µi(ψ, c) = µ0
i , i = ±, where the µ0

i ’s are the Lagrange multipliers

associated with the constraints on the mean ionic concentrations. The purpose of the

next section is to give a precise mathematical setting for this result.
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3. Mathematical analysis

In this section, we introduce a mathematical framework and prove that, under the

assumptions stated below, the free-energy functional E admits a unique saddle point

(ψ, c). Moreover, we establish some a priori bounds on (ψ, c) and show that ψ solves

the Poisson problem (16) while the electrochemical potentials µi(ψ, c), i = ±, defined

by (18) are constant in Ω. In what follows, we consider an abstract setting for the

one-real variable function log γ0 which can be chosen arbitrarily provided assumptions

(Hγ{1,2}) below are satisfied. The case of the MSA where log γ0 is defined by (19)

is a special case of application, for which the verification of assumptions (Hγ{1,2}) is

discussed in §5.

3.1. Assumptions

We consider the sets

H :=
{

φ ∈ H1
per(Ω), 〈φ〉Ω = 0

}

, (29)

K :=
{

c = (c+, c−) ∈ [L2(Ω)]2, c± ≥ 0 a.e. in Ω, 〈c±〉Ω = c0±
}

, (30)

where the functional spaces H1
per(Ω) and L2(Ω) are, respectively, the closure of C∞

per(Ω)

for the canonical norms ‖·‖H1(Ω) and ‖·‖L2(Ω). It is clear that H is a closed subspace of

H1
per(Ω) and that K is a closed convex subset of [L2(Ω)]2.

In what follows, we make the following assumptions:

• (Hc0) ΣS ∈ L1(∂ΩS), the real numbers c0± are positive and satisfy the bulk electro-

neutrality condition (17).

• (HΩ) ΣS ∈ H1/2(∂ΩS) and the affine operator L : L2(Ω) → H such that, for

all f ∈ L2(Ω), L(f) ∈ H solves −∆L(f) = f − 〈f〉Ω + |Ω|−1
∫

∂ΩS
ΣS in Ω with

the Neumann boundary condition ∇L(f)·n = −ΣS on ∂ΩS and 〈L(f)〉Ω = 0, is

bounded from L2(Ω) to H2(Ω).

• (Hγ1) The function θ 7→ log(γ0(θ)) is continuous on R≥0; moreover, there is

β ∈ [0, 1) and (C1, C2) ∈ R
2
≥0 such that

∀θ ∈ R≥0, | log(γ0(θ))| ≤ C1 + C2θ
β. (31)

• (Hγ2) The function θ 7→ log(γ0(θ)) is non-increasing and continuously differentiable

on R>0 and there holds, for all θ ∈ R>0,

η♯
θ

+
4πσ3

3
+

(

2η2
♯ +

2πσ3

3η♭
θ(η♯ − η♭)

2

)

(log γ0)
′(θ) > 0, (32)

where η♯ := max(η+, η−) and η♭ := min(η+, η−).

An important consequence of assumption (Hγ1) is that the excess entropy sex is a

nondecreasing function of both its arguments if at least one ionic concentration is large

enough.
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Lemma 1 Assume (Hγ1). Then, there is κγ ∈ R≥0 such that, for all c ∈ R
2
≥0 satisfying

c+ ≥ κγ or c− ≥ κγ, there holds

∂sex

∂c+
(c) ≥ 0,

∂sex

∂c−
(c) ≥ 0. (33)

Proof. Recall that

∂sex

∂c±
(c) = log(γ±(c)) = 2η± log(γ0(I(c)) +

4π

3
σ3(c+ + c−).

Invoking assumption (Hγ1), we infer that for suitable constants C3 and C4, there holds

∂sex

∂c±
(c) ≥

4π

3
σ3(c+ + c−) − C3 − C4(c

β
+ + cβ−).

Since β ∈ [0, 1), the conclusion is straightforward. ♦

3.2. Main result

It is readily verified that the functional E maps H×K to R. We say that (ψ, c) ∈ H×K

is a saddle point of E if

∀c̃ ∈ K, E(ψ, c̃) ≤ E(ψ, c) ≤ E(φ, c), ∀φ ∈ H. (34)

We can now state the main result of this work.

