
HAL Id: hal-00654716
https://hal.science/hal-00654716v2

Submitted on 24 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian analysis of hierarchical multi-fidelity codes.
Loic Le Gratiet

To cite this version:
Loic Le Gratiet. Bayesian analysis of hierarchical multi-fidelity codes.. 2012, pp.RSPA-2011-0742.
�hal-00654716v2�

https://hal.science/hal-00654716v2
https://hal.archives-ouvertes.fr


Bayesian analysis of hierarchical multi-fidelity

codes.

Loic Le Gratiet † ‡

† Université Paris Diderot 75205 Paris Cedex 13
‡ CEA, DAM, DIF, F-91297 Arpajon, France

loic.le-gratiet@cea.fr

September 24, 2012

1 Abstract

This paper deals with the Gaussian process based approximation of a code
which can be run at different levels of accuracy. This method, which is a
particular case of co-kriging, allows us to improve a surrogate model of a
complex computer code using fast approximations of it. In particular, we
focus on the case of a large number of code levels on the one hand and on a
Bayesian approach when we have two levels on the other hand.

The main results of this paper are a new approach to estimate the model
parameters which provides a closed form expression for an important param-
eter of the model (the scale factor), a reduction of the numerical complexity
by simplifying the covariance matrix inversion, and a new Bayesian mod-
elling that gives an explicit representation of the joint distribution of the
parameters and that is not computationally expensive.

A thermodynamic example is used to illustrate the comparison between 2-
level and 3-level co-kriging. Keywords: surrogate models, co-kriging, multi-
fidelity computer experiment, Bayesian analysis.

2 Introduction

Large computer codes are widely used in science and engineering to study
physical systems since real experiments are often costly and sometimes im-
possible. Nevertheless, simulations can sometimes be costly and time-consuming
as well. In this case, conception based on an exhaustive exploration of the
input space of the code is generally impossible under reasonable time con-
straints. Therefore, a mathematical approximation of the output of the code
- also called surrogate or metamodel - is often built with a few simulations
to represent the real system.

1



Gaussian Process regression is a particular class of surrogate which makes
the assumption that prior beliefs about the code can be modelled by a Gaus-
sian Process. We focus here on this metamodel and on its extension to mul-
tiple response models. The reader is refered to [14] and [13] for further detail
about Gaussian Process models.

Actually, a computer code can often be run at different levels of com-
plexity and a hierarchy of levels of code can hence be obtained. The aim of
this paper is to study the use of several levels of a code to predict the output
of a costly computer code.

A first metamodel for multi-level computer codes was built by Kennedy
and O’Hagan [7] using a spatially stationary correlation structure. This
multi-stage model is a particular case of co-kriging which is a well known
geostatistical method. Then, Forrester et al. [4] went into more detail about
the estimation of the model parameters. Furthermore, Forrester et al. pre-
sented the use of co-kriging for multi-fidelity optimization based on the EGO
(Efficient Global Optimization) algorithm created by Jones et al. [9]. A
Bayesian approach was also proposed by Qian and Wu [12] which is com-
putationally expensive and does not provide explicit formulas for the joint
distribution of the parameters.

This paper presents a new approach to estimate the parameters of the
model which is effective in the case of non-spatial stationarity and when
many levels of codes are available. In particular, it provides a closed form
expression for the estimation of the scale factor which is new and of great
practical interest. Furthermore, this approach allows us to consider prior in-
formation in the estimation of the parameters. We also address the problem
of the inversion of the co-kriging covariance matrix when the number of levels
is large. A solution to this problem is provided which shows that the inverse
can be easily calculated. Finally, it is known that with a non-Bayesian ap-
proach, the variance of the predictive distribution may be underestimated [7].
This paper suggests a Bayesian modelling different from the one presented
in [12] which provides an explicit representation of the joint distribution for
the parameters and avoids prohibitive implementation.

3 Building a surrogate model based on a hierarchy

of s levels of code

Let us assume that we have s levels of code z1(x), . . . , zs(x), x ∈ R
d, d > 0.

For all t = 1, . . . , s the tth scalar output zt(x) is modelled by zt(x) = Zt(x, ω)
where Zt(x, ω), ω ∈ Ω is a realization of the Gaussian process Zt(x). We
will introduce below a consistent set of hypotheses so that the joint process
(Zt(x))x∈Rd,t=1,...,s is Gaussian given a certain set of parameters. Kenney and
O’Hagan [7] suggest an autoregressive model to build a metamodel based on
a multi-level computer code. Hence, we have a hierarchy of s levels of code

2



- from the less accurate to the most accurate - and for each level, the condi-
tional distribution of the Gaussian process Zt(x) knowing Z1(x), . . . , Zt−1(x)
is entirely determined by Zt−1(x). Let us introduce here the mathematical
formalism that we will use in this paper.

Q ⊂ R
d is a compact subset of R

d called the input space or the do-

main of interest. For t = 1, . . . , s, Dt = {x(t)1 , . . . , x
(t)
nt } is the experimen-

tal design set at level t containing nt points in Q. Let Zt = Zt(Dt) =

(Zt(x
(t)
1 ), . . . , Zt(x

(t)
nt ))

T be the random Gaussian vector containing the val-
ues of Zt(x) for x ∈ Dt where T stands for the transpose. Let Z =
(ZT

1 , . . . ,ZT
s )

T be the Gaussian random vector containing the values of the
processes (Zt(x))t=1,...,s at the points of the design sets (Dt)t=1,...,s. We
assume here that the code output is observed without measurement er-
ror. The column vector of responses is written z = (zT1 , . . . , z

T
s )

T , where

zt = (zt(x
(t)
1 ), . . . , zt(x

(t)
nt ))

T is the output vector for the level t.
If we consider Zs(x), the Gaussian process modelling the most accurate

code, we want to determine the predictive distribution of Zs(x0), x0 ∈ Q
given Z = z, i.e. the following conditional distribution: [Zs(x0)|Z = z].