Theorem 1 Assume (Hc0), (HΩ), and (Hγ{1,2}). Then, the functional E has a unique

saddle point (ψ, c) ∈ H×K. Moreover, ψ ∈ L∞(Ω) and there are 0 < c♭ ≤ c♯ < +∞ such

that, for a.e. x ∈ Ω, c♭ ≤ ci(x) ≤ c♯, i = ±. Finally, ψ solves the Poisson problem (16),

and the electrochemical potentials µi(ψ, c), i = ±, defined by (18) are constant in Ω.

Proof. The proof is decomposed into several steps.

Existence of a saddle point For any c̄ ∈ K, the functional H ∋ ψ 7→ E(ψ, c̄) ∈ R

is strictly convex, continuous, and satisfies, for all ψ ∈ H with ‖ψ‖H1(Ω) → +∞,

E(ψ, c̄) → +∞). Furthermore, in Lemma 2 below, we use assumption (Hγ2) to prove

that the functional S is convex on K, while in Lemma 3, we use assumption (Hγ1) to

prove that the functional S is continuous on K. Hence, for any ψ̄ ∈ H, the functional

K ∋ c 7→ E(ψ̄, c) ∈ R is concave and continuous. The entropy functional also satisfies,

for all c ∈ K with ‖c‖[L2(Ω)]2 → +∞, S(c) → +∞ and E(ψ̄, c) → −∞ since, at high

concentrations, the hard-sphere contribution to the activity coefficient dominates. As a

result, we can apply the Ky Fan–Von Neumann theorem [7, Prop. 2.2, p. 161] to infer

the existence of a saddle point (ψ, c) of the functional E .
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Characterization and bound on electrostatic potential Let (ψ, c) ∈ H × K be a saddle

point of the functional E . Since E is differentiable with respect to ψ and since H is a

vector space, there holds

〈∂ψE(ψ, c), φ〉 = λ

∫

Ω

∇ψ·∇φ+ λ

∫

∂ΩS

ΣSφ−
∑

i=±

∫

Ω

Ziciφ = 0, ∀φ ∈ H.

This shows that ψ solves the Poisson problem (16). Moreover, recalling the affine

operator L : L2(Ω) → H introduced in assumption (HΩ) and using the bulk electro-

neutrality condition (17), we infer

ψ = L

(

1

λ

∑

i=±

Zici

)

.

As a result, ψ ∈ H2(Ω), and owing to the Sobolev embedding theorem, ψ ∈ L∞(Ω).

Characterization and bound on ionic concentrations Using assumption (Hγ1), we prove

in Lemmas 4 and 5 below that there are 0 < c♭ ≤ c♯ < +∞ such that, for a.e. x ∈ Ω,

c♭ ≤ ci(x) ≤ c♯, i = ±. Finally, owing again to the uniform lower bound on the

ionic concentrations and using Lemma 3, we infer that the functional E is Gâteaux-

differentiable at (ψ, c) with respect to c± along any direction v ∈ C∞
per(Ω) with 〈v〉Ω = 0,

and there holds

〈∂c±E(ψ, c), v〉 =

∫

Ω

µ±(ψ, c)v,

where µ±(ψ, c) are the electrochemical potentials defined by (18). Let now v ∈ C∞
per(Ω).

Since (ψ, c) is a saddle point, there holds 〈∂c±E(ψ, c), ṽ〉 = 0 with ṽ = v − 〈v〉Ω, whence
∫

Ω
{µ±(ψ, c) − 〈µ±(ψ, c)〉Ω}v = 0. By density of C∞

per(Ω) in L2(Ω), this shows that the

electrochemical potentials are constant in Ω.

Uniqueness The functional E is strictly convex in its first argument. Moreover, owing

to the uniform lower bound on the ionic concentrations, entropy is strictly convex in c

(see, again, Lemma 2 below). This yields uniqueness of the saddle point. ♦

Remark 2 (Critical points are saddle points) It is readily verified using convexity

arguments that if (ψ, c) (with c uniformly bounded from above and below) is a critical

point of the free-energy functional E, then (ψ, c) is a saddle point of E. In §5, we will

compute an approximation of the saddle point by solving the Euler–Lagrange equations

satisfied by the critical point.