We assume the Markow property introduced in [7]:

Cov(Zt(x), Zt−1(x
′)|Zt−1(x)) = 0 ∀x 6= x′ (1)

This means that if Zt−1(x) is known, then nothing more can be learnt about
Zt(x) from any other run of the cheaper code Zt−1(x

′) for x′ 6= x. This
assumption leads to the following autoregressive model:

Zt(x) = ρt−1(x)Zt−1(x) + δt(x) t = 2, . . . , s (2)

where δt(x) is a Gaussian process independent of Zt−1(x), . . . , Z1(x) and
ρt−1(x) represents a scale factor between Zt(x) and Zt−1(x). We assume that
ρt−1(x) = fρt−1

(x)Tβρt−1
, t = 2, . . . , s, where fρt−1

(x) = (f1
ρt−1

(x), . . . , f
qt−1
ρt−1

(x))T

is a vector of qt−1 regression functions - generally including the constant func-
tion : x ∈ Q → 1 - and βρt−1

∈ R
qt−1 .

Conditioning on parameters σt, βt and θt, δt(x) is assumed to be a Gaus-
sian process with mean ft(x)

Tβt, where ft(x) is a pt-dimensional vector of
regression functions, and with a covariance function of the form ct(x, x

′) =
cov(δt(x), δt(x

′)) = σ2
t rt(x − x′; θt), where σ2

t is the variance of the Gaus-
sian process and θt are the hyper parameters of the correlation function rt.
Moreover, conditioning on parameters σ1, β1 and θ1, the simplest code Z1(x)
is modelled as a Gaussian process with mean f1(x)

Tβ1 and with covariance
function c1(x, x

′) = σ2
1r1(x − x′; θ1). With this consistent set of hypothe-

ses, the joint process (Z1(x), . . . , Zt(x))x∈Q,t=1,...,s given σ2 = (σ2
i )i=1,...,t,

θ = (θi)i=1,...,t, β = (βi)i=1,...,t and βρ = (βρi−1
)i=2,...,t, is Gaussian with

mean:

E[Zt(x)|σ2, θ, β, βρ] = h′t(x)
Tβ (3)

3



h′t(x)
T =

((

t−1
∏

i=1

ρi(x)

)

fT
1 (x),

(

t−1
∏

i=2

ρi(x)

)

fT
2 (x), . . . , ρt−1(x)f

T
t−1(x), f

T
t (x)

)

(4)
and covariance:

cov(Zt(x), Zt(x
′)|σ2, θ, β, βρ) =

t
∑

j=1

σ2
j





t−1
∏

i=j

ρ2i (x)



 rj(x− x′; θj) (5)

For each level t = 2, . . . , s, the experimental design Dt is assumed to be
such that Dt ⊆ Dt−1. Note that this assumption is not necessary but allows
us to have closed form expressions for the parameter estimation formulas.
Furthermore, we denote by Rt(Dk,Dl) the correlation matrix between points
in Dk and Dl, 1 ≤ k, l ≤ s. Rt(Dk,Dl) is a (nk×nl) matrix with (i, j) entry
given by:

[Rt(Dk,Dl)]i,j = rt(x
(k)
i − x

(l)
j ; θt) 1 ≤ i ≤ nk 1 ≤ j ≤ nl

We will use the notation: Rt(Dk) = Rt(Dk,Dk).
[7] present the case where ∀t ∈ [2, s], ρt−1(x) = ρt−1 is constant. Here,
we will consider the general model presented in equations (2). We will also
propose a new approach to estimate the coefficients (βt, βρt−1

)t=2,...,s based
on a Bayesian approach, which allows us to get information about their
uncertainties. In the following section, we describe the case of 2 levels of
code where the scaling coefficient ρ is constant and then we will extend it for
s levels in Section 7. The general case in which ρ depends on x is addressed
in Appendix A.

4 Building a model with 2 levels of code

Let us assume that we have 2 levels of code z2(x) and z1(x). From the
previous section we assume that:

{

Z2(x) = ρZ1(x) + δ(x), x ∈ Q
(Z1(x))x∈Q ⊥ (δ(x))x∈Q

(6)

The goal of this section is to build a surrogate model for Z2(x) given the
observations Z = z with an uncertainty quantification. The strategy is the
following one. In Subsection 4.1 we describe the statistical distribution of the
output Z2(x0) at a new point x0 given the parameters (β1, β2, ρ), (σ

2
1 , σ

2
2) and

(θ1, θ2) and the observations z. In Subsection 4.2 we describe the Bayesian
estimation of the parameters (β1, β2, ρ) and (σ2

1 , σ
2
2) given the observations.

As pointed out at the end of Subsection 4.2 the hyper-parameters (θ1, θ2)
are estimated using a concentrated restricted log-likelihood method.

4



4.1 Conditional distribution of the output

For a point x0 ∈ Q we determine in this subsection the distribution of
[Z2(x0)|Z = z, (β1, β2, ρ), (σ

2
1 , σ

2
2), (θ1, θ2)]. Standard results for normal dis-

tributions give that:

[Z2(x0)|Z = z, (β1, β2, ρ), (σ
2
1 , σ

2
2), (θ1, θ2)] ∼ N (mZ2

(x0), s
2
Z2
(x0)) (7)

with mean function:

mZ2
(x) = h′(x)Tβ + t(x)TV −1(z −Hβ) (8)

and variance:
s2Z2

(x) = ρ2σ2
1 + σ2

2 − t(x)TV −1t(x) (9)

where we have denoted β =

(

β1
β2

)

, z =

(

z1
z2

)

and where H is defined

by:

H =























fT
1 (x

(1)
1 ) 0

...
...

fT
1 (x

(1)
n1

) 0

ρfT
1 (x

(2)
1 ) fT

2 (x
(2)
1 )

...
...