4. Technical results

In this section, we state and prove the various lemmas invoked in the proof of our main

result, Theorem 1. Our first result concerns the convexity of the entropy functional S.
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Lemma 2 (Convexity of entropy) Assume (Hγ2). Then, the functional S is convex

on K and strictly convex on the subset K>0 := {c ∈ K; c+ > 0 and c− > 0 a.e. in Ω}.

Proof. It suffices to show that the entropy s : R
2
≥0 → R such that, for all

c = (c+, c−) ∈ R
2
≥0,

s(c) := sid(c+) + sid(c−) + sex(c)

is convex on R
2
≥0 and strictly convex on R

2
>0. Moreover, the convexity of s on R

2
≥0 follows

from the strict convexity of s on R
2
>0 and the continuity of s. Hence, it is sufficient to

address the strict convexity of s on R
2
>0. Set η♯ := max(η+, η−), η♭ := min(η+, η−), and

η̄ := 1
2
(η+ + η−). The Hessian associated with s is given by

Hess(s) =

(

1
c+

+ A+Bη2
+ A+Bη+η−

A+Bη+η−
1
c−

+ A+Bη2
−

)

,

where A := 4π
3
σ3 and B := 2(log γ0)

′(θ) with θ = I(c). We verify that the trace and the

determinant of H(s) are positive. We obtain

c+c− det Hess(s) = 1 + A(c+ + c−) +
(

η2
+c+ + η2

−c− + Ac+c−(η+ − η−)2
)

B.

Since c+ + c− ≥ θ/η♯, η
2
+c+ + η2

−c− ≤ η♯θ, c+c− ≤ θ2/(4η−η+), and B ≤ 0, we infer that,

under condition (32), that is,

η♯
θ

+ A+

(

η2
♯ +

A

4η♭
θ(η♯ − η♭)

2

)

B > 0, (35)

there holds det Hess(s) > 0. Furthermore,

1

2
tr Hess(s) =

1

2

(

1

c+
+

1

c−

)

+ A+
1

2
(η2

+ + η2
−)B.

Since (c−1
+ + c−1

− )/2 ≥ η̄/θ, we infer that, under the condition

η̄

θ
+ A+

1

2
(η2
♯ + η2

♭ )B > 0, (36)

there holds tr Hess(s) > 0. Finally, it is readily verified that, for all θ ∈ R>0,

(
η♯

θ
+ A)1

2
(η2

+ + η2
−) ≤ ( η̄

θ
+ A)(η2

♯ + A
4η♭
θ(η♯ − η♭)

2), so that (35) implies (36). ♦

Remark 3 (Necessary convexity condition for symmetric electrolytes) In the

case of symmetric electrolytes, that is, η+ = η− = η, condition (32) reduces to

η

θ
+

4πσ3

3
+ 2η2(log γ0)

′(θ) > 0, (37)

and it is readily verified that this condition is also necessary for the convexity of the

entropy.
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Our second result deals with the continuity and Gâteaux-differentiability of the

entropy functional S.

Lemma 3 (Continuity and differentiability of entropy) Assume (Hγ1). Then,

the entropy functional S is continuous on [L2(Ω)]2. Moreover, for all c ∈ [L2(Ω)]2

such that there is c♭ > 0 with ci(x) ≥ c♭ for a.e. x ∈ Ω and all i = ±, S is Gâteaux-

differentiable at c along any direction v ∈ C∞
per(Ω), and there holds

〈∂c±S(c), v〉 =

∫

Ω

{log(σ3c±) + log(γ±(c))}v.

Proof. A classical result of nonlinear analysis [12, Lemma 16.2, p. 61] states that, if

F : R → R is a continuous function satisfying the growth condition

∃a, b ∈ R, ∀u ∈ R, |F (u)| ≤ a+ b|u|p/q,

with 1 ≤ p, q < +∞ then, for all v ∈ Lp(Ω), there holds F (v) ∈ Lq(Ω), and the

superposition operator Lp(Ω) ∋ v 7→ F (v) ∈ Lq(Ω) is continuous. This result can

be applied to the function F1(x) = sid(x) (extended by zero for x ≤ 0) showing that

Sid(c) is continuous from [L2(Ω)]2 to L1(Ω). The result can also be applied to the

function F2(x) = Γ0(x) (extended by zero for x ≤ 0) since, owing to assumption

(Hγ1), F2 satisfies the above growth condition with exponent 1 + β < 2. Since the

function c 7→ I(c) maps continuously [L2(Ω)]2 to L2(Ω), we infer that the functional

c 7→ 2Γ0(I(c)) is continuous from [L2(Ω)]2 to L1(Ω). Finally, the continuity of the

hard-sphere contribution c 7→ 2πσ3

3
(c+ + c−)2 from [L2(Ω)]2 to L1(Ω) is obvious.

Gâteaux-differentiability Let now c ∈ [L2(Ω)]2 such that there is c♭ > 0 with ci(x) ≥ c♭
for a.e. x ∈ Ω and all i = ±. We treat the partial derivative with respect to c+; the other

case is treated similarly. Let v ∈ C∞
per(Ω) with 〈v〉Ω = 0. There is t0 > 0 such that, for

all t ∈ [−t0, t0], c+(x) + tv(x) ≥ 1
2
c♭ for a.e. x ∈ Ω. Since the function F3(x) = log(σ3x)

for x ≥ 1
2
c♭ extended by the constant value log(1

2
σ3c♭) for x ≤ 1

2
c♭ satisfies a linear

growth condition. Using the proof of [12, Lemma 17.1, p. 64], we can prove that the

ideal entropy is Gâteaux-differentiable with

〈∂c+Sid(c), v〉 =

∫

Ω

log(σ3c+)v.

Gâteaux-differentiating the excess entropy is simpler. We use the growth condition in

assumption (Hγ1) to infer

〈

∂c+

(
∫

Ω

2Γ0(I(c))

)

, v

〉

=

∫

Ω

2η+ log(γ0(I(c))v =

∫

Ω

log(γCoul
+ (c))v,

while Gâteaux-differentiating the hard-sphere term 2πσ3

3
(c+ + c−)2 is straightforward. ♦

Our third result delivers an a priori L∞-bound on the ionic concentrations c =

(c+, c−).
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Lemma 4 (Upper bound on c) Assume (Hγ1). Let (ψ, c) ∈ H×K be a saddle point

of the functional E. Then, there is c♯ < +∞ such that, for a.e. x ∈ Ω, ci(x) ≤ c♯ for all

i = ±.

Proof. Let (ψ, c) ∈ H × K be a saddle point of the functional E . Proceeding by

contradiction, we assume that there is i = ± such that, for all n ∈ N, the set

Ani := {x ∈ Ω; ci(x) > 2n}

has positive measure. We then construct modified ionic concentrations c̃ ∈ K such

that E(ψ, c̃) > E(ψ, c), thereby providing the desired contradiction with (34). As a

result, for all i = ±, there is ni ∈ N such that the set Ani
i has zero measure, yielding

the statement of Lemma 4 with c♯ = maxi=± 2ni . The principle of the construction

is that, by diminishing the ionic concentration where it is very large, the entropy can

be decreased, and thus the free-energy increased. Both the ideal term and the steric

exclusion term are large enough at high concentrations to lead to an entropy decrease.

We choose to work with the ideal term since, in the proof of Lemma 5 below, the

ideal term is the only one leading to the entropy decrease at small concentrations; thus,

the two proofs are similar. Furthermore, we observe that some care is needed when

perturbing the ionic concentrations since it is necessary to preserve their mean values.