ρfT
1 (x

(2)
n2

) fT
2 (x

(2)
n2

)























=

















F1(D1) 0

ρF1(D2) F2(D2)

















with the notation Fi(Dj) =







fT
i (x

(j)
n1

)
...

fT
i (x

(j)
nj )






. Furthermore, we have h′(x) =

(

ρfT
1 (x), f

T
2 (x)

)

and:

t(x)T = Cov(Z2(x),Z)
=
(

ρσ2
1R1({x},D1), ρ

2σ2
1R1({x},D2) + σ2

2R2({x},D2)
) (10)

The covariance matrix V of the Gaussian vector Z =

(

Z1

Z2

)

can be written

:

V =

(

σ2
1R1(D1) ρσ2

1R1(D1,D2)
ρσ2

1R1(D2,D1) ρ2σ2
1R1(D2) + σ2

2R2(D2)

)

(11)

4.2 Bayesian estimation of the parameters with 2 levels of

code

In this Subsection, we describe the estimation of the parameters (β1, β2, ρ, σ
2
1 ,

σ2
2 , θ1, θ2) for the 2-level model given the observations Z = z. Due to the

conditional independence between Z1(x) and δ(x), it is possible to estimate

5



separately the parameters (β1, σ
2
1 , θ1) and (β2, ρ, σ

2
2 , θ2). We first describe

the estimations of (β1, σ
2
1) given θ1 and (β2, σ

2
2 , ρ) given θ2, which can be

obtained in closed forms. We then describe how to estimate θ1 and θ2.
Firstly, we consider the parameters (β1, σ

2
1 , θ1). We choose the following

non-informative prior distributions corresponding to the “Jeffreys priors" [8]:

p(β1|σ2
1 , θ1) ∝ 1 p(σ2

1) ∝
1

σ2
1

(12)

Considering the probability density function of [Z1|β1, σ2
1 , θ1] and the Bayes

formula, the posterior distribution of [β1|z1, σ2
1 , θ1] is :

[β1|z1, σ2
1 , θ1] ∼ Np1

(

[F T
1 R1(D1)

−1F1]
−1[F T

1 R1(D1)
−1z1], [F

T
1

R1(D1)
−1

σ2
1

F1]
−1

)

(13)
Then, using the Bayes formula, we obtain that the posterior distribution of
[σ2

1 |z1, θ1] is:

[σ2
1 |z1, θ1] ∼ IG(ασ2

1
|n1

,
Q1

2
) (14)

where IG(α,Q) stands for the inverse gamma distribution with density func-
tion:

pα,Q(x) =
Qα

Γ(α)

e−
Q
x

xα+1
1x>0

and the parameters are given by:

ασ2
1
|n1

=
n1 − p1

2
Q1 = (z1 − F1β̂1)

TR1(D1)
−1(z1 − F1β̂1) (15)

with β̂1 = E[β1|z1, σ2
1 , θ1] = [F T

1 R1(D1)
−1F1]

−1[F T
1 R1(D1)

−1z1].
Bayesian estimation of parameters with non-informative “Jeffreys priors"

[8] gives the same results as maximum likelihood estimation for the param-
eter β1. For the parameter σ2

1 , the estimation given by Q1

2α
σ2
1
|n1

is identical

to the one obtained with the restricted maximum likelihood method. This
method was introduced by Patterson and Thompson [11] in order to reduce
the bias of the maximum likelihood estimator.

Secondly, let us consider the set of parameters (β2, ρ, σ
2
2 , θ2). In order

to have closed form formulas for the estimation of (β2, ρ), we estimate them
together. The idea to carry out a joint estimation is proposed for the first
time in this paper and we believe it is important. Indeed, if the cheaper
code is perfectly known, it can be considered as a regression function and
so ρ will be a regression parameter. In this case, it is clear that a separated
estimation of β2 and ρ cannot be optimal.
Using similar Jeffrey prior distributions as in (12) and the same methodology

6



as for the estimation of (β1, σ
2
1), we find that:

[(ρ, β2)|z1, z2, σ2
2 , θ2] ∼ Np2+1

(

[F TR2(D2)
−1F ]−1[F TR2(D2)

−1F ], [F T R2(D2)
−1

σ2
2

F ]−1

)

(16)
and:

[σ2
2 |z2, z1, θ2] ∼ IG(ασ2

2
|n2

,
Q2

2
) (17)

where:

ασ2
2
|n2

=
n2 − p2 − 1

2
Q2 = (z2 − Fλ̂)TR2(D2)

−1(z2 − Fλ̂) (18)

with λ̂ = E[(ρ, β2)|z1, z2, σ2
2 , θ2] = [F TR2(D2)

−1F ]−1[F TR2(D2)
−1z2]. The

design matrix F is such that F = [ρz1(D2) F2]. Furthermore, the estima-
tion of σ2

2 given by Q2

2α
σ2
2
|n2

is the same as the restricted maximum likelihood

one.
The hyper-parameters θ1 and θ2 are found by minimizing the opposite

of the concentrated restricted log-likelihoods:

log (|det (R1(D1)) |) + (n1 − p1)log(σ̂1
2) (19)

log (|det (R2(D2)) |) + (n2 − p2 − 1)log(σ̂2
2) (20)

These minimizations problems must be numerically solved with a global
optimization method. We use an evolutionary method coupled with a BFGS
algorithm. The drawback of the maximum likelihood estimation (see [10]) is
that, contrarily to Bayes estimation, we do not have any information about
the variance of the estimator. Nevertheless, Bayes estimation of the hyper
parameters θ1 and θ2 are prohibitive and as noted in [14] the choice of the
prior distribution is non trivial. Therefore, in this paper, we will always
estimate these parameters with a concentrated restricted likelihood method.

5 Bayesian prediction for a code with 2 levels

The aim of a Bayesian prediction is to provide a predictive distribution for
Zs(x) integrating the posterior distributions of the parameters and hence
taking into account their uncertainty.

A Bayesian prediction for a code with s = 2 levels was suggested in [12].
Nevertheless, we propose here a new Bayesian approach with some significant
differences. First, we assume that the adjustment coefficient is a regression
function whereas Qian and Wu [12] model it with a Gaussian process. Sec-
ondly, we use different prior distributions for the parameter estimation. More
specifically, according to the Bayesian estimation of parameters previously
presented, we use a joint prior distribution for (β2, ρ) conditioned by σ2

2

whereas in [12] they use separated prior distributions with ρ not conditioned

7



by σ2
2 . Then, we use a hierarchy between the different parameters. At the

lowest level is the regressor parameter β. At the second level is the variance
parameter σ2 which controls the distribution of the parameter β. At the top
level is the parameter θ which controls the distribution of the parameters at
the bottom levels. It is common to use a hierarchical specification of mod-
els for Bayesian prediction as presented in [13]. This strategy will allow us
to obtain explicit formulas for the joint distribution of the parameters and
above all, to reduce dramatically the cost of the numerical implementation
of the complete Bayesian prediction.