Without loss of generality, we assume that, for all n ∈ N, the set An+ has positive

measure. We first observe that there is k ∈ N such that the set

Ωk
+ := {x ∈ Ω; 2−k ≤ c+(x) ≤ 2k} (38)

has positive measure (otherwise, c+ is zero or infinity a.e. in Ω which contradicts the

fact that 〈c+〉Ω = c0+ > 0). In what follows, we fix such k ∈ N, and, without loss of

generality, we assume that n ≥ k so that the setsAn+ and Ωk
+ are disjoint. Moreover, since

〈c−〉Ω = c0− and c−(x) ≥ 0 for a.e. x ∈ Ω, we infer that, for all m ∈ N, c0− ≥ 1
|Ω|

2m|Am− |,

which shows that |Am− | → 0 as m → ∞. As a result, there is m ∈ N such that the set

Ωk,m := Ωk
+ ∩ (Ω \ Am− ) has positive measure. In what follows, we fix such m ∈ N. We

observe that in Ωk,m, both ionic concentrations c± are bounded by Ck,m := max(2k, 2m).

We now define the function c̃n+ as follows:

c̃n+(x) =















0, x ∈ An+,

c+(x) + δn, x ∈ Ωk,m,

c+(x), x ∈ Ω \ (An+ ∪ Ωk,m).

with δn = 1
|Ωk,m|

∫

An
+

c+. It is readily verified that 〈c̃n+〉Ω = c0+ so that c̃n := (c̃n+, c−) ∈ K.

We observe that the real number δn is uniformly bounded since δn ≤ δ := 1
|Ωk,m|

|Ω|c0+
for all n ∈ N. It is important to modify c+ only in the set Ωk,m to preserve its mean

value (and not in the larger set Ωk
+); indeed, a bound on c− is needed to control the

variation of the non-ideal terms between c and c̃n.

To conclude the proof, we show that it is possible to choose n large enough so that

∆E := E(ψ, c̃n) − E(ψ, c) > 0.
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There holds

∆E = −∆Sid − ∆Sex − ∆B

with ∆Sid := Sid(c̃
n) − Sid(c), ∆Sex := Sex(c̃

n) − Sex(c), and ∆B := B(ψ, c̃n) − B(ψ, c).

We estimate the three terms separately. Since

∆B = −Z+

∫

An
+

c+ψ + Z+

∫

Ωk,m

δnψ,

we infer, since ψ ∈ L∞(Ω) owing to the second step in the proof of Theorem 1, that

|∆B| ≤ 2Z+‖ψ‖L∞(Ω)

∫

An
+

c+.

Since

∆Sid =

∫

An
+

−sid(c+) +

∫

Ωk,m

{sid(c+ + δn) − sid(c+)} =: T1 + T2,

we infer that

T1 ≤ −(log(σ32n) − 1)

∫

An
+

c+,

|T2| ≤ δn
∫

Ωk,m

m(c+, c+ + δn) ≤ m(2−k, 2k + δ)

∫

An
+

c+,

where we have used the fact that c+ ≥ 0, δn ≤ δ, and that, for b ∈ R>0 and a ∈ R≥0,

there holds |sid(b)− sid(a)| ≤ |b− a|m(a, b) with m(a, b) := max(| log(σ3a)|, | log(σ3b)|).

Turning next to ∆Sex, recall that the excess entropy sex is continuously differentiable

in R
2
≥0 and that ∂sex

∂c+
(u) ≥ 0 for all u = (u+, u−) ∈ R

2
≥0 such that u+ ≥ κγ or

u− ≥ κγ as shown in Lemma 1. Let Cγ := maxu∈Kγ |
∂sex
∂c+

(u)| with the compact set

Kγ := [0,max(2k + δ, κγ)] × [0,max(2m, κγ)]. We decompose ∆Sex into

∆Sex =

∫

An
+

{sex(c̃
n
+, c−) − sex(c+, c−)} +

∫

Ωk,m

{sex(c̃
n
+, c−) − sex(c+, c−)} =: T3 + T4.

Observing that sex(c̃
n
+, c−) − sex(c+, c−) =

(

∫ c̃n
+

c+
∂sex
∂c+

(u+, c−)du+

)

, we obtain

|T4| ≤

∫

Ωk,m

Cγδ
n = Cγ

∫

An
+

c+,

since for all x ∈ Ωk,m and for all u+ ∈
[

c+(x), c̃n+(x)
]

, (u+, c−(x)) ∈ Kγ. Moreover,

owing to Lemma 1,

T3 ≤

∫

An
+

{sex(0, c−) − sex(min(κγ, c+), c−)}

≤

∫

An
+
∩{c−≤κγ}

{sex(0, c−) − sex(min(κγ, c+), c−)} =: T ′
3,
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since for c− > κγ, sex(0, c−) − sex(min(κγ, c+), c−) ≤ 0. Moreover,

|T ′
3| ≤

∫

An
+
∩{c−≤κγ}

(

∫ min(κγ ,c+)

0

∣

∣

∣

∣

∂sex

∂c+
(u+, c−)

∣

∣

∣

∣

du+

)

≤

∫

An
+
∩{c−≤κγ}

Cγ min(κγ, c+) ≤ Cγ

∫

An
+

c+.