We will also present the case in which we do not have any prior informa-
tion about the parameters. As described in the previous section, the hyper
parameter θ is estimated by minimizing the opposite of the concentrated
restricted log-likelihood and it is assumed to be fixed to this estimated value
from now on.

5.1 Prior distributions and Bayesian estimation of the pa-

rameters

Many choices of priors can be made for the Bayesian modelling. Here we
study the two following cases:

(I) Priors for each parameter are informative.

(II) Priors for each parameter are non-informative.

For the non-informative case (II), we use the improper distributions corre-
sponding to the “Jeffreys prior” and then the posterior distributions are given
in Section 4.2. Note that non-informative distributions are used when we do
not have prior knowledge. For the informative case (I), we will consider the
following prior distributions:

[β1|σ2
1 ] ∼ Np1(b1, σ

2
1V1), [(ρ, β2)|z1, σ2

2 ] ∼ N1+p2

(

bλ =

(

bρ
b2

)

, σ2
2Vλ = σ2

2

(

Vρ 0
0 V2

))

[σ2
1 ] ∼ IG(α1, γ1), [σ2

2 |z1] ∼ IG(α2, γ2)

where b1 ∈ R
p1 , bλ ∈ R

1+p2 , V1 is a (p1 × p1) diagonal matrix, Vλ is a
((1+ p2)× (1+ p2)) diagonal matrix and α1, γ1, α2, γ2 > 0. The forms of the
priors are chosen in order to be able to get closed form expressions for the
posterior distributions. Note that there are enough free parameters in the
priors to allow the user to prescribe their means and variances. From the
previous prior definitions, the posterior distributions of the parameters are:

[β1|z1, σ2
1 ] ∼ Np1(A

1
i ν

1
i , A

1
i ) [(ρ, β2)|z1, z2, σ2

2 ] ∼ Np2+1(A
λ
i ν

λ
i , A

λ
i ) (21)

8



where:

A1
i =







[F T
1

R−1

1
(D1)

σ2
1

F1 +
V −1

1

σ2
1

]−1 i = (I)

[F T
1

R−1

1
(D1)

σ2
1

F1]
−1 i = (II)

ν1i =







[F T
1

R−1

1
(D1)

σ2
1

z1 +
V −1

1

σ2
1

b1] i = (I)

[F T
1

R−1

1
(D1)

σ2
1

z1] i = (II)

(22)

Aλ
i =







[F T R−1

2
(D2)

σ2
2

F +
V −1

λ

σ2
2

]−1 i = (I)

[F T R−1

2
(D2)

σ2
2

F ]−1 i = (II)
νλi =







[F T R−1

2
(D2)

σ2
2

z2 +
V −1

λ

σ2
2

bλ] i = (I)

[F T R−1

2
(D2)

σ2
2

z2] i = (II)

(23)
and F = [ρz1(D2) F2]. Furthermore, we have:

[σ2
1 |z1] ∼ IG(ασ2

1
|n1

i ,
Q1

i

2
), [σ2

2 |z2, z1] ∼ IG(ασ2
2
|n2

i ,
Q2

i

2
) (24)

where:

Q1
i =

{

γ1 + (b1 − β̂1)
T (V1 + [F T

1 R−1
1 (D1)F1]

−1)−1(b1 − β̂1) +Q1
2 i = (I)

zT1 [R
−1
1 (D1)−R−1

1 (D1)F1(F
T
1 R−1

1 (D1)F1)
−1F T

1 R−1
1 (D1)]z1 i = (II)

Q2
i =

{

γ2 + (bλ − λ̂)T (Vλ + [F TR−1
2 (D2)F ]−1)−1(bλ − λ̂) +Q2

2 i = (I)

zT2 [R
−1
2 (D2)−R−1

2 (D2)F (F TR−1
2 (D2)F )−1F TR−1

2 (D2)]z2 i = (II)

β̂1 = (F T
1 R−1

1 (D1)F1)
−1F T

1 R−1
1 (D1)z1 λ̂ = (F TR−1

2 (D2)F )−1F TR−1
2 (D2)z2

α
σ2
1 |n1

i =

{

n1

2 + α1 i = (I)
n1−p1

2 i = (II)
α
σ2
2 |n2

i =

{

n2

2 + α2 i = (I)
n2−p2−1

2 i = (II)

Mixing of informative and non-informative priors are of course possible
and easy to implement. As we will discuss in Subsection 5.4 and see in the
examples of Section 6, the use of informative priors has minor impact on the
mean estimation but may have a strong impact on variance estimation.

5.2 Predictive distributions when β2, ρ, σ
2
1 and σ2

2 are known

As a preliminary step towards the Bayesian prediction carried out in the next
subsection, we give here Bayesian prediction in the form of closed form ex-
pressions when the parameters β2, ρ, σ

2
1 and σ2

2 are known. The conditional
distribution of [Z2(x)|Z = z, β2, ρ, σ

2
1 , σ

2
2 ] is given by:

[Z2(x)|Z = z, β2, ρ, σ
2
1 , σ

2
2 ] ∼ N

(

µi(x), σ
2
i (x)

)

(25)

where:

µi(x) = h′(x)T
(

A1
i ν

1
i

β2

)

+ t(x)TV −1

(

z −H

(

A1
i ν

1
i

β2

))

σ2
i (x) = s2Z2

(x) + k1A
1
i k

T
1

9



and A1
i and ν1i are defined by (22). Note that the estimated variance is

augmented by the term k1A
1
i k

T
1 which quantifies the uncertainty due to the

estimation of β1. k1 is a (1× p1) vector composed of the p1 first elements of
the (1 × p1, 1 × p2) vector k = (k1, k2) = h′(x)T − t(x)TV −1H. H is given
by (4.1). The existence of closed form formulas is important as it will allow
for a fast numerical implementation.

5.3 Bayesian prediction

Before performing the Bayesian prediction we note that - thanks to the
explicit joint prior distribution for β2 and ρ, the independence hypotheses
and the hierarchical specification of the parameters - conditioning on θ, we
have an explicit formula for the following joint density:

p(β1, β2, ρ, σ
2
1 , σ

2
2 |z1, z2) = p(β1|σ2

1 , z1)p(β2, ρ|σ2
2 , z1, z2)p(σ

2
1 |z1)p(σ2

2 |z1, z2)
(26)

This explicit joint density is an original result which contrasts with [12]
and which allows us to avoid prohibitive implementation for the Bayesian
analysis.

First, we consider the predictive distribution with σ2
1 and σ2

2 known. Con-
sidering the conditional independence assumption between (δ(x))x∈Q and
(Z1(x))x∈Q, the probability density function of [Z2(x)|Z = z, σ2

1 , σ
2
2 ] can be

deduced from the following integral:

p(z2(x)|z1, z2, σ2
1 , σ

2
2) =

∫

R1+p2

p(z2(x)|z1, z2, β2, ρ, σ2
1 , σ

2
2)p(ρ, β2|z1, z2, σ2

2) dρdβ2

(27)
where p(z2(x)|z1, z2, β2, ρ, σ2

1 , σ
2
2) is given by (7). This integral has to be

numerically evaluated. Since [ρ, β2|z1, z2, σ2
2 ] has a known normal distribu-

tion given by (21), we here use a crude Monte-Carlo algorithm when the
dimension of β2 and ρ is high, or a trapezoidal quadrature method when it
is low.

Then, we infer from the parameters σ2
1 and σ2

2. Due to the indepen-
dence between (δ(x))x∈Q and (Z1(x))x∈Q, the probability density function
of [Z2(x)|Z = z] is:

p(z2(x)|z1, z2) =
∫

R2

p(z2(x)|z1, z2, σ2
1 , σ

2
2)p(σ

2
1 |z1)p(σ2

2 |z1, z2) dσ2
1dσ

2
2 (28)

where p(σ2
1|z1) and p(σ2

2 |z1, z2) are given by (24). This integral has also to
be numerically evaluated. Since we have a double integration, a quadra-
ture method will be efficient. We use here a trapezoidal numerical inte-
gration, defining the region of integration [σ2

1inf
, σ2

1sup ] × [σ2
2inf

, σ2
2sup ] from

the equation (24) and such that p(σ2
1inf

|z1), p(σ2
1sup |z1) p(σ2

2inf
|z1, z2) and

10



p(σ2
2sup |z1, z2) are close to 0. This region essentially contains the support

of the function. Furthermore, we create a non-uniform integration grid dis-
tributed with a geometric progression.

Finally p(z2(x)|z1, z2) is a predictive density function integrating the pos-
terior distribution of parameters (β2, ρ, β1, σ

2
1 , σ

2
2). We hence have a predic-

tive distribution taking into account the uncertainties due to the parameter
estimations.

5.4 Discussion about the numerical evaluations of the inte-

grals

We saw in the previous section that we can obtain an analytical prediction
when β2, ρ, σ

2
1 and σ2

2 are known. From this analytical formula, we can have
a Bayesian prediction with only two nested integrations. One of them can
be approximated with a quadrature or a crude Monte Carlo method, which
is not too expensive. The other is a double integration approximated with
a quadrature method which is efficient and not expensive. Therefore, we do
not use any Markov chain Monte Carlo method and we considerably reduce
the time and the complexity of the method. This allows us to easily build
an accurate Bayesian metamodel. Practically, we use 441 integration points
to approximate (28) and 1000 Monte-Carlo particles to approximate (27).
Therefore, we have 441000 call to the predictive density function (25).

To avoid a prohibitive implementation, another approach has also been
proposed in [1]. They adopt a Bayes linear formulation which requires only
the specification of the means, variances, and covariance. See [5] for further
details about the Bayes linear approach. The strength of this method is that
its computational cost is low. Nonetheless, since it only focuses on poste-
rior means and covariances, it does not provide the full posterior predictive
distribution.

Finally, we highlight the fact that our Bayesian procedure can be used
to perform multi-fidelity analysis with more than 2 levels of code whereas
the cost of the one presented in [12] is too high to allow for such analysis.
We illustrate in Section 8 through an industrial case the great practical
importance of using more than 2 levels of code.

6 Toy examples

We will present in this section some co-kriging metamodels using one-dimensional
functions inspired by the example presented in [4]. For the following exam-
ples, we will use a non-Bayesian co-kriging model - i.e. the one presented in
[7] - but with a Bayesian estimation of the parameters (see Section 4.2) and
for the second example we will use a Bayesian co-kriging.

11



Furthermore, the correlation kernels are assumed to be:

rt(x
(k)
i − x

(l)
j ; θt) = exp

(

−
‖x(k)i − x

(l)
j ‖2

θ2t

)

where t, k, l = 1, 2 1 ≤ i ≤ n1 1 ≤ j ≤ n2.
Example 1. The aim of this example is to emphasize the effectiveness of

the presented Bayesian estimation of the parameters (see Section 4.2). We as-
sume that the expensive code is given by z2(x) = (6x−2)2sin(12x−4) and the
cheaper code by z1(x) = 0.5z2(x)+10(x−0.5)−5. The experimental design
set of the cheapest code is D1 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
and the one of the expensive code is D2 = {0, 0.4, 0.6, 1}. This example is
identical to the one-dimensional demonstration presented in [4]. Figure 1
shows the functions x 7→ z2(x) and x 7→ z1(x), the training data for z2 and
z1, the ordinary kriging using only the expensive data and the co-kriging us-
ing expensive and cheap data. To validate the model, the Root-mean-square

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

15

x

y

z2(x)
z1(x)
co−kriging
ordinary kriging
z2

z1

Figure 1: Toy examples. The co-kriging metamodel is very close to the
expensive output z2(.) and improves significantly the ordinary kriging meta-
model using the small design D2.

errors (RMSE) and Q2 = 1−
∑

x∈T (mZ2
(x)−z2(x))

2

∑
x∈T (mZ2

(x)−z̄2)
2 are computed.