Collecting the above bounds, we infer

∆E ≥ (log(σ32n) − 1 − C)

∫

An
+

c+,

with C = 2Z+‖ψ‖L∞(Ω) + m(2−k, 2k + δ) + 2Cγ. Taking n large enough so that

log(σ32n) ≥ 1 + C and since An+ has positive measure, we infer ∆E > 0. ♦

Our last result delivers a uniform positive lower bound on the ionic concentrations.

Lemma 5 (Uniform positive lower bound on c) Assume (Hγ1). Let (ψ, c) ∈ H ×

K be a saddle point of the functional E. Then, there is c♭ > 0 such that, for a.e. x ∈ Ω,

ci(x) ≥ c♭ for all i = ±.

Proof. Let (ψ, c) ∈ H × K be a saddle point of the functional E . The structure of the

proof is similar to that of Lemma 4, though a bit simpler since we already have upper

bounds on c±. Proceeding by contradiction, we assume that there is i = ± such that,

for all n ∈ N, the set

Bn
i := {x ∈ Ω; ci(x) < 2−n}

has positive measure. We then construct modified ionic concentrations c̃ ∈ K such that

E(ψ, c̃) > E(ψ, c), thereby providing the desired contradiction with (34). As a result, for

all i = ±, there is ni ∈ N such that the set Bni
i has zero measure, yielding the statement

of Lemma 5 with c♭ = mini=± 2−ni .

Without loss of generality, we assume that, for all n ∈ N, the set Bn
+ has positive

measure. We fix k ∈ N such that the set Ωk
+ defined by (38) has positive measure, and,

without loss of generality, we assume that n is large enough so that 2−n ≤ 1
|Ω|

|Ωk
+|2

−k.

Since this implies 2−n ≤ 2−k, the sets Bn
+ and Ωk

+ are disjoint. We now define the

function c̃n+ as follows:

c̃n+(x) =















c+(x) + 2−n, x ∈ Bn
+,

c+(x) − δn, x ∈ Ωk
+,

c+(x), x ∈ Ω \ (Bn
+ ∪ Ωk

+).

with δn = 1
|Ωk

+
|
|Bn

+|2
−n. It is readily verified that 〈c̃n+〉Ω = c0+. Moreover, since

|Bn
+| < |Ω|, δn < 1

|Ωk
+
|
|Ω|2−n ≤ 2−k, so that c̃n+ ≥ 0 in Ω. Hence, c̃n := (c̃n+, c−) ∈ K.

To conclude the proof, we show that it is possible to choose n large enough so that

∆E := E(ψ, c̃n) − E(ψ, c) > 0.
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As in the proof of Lemma 4, we write ∆E = −∆Sid − ∆Sex − ∆B. Since ψ ∈ L∞(Ω)

owing to the second step in the proof of Theorem 1, we infer

|∆B| ≤ 2Z+‖ψ‖L∞(Ω)2
−n|Bn

+|.

Moreover,

∆Sid =

∫

Bn
+

{sid(c+ + 2−n) − sid(c+)} +

∫

Ωk
+

{sid(c+ − δn) − sid(c+)} =: T1 + T2,

with

T1 ≤

∫

Bn
+

2−n log(σ32−n+1) = log(σ32−n+1)2−n|Bn
+|,

|T2| ≤

∫

Ωk
+

δnm(c+ − δn, c+) ≤ m(2−k − δ, 2k)2−n|Bn
+|.