The test set T is composed of a regular grid points sampled from 0 to
1 with a grid step equal to 0.01 and z̄2 is the empirical mean evaluated in
T . The estimated RMSE is 5.68 × 10−2 and the coefficient Q2 is 99.98%,

12



so we have a prediction error closed to 0. The Bayesian estimation of the
parameters of co-kriging are given in Table 1. Furthermore, the estimations
of the hyper-parameters (θ1, θ2), calculated by maximizing the concentrated
log-likelihoods (19) and (20), are θ̂1 = 0.25 and θ̂2 = 0.80. D1 being a regular
grid with a grid step equal to 0.1 and D2 being composed of points sampled
from 0 to 1, points of the experimental designs are hence strongly correlated
which will imply a smooth surrogate model.

Regression Coefficient Estimation Variance Coefficient Estimation

ρ 2 σ2
1 32.75

β2 (20,−20) σ2
2 7.02 × 10−30

β1 −3.49

Table 1: A co-kriging example with one-variable functions. Bayesian esti-
mation of parameters.

We see that the Bayesian estimation of parameters is very effective since
the estimations of parameters ρ and β2 are perfect. Nevertheless this example
does not highlight the strength of the method since there is a relation between
z2(x)x∈[0,1] and z1(x)x∈[0,1] which exactly corresponds to the equation (2)
with the error δ2 that can be written in terms of the regression functions f2
exactly. Therefore, if the cheap code is well modelled, like in our case, the
co-kriging is equivalent to a linear regression. Moreover, the very small value
of σ2

2 illustrates this.
Example 2. This example illustrates a case where the non-Bayesian co-

kriging underestimates the predictive variance whereas the Bayesian one ad-
justs it. We assume that the expensive code is given by z2(x) = (6x −
2)2 sin(12x − 4) + sin(10 cos(5x)) and the cheaper code is given by z1(x) =
0.5((6x−2)2 sin(12x−4))+10(x−0.5)−5. Through the term sin(10 cos(5x)),
the expensive code has high frequencies which are not captured by the cheap
code and the error δ2 is not a simple linear combination of the regression
functions f2. Figure 2 shows the results of kriging and co-kriging for these
two functions. The estimated RMSE is 1.05 and the coefficient Q2 is 93.57%,
we still have a good prediction. The Bayesian estimations of the parameters
are given in Table 2 and we have θ̂1 = 0.25 and θ̂2 = 0.07. The values of
these parameters have been fixed according the following arguments. As the
cheap code is the same as the one of the Example 1, we keep the same esti-
mation for θ1. Then, we consider that there are not enough points to carry
out a significant estimation of θ2. Therefore, we fix the value of θ̂2 according
to the high frequencies introduced by the term sin(10 cos(5x)).

13



0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

15

x

y

z2(x)
z1(x)
co−kriging
ordinary kriging
z2

z1

Figure 2: Toy examples. The high frequency components of the expensive
code are not predicted since they are not captured by the cheap code and
the coarse grid used for the expensive code cannot detect them either. Nev-
ertheless, the co-kriging improves the ordinary kriging metamodel since the
cheap code allows us to predict the low frequencies of the expensive code
accurately.

Regression Coefficient Estimation Variance Coefficient Estimation

ρ 1.86 σ2
1 32.75.03

β2 (18.39,−17.00) σ2
2 0.30

β1 −3.49

Table 2: A co-kriging example with one-dimensional functions. Bayesian
estimation of parameters.

Due to the additional term sin(10 cos(5x)), the estimation of the parame-
ter ρ is less effective than in the first example. This highlights the dependence
between the estimation of ρ and the mean of δ(x)x∈[0,1]. Furthermore, Figure
3 represents the confidence interval at plus or minus twice the standard de-
viation of the predictive distribution in the Bayesian and non-Bayesian case.
We see that we underestimate the variance of the predictive distribution in
the non-Bayesian case. This estimation is well adjusted in the Bayesian case.

14



0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

15

x

y

z2(x)
co−kriging
z2

non−Bayesian confidence interval at 95%
Bayesian confidence interval at 95%

Figure 3: A toy example without any prior information. The thick dot-
ted line represents the prediction mean, the thin dotted lines represent the
confidence interval at plus or minus twice the standard deviation in the non-
Bayesian case and the dashed lines represent the same confidence interval in
the Bayesian case.

7 The case of s levels of code

The aim of this Section is to perform a multi-level co-kriging with any number
of codes. Let us consider s levels of code. The generalization of the previous
model is straightforward. Actually, if we note β = (βT

1 , . . . , β
T
s )

T , ρ =
(ρ1, . . . , ρs−1), σ

2 = (σ2
1 , . . . , σ

2
s) and θ = (θ1, . . . , θs), we have:

∀x ∈ Q [Zs(x)|Z = z, β, ρ, σ2, θ] ∼ N
(

mZs(x), s
2
Zs
(x)
)

where:
mZs(x) = h′s(x)

Tβ + ts(x)
TV −1

s (z −Hsβ) (29)

and:
s2Zs

(x) = σ2
Zs

− ts(x)
TV −1

s ts(x) (30)

Furthermore, let us denote by Rt = Rt(Dt) the correlation matrix for Dt

and ρs = 0, ∀s ≤ 0. The matrix Vs has the form:

Vs =







V (1,1) . . . V (1,s)

...
. . .

...

V (s,1) . . . V (s,s)






(31)

15



The s diagonal blocks of size nt × nt are defined by:

V (t,t) = σ2
tRt(Dt) + σ2

t−1ρ
2
t−1Rt−1(Dt) + · · ·+ σ2

1

(

t−1
∏

i=1

ρ2i

)

R1(Dt) (32)

and the off-diagonal blocks of size nt × nt′ are given by:

V (t,t′) =

(

t′−1
∏

i=t

ρi

)

V (t,t)(Dt,Dt′) 1 ≤ t < t′ ≤ s (33)

The vector ts(x) is such that ts(x) = (t∗1(x,D1)
T , . . . , t∗s(x,Ds)

T )T , where:

t∗t (x,Dt)
T = ρt−1t

∗
t−1(x,Dt)

T +

(

s−1
∏

i=t

ρi

)

σ2
tRt(x,Dt) 1 < t ≤ s (34)

where
(

∏s−1
i=s ρi

)

= 1 and t∗1(x,D1)
T =

(

∏s−1
i=1 ρi

)

σ2
1R1(x,D1). If we define:

Fk(Dl) =







fT
k (x

(l)
1 )

...

fT
k (x

(l)
nl
)






1 ≤ k, l ≤ s

then the matrix Hs can be written as:

Hs =

















F1(D1)
ρ1F1(D2) F2(D2) 0
ρ1ρ2F1(D3) ρ2F2(D3)
...

...
. . .

(

∏s−1
i=1 ρi

)

F1(Ds)
(

∏s−1
i=2 ρi

)

F2(Ds) . . . Fs(Ds)

















(35)

h′s(x)
T and var(Zs(x)) = σ2

Zs
are given by the equations (3) and (5).

7.1 Bayesian estimation of parameters for s levels of code

From the assumptions of conditional independence between (δt(x))x∈Q and
(Zt−1(x), . . . , Z1(x))x∈Q, we can extend the Bayesian estimation of the pa-
rameters to the case of s levels. Note that we do not assume the independence
of βt and ρt−1. We can obtain a closed form expression for the estimation of
(βt, ρt−1). For all t = 2, . . . , s, we have:

[(ρt−1, βt)|zt, zt−1, θt, σ
2
t ] ∼ N

(

(

HT
t R

−1
t (Dt)Ht

)−1
HT

t R
−1
t (Dt)zt, σ

2
t

(

HT
t R

−1
t (Dt)Ht

)−1
)

(36)
where Ht = [ρt−1zt−1(Dt) Ft(Dt)]. Furthermore, if we note λ̂t = E[(ρt−1, βt)|zt, zt−1, θt, σ

2
t ],

then we have:

[σ2
t |zt, zt−1, θt] ∼ IG(αt,

Qt

2
) (37)

16



where αt =
nt−pt−1

2 and Qt = (zt −Htλ̂t)
TR−1

t (Dt)(zt −Htλ̂t).

The REML estimator of σ2
t is σ̂2

t = Qt

2αt
and we can estimate θt by mini-

mizing the expression:

log(|det(Rt(Dt))|) + (nt − pt − qt−1)log(σ̂
2
t ) (38)

The generalization of the Bayesian estimation previously presented is impor-
tant since it shows that the parameters estimation for a s-levels co-kriging
is equivalent to the one for s independent krigings.

7.2 Reduction of computational complexity of inverting the

covariance matrix Vs

Vs is an (
∑s

i=1 ni ×
∑s

i=1 ni) matrix, its inverse can hence be difficult to
process. We present in this Subsection a method to reduce the complexity
of the processing of V −1

s . By sorting the experimental design sets such that

∀t = 2, . . . , s, Dt−1 = (x
(t−1)
1 , . . . , x

(t−1)
nt−1−nt

, x
(t)
1 , . . . , x

(t)
nt ) = (Dt−1 \Dt,Dt)

it can be shown that ∀t = 2, . . . , s the inverse of the matrix Vs has the form:

V −1
s =









V −1
s−1 +

(

0 0

0 ρ2s−1
R−1

s

σ2
s

)

−
(

0

ρs−1
R−1

s

σ2
s

)

−
(

0 ρs−1
R−1

s

σ2
s

)

R−1
s

σ2
s









V −1
1 =

R−1
1

σ2
1

(39)
with V −1

s−1 an (
∑s−1

i=1 ni ×
∑s−1

i=1 ni) matrix and R−1
s an (ns × ns) matrix.

This is a very important result since it shows that we can deduce V −1
s from

R−1
t , t = 1, . . . , s. Therefore, the complexity of the processing of V −1

s is
O(
∑s

i=1 n
3
i ) instead of O((

∑s
i=1 ni)

3). Furthermore, from the equation (39)
and the Bayesian estimation of parameters presented in Section 7.1, we have
shown here that building a s-level co-kriging is equivalent to build s inde-
pendent krigings. We emphasize that, for practical applications, the form
(39) for the inverse of Vs allows us to perform fine matrix regularization
in the case of ill-conditioned problems. Indeed, Vs is invertible if and only
if the matrices Rt, t = 1, . . . , s are invertible. Therefore, if the problem
is ill-conditioned, we just have to regularize the matrices Rt which are ill-
conditioned too. Then, since (t∗1(x,D1)

T , . . . , t∗s−1(x,Ds−1)
T ) = ρs−1t

T
s−1(x)

it can also be shown that in the equation (29):

ts(x)
TV −1

s =
(

ρs−1t
T
s−1(x)V

−1
s−1 − [01×(

∑s−1

i=1
ni−ns)

, ρs−1Rs({x},Ds)R
−1
s ],Rs({x},Ds)R

−1
s

)

(40)
Therefore, ts(x)

TV −1
s is independent of σ2

s . Since t1(x)
TV −1

1 = R1({x},D1)R
−1
1

does not depend on σ2
1 , by induction, ts(x)

TV −1
s is independent of σ2

i for all
1 ≤ i ≤ s. We have just shown here that the co-kriging mean does not
depend on the variance coefficients.

17



7.3 Numerical test on the reduction of computational com-

plexity

In the previous section, we have presented a reduction of complexity for the
co-kriging model by expressing the inverse of the matrix Vs with the inverses
of the matrices Rt, t = 1, . . . , s. We present here a numerical test to highlight
the gain of CPU time obtained with this method. We focus on the case of 2
levels of code and we consider the Gaussian kernel for the 2 levels:

r(x− x′; θ) = exp

(

−||x− x′||2
θ2

)

The experimental design set for the cheap code is a regular grid com-
posed of n1 points between 0 and 1 and the experimental design set for the
expensive code are the n2 first points of this grid. We consider the relation
n1 = 4n2 with n2 = 50, 60, . . . , 500 and the parameter θ = 5

n2
(the parameter

θ is controlled by n2 in order to avoid ill-conditioned covariance matrices).
The total number of observations is hence n = n1 + n2. Figure 4 compares
the CPU time needed to build a co-kriging model with or without reduction
complexity.