Finally, let C ′
γ := maxu∈K′

γ
|∂sex
∂c+

(u)| with the compact set K ′
γ := [0, 2k] × [0, c♯]. We

obtain

|∆Sex| ≤

∫

Bn
+
∪Ωk

+

(
∫ c̃n

+

c+

∣

∣

∣

∣

∂sex

∂c+
(u+, c−)

∣

∣

∣

∣

du+

)

≤ C ′
γ

∫

Bn
+
∪Ωk

+

|c̃n+ − c+| ≤ 2C ′
γ2

−n|Bn
+|,

since for all x ∈ Bn
+ ∪ Ωk

+ and for all u+ ∈
[

c+(x), c̃n+(x)
]

(u+, c−(x)) ∈ K ′
γ. Collecting

the above bounds, we infer

∆E ≥ (log(σ−32n−1) − C)2−n|Bn
+|,

with C = 2Z+‖ψ‖L∞(Ω) + m(2−k − δ, 2k) + 2C ′
γ. Taking n large enough so that

log(σ−32n−1) ≥ C and since Bn
+ has positive measure, we infer ∆E > 0. ♦

5. Numerical illustration

This section presents a numerical experiment in the case where the activity coefficient

log γ0 is evaluated using the MSA.

5.1. Verifications of assumptions for MSA

We verify the abstract assumptions (Hγ{1,2}) in the context of the MSA, that is, when

log γ0 is defined by (19) with the screening parameter ΥMSA defined by (20). Assumption

(Hγ1) is straightforward to verify, so that we focus on (Hγ2). For all θ > 0, setting

y :=
√

2σλ−1/2(2θ)1/2 + 1, we obtain

(log γ0)
′(θ) = −

σ

πλ2

1

y(y + 1)2(y2 − 1)
,
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and a simple calculation shows that (Hγ2) is equivalent to the fact that the sixth degree

polynomial

P (y) = y (y − 1)2 (y + 1)3 −
(η♯ − η♭)

2

16πλση♭

(

y2 − 1
)2

(y − 1)

+

(

6η♯
πλσ

)

y (y + 1) −
3

2

( η♯
πλσ

)2

(y − 1)

takes positive values for all y > 1. This condition, in turn, can be checked numerically.

It holds true under a condition of the form σλ > υ0, where the threshold υ0, which

depends on the species valences Z±, is reported in the second column of Table 1 for

several values of Z±. Recalling the definition (15) of the non-dimensional parameter

λ and reverting to dimensional length scales, the above condition can be expressed as

σ/LB > 4πυ0. Using the values e = 1.60 × 10−19 C, ε0 = 8.85 × 10−12 CV−1m−1,

εr = 78.3, and kB = 1.38 × 10−23 J K−1, the Bjerrum length can be evaluated as a

function of the temperature T (yielding, e.g., LB = 7.1
◦

A for T = 300 K) and a minimal

value σ0 for the mean ionic diameter can be computed. This value is reported in the

the third and fourth columns of Table 1 for T = 300 and T = 350 K respectively. The

condition σ > σ0 is easier to fulfill when the temperature increases. This condition is

also more stringent for 1:2 and 2:2 electrolytes than for 1:1 electrolytes. Interestingly,

the condition σ > σ0 shows that the mean ionic diameter cannot take extremely low

values within the present physical model (in particular, the Debye–Hückel limit σ → 0

does not yield here a convex entropy).

Z+ : Z− υ0 σ0 (
◦

A)

- - T = 300 K T = 350 K

1 : 1 6.263 × 10−3 0.560 0.480

2 : 1 2.606 × 10−2 2.329 1.996

2 : 2 2.506 × 10−2 2.239 1.919

Table 1. Threshold values for which assumption (Hγ2) holds true.

5.2. A periodic medium with charged disks

Referring to §2, we consider a two-dimensional setting where ΩS is a disk of radius

R = 0.3L∗ whose center coincides with that of the elementary cell [0, L∗]
2. We take

L∗ ∈ {1, 10} nm, T = 300 K, and ΣS = 0.13 Cm−2. With these values, the Debye

length is in the range [3.345, 105.8]
◦

A. We consider a 1:1 electrolyte. The mean ionic

concentrations (in dimensional form) are specified as

c0+ =
1

|Ω|

∫

∂Ω

1

e
ΣS + csalt, c0− = csalt,
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and we set the concentration of added salt to csalt = 0.15 mol/l. In particular, since

the disk is negatively charged, there is always an excess of counter-ions to ensure the

global electro-neutrality of the system. It is readily seen that assumptions (Hc0) and

(HΩ) hold true. Moreover, the mean ionic diameter is set to σ ∈ {3, 4, 5}
◦

A, so that

assumptions (Hγ{1,2}) also hold true. Figure 2 (left) depicts the activity coefficient

log γ0 as a function of ionic strength for the various values of the parameter σ, whereas

Figure 2 (right) depicts the hard-sphere activity coefficient log γHS as a function of total

concentration. This figure illustrates that electrostatic correlations have a more sizable

effect for small values of σ, whereas the opposite effect is observed for steric exclusion

effects.
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Figure 2. Left: activity coefficient log γ0 as a function of ionic strength I(c) (mol/l);

Right: hard-sphere activity coefficient log γHS as a function of total concentration

(c+ + c−) (mol/l)

The saddle point of the free-energy functional is computed numerically by

solving the associated Euler–Lagrange conditions approximately using conforming finite

elements for space discretization (using the FreeFEM++ library [9]) in conjunction with a

Newton–Raphson algorithm to solve the discrete set of coupled nonlinear equations.

The constraints on the mean value of the electrostatic potential and of the ionic

concentrations are conveniently handled using three additional Lagrange multipliers.

More details concerning the numerical approach can be found in [11]. Figure 3 depicts

iso-values of the counter-ion concentration for the two values of the reference length L∗

and for a mean ionic diameter equal to 3
◦

A (the elementary cell is rescaled to [0, 1]2

in the figure). We observe that for large L∗, boundary layers appear near the charged

walls: counter-ion concentrations exhibit a steeper gradient close to the charged surface

and take almost constant values in the bulk region far from the disk.

To gain further insight, we compare the solutions obtained for the three values of

the parameter σ ∈ {3, 4, 5}
◦

A and for the two values of L∗ ∈ {1, 10} nm. We focus on

the values obtained on the horizontal line [0.8L∗, L∗] × {0.5L∗} joining the rightmost

part of the disk to the right vertical side of the elementary cell. Figure 4 depicts the

values of the activity coefficient log(γ±(c)) (note that log(γ+(c)) = log(γ−(c)) for a

symmetric electrolyte), while Figure 5 depicts those of the counter-ion concentration;
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Figure 3. Counter-ion concentration (mol/l) for a 1:1 electrolyte with parameters

csalt = 0.15 mol/l and σ = 3
◦

A. Left: L∗ = 1 nm; Right: L∗ = 10 nm.

for completeness, values obtained in the ideal Poisson–Boltzmann case (γ±(c) = 1)

are also reported. We observe three different behaviors in Figure 4: electrostatic

correlations dominate for σ = 3
◦

A (log γ±(c) > 0), steric exclusion effects dominate

for σ = 5
◦

A (log γ±(c) < 0), or both effects play a role for σ = 4
◦

A. In Figure 5, we can

observe the influence of the non-ideality on the counter-ion concentration close to the

charged disk, especially when comparing the concentrations to those obtained within the

Poisson–Boltzmann theory. The main effect of non-ideality is to lower the counter-ion

concentration close to the charged surface. Interestingly, the ideal predictions are more

accurate for larger cell sizes (L∗ = 10 nm).
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Figure 4. log(γ±(c)) for a 1:1 electrolyte with parameters csalt = 0.15 mol/l and

σ ∈ {3, 4, 5}
◦

A. Left: L∗ = 1 nm; Right: L∗ = 10 nm.
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[1] G. Allaire, R. Brizzi, J-F Dufrêche, A. Mikelić, and A. Piatnitski. Role of non-ideality for the

ion transport in porous media: derivation of the macroscopic equations using upscaling. in

preparation, 2011.
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Études Mathématiques.

[8] J. P. Hansen and I. R. Mac Donald. Theory of simple liquids. Academic Press, 2nd edition, 1976.

[9] F. Hecht. FreeFem++ documentation, http://www.freefem.org/ff++/, 2011.
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