First, the slope of the two CPU times is close to 3 (the least-squares
estimation value is 3.03). The complexity of a matrix inversion being O(n3),
with n the size of the matrix, the estimation of the slope highlights the fact
that it is the matrix inversion which leads the CPU time. Then, Figure
4 emphasizes that the reduction of complexity is worthwhile. Indeed, we
see that the ratio between the two CPU time is approximately a constant
equal to 1.93. We are hence close to the theoretical ratio equal to (n1 +
n2)

3/(n3
1 + n3

2) ≈ 1.92 which is obtained when we consider that the CPU
time is essentially due to the matrix inversion.

7.4 Toy example on the complexity reduction

A 3-level co-kriging metamodel is presented in this section to illustrate the
gain of CPU which can be obtained with the presented reduction of complex-
ity. We focus on the inversion of the co-kriging matrix Vs by comparing the
CPU time needed with a direct inversion or by using the formula (39). We
assume that the 3 levels of code are given by the followings three dimensional
functions:

z1(x) = sin(x1) (41)

z2(x) = z1(x) + asin(x2)
2 (42)

z3(x) = z2(x) + bx43sin(x1) (43)

with x = (x1, x2, x3) ∈ [−π, π]3, a = 7 and b = 1/10. We note that the
complex function z3(x) corresponds to the Ishigami function which is very

18



500 1000 2000

0.
05

0.
20

1.
00

5.
00

20
.0

0

Number of observations

C
P

U
 ti

m
e

Figure 4: CPU time comparison between 2 level co-kriging models. The tri-
angles represent the CPU time for the crude co-kriging model and the circles
represent the CPU time for the co-kriging model with the complexity reduc-
tion. The gain of CPU time with the reduction complexity is approximately
a factor equal to 1.93.

popular in the field of sensitivity analysis [15]. We consider n3 = 50 obser-
vations for the most accurate code z3(x), n2 = 200 for the intermediate code
and z1 = 400 for the less accurate code. All experimental design sets are
randomly sampled from the uniform distribution. As presented in Section 3
we consider nested experimental designs ∀t = 2, . . . , s Dt ⊆ Dt−1.

We use a tensorised Matérn-52 kernel for the three correlation functions:

rt(x, x
′; θt) =

d
∏

i=1

r1D(xi, x
′
i; θt,i) (44)

with r1D(t, t
′; θ) =

(

1 +
√
5 |t−t′|

θ
+ 5

3
(t−t′)2

θ2

)

exp
(

−
√
5 |t−t′|

θ

)

, t, t′ ∈ R.

The estimations of the hyper-parameters θt are presented in Table 3.

19



Parameter Estimation

θ̂1 ( 0.61 1.99 2.04 )

θ̂2 ( 1.98 0.26 2.48 )

θ̂3 ( 0.23 0.89 0.21 )

Table 3: Toy example on the complexity reduction. Estimation of the hyper-
parameters (correlation lengths) for the 3-level co-kriging.

The hyper-parameter estimates show us that z1(x) is very smooth in
the directions x2 and x3 reflecting the fact that it depends only on the first
direction x1. Similarly, the bias between z2(x) and z1(x) only depending
on the second direction x2, it is rougher on this direction and very smooth
in the others. Finally, the bias between z3(x) and z2(x) is rougher in the
direction x3 than in the directions x1 and x2. This is due to the important
impact of x3 on the third level.

The estimation of the variance, scale and regression parameters are given
in Table 4.

Parameter Estimation

β1 0.00
(

ρ1
β2

) (

0.99
2.44

)

(

ρ2
β3

) (

0.95
0.64

)

σ2
1 0.09

σ2
2 1.66

σ2
3 6.25

Table 4: Toy example on the complexity reduction. Estimation of the vari-
ance, scale and regression parameters for the 3-level co-kriging.

Table 4 shows the efficiency of the suggested method for the parameter
estimations since it provides very accurate estimations of ρ1 and ρ2.

To evaluate the accuracy of the co-kriging model, we use a test set of
30,000 points uniformly sampled from the uniform distribution. Then, we
compute the coefficient Q2 with the co-kriging predictions and the responses
of z3(x) on this set. We obtain for the co-kriging model Q2 = 83.21%,
we hence have a middling accuracy despite the large number of observa-
tions used. Nonetheless, we have a significant improvement relatively to
the kriging model since with the same kernel and the same experimental
design set D3 we obtain Q2 = 47.97% which is a very poor accuracy. The
hyper-parameter estimation of the kriging model is θ = (0.79, 0.14, 0.29), the
variance one is σ2 = 13.66 and the trend coefficient one is β = 3.89.

20



Let us now compare the difference of CPU time between the co-kriging
building with a crude inversion of the covariance matrix Vs and the one with
an inversion using the formula presented in Subsection 7.2. The CPU time
necessary without the reduction complexity is CPUcrude = 0.47 whereas the
one necessary with the complexity reduction is CPUlight = 0.14. We hence
find that the CPU time ratio between the two methods approximately equals
3.36. This is not far from the theoretical ratio which equals 6503/(4003 +
2003 + 503) ≈ 3.80. We note that the complexity reduction could be of
important practical interest. For example, without it the computational cost
of a leave-one-out cross validation procedure will be much more important
(the ratio will still be around 3 in our example). The complexity of this
procedure being O(n4), the gain of CPU time will be substantially.

8 Example : Fluidized-Bed Process

This example illustrates the comparison between 2-level and 3-level co-kriging.
A 3-level co-kriging method is applied to a physical experiment modelled by
a computer code. The experiment, which is the measurement of the temper-
ature of the steady-state thermodynamic operation point for a fluidized-bed
process, was presented by [2], who developed a computer model named “Top-
sim” to calculate the measured temperature. The code, developed for a Glatt
GPCG-1, fluidized-bed unit in the top-spray configuration, can be run at 3
levels of complexity. We hence have 4 available responses:

1. Texp: the experimental response.

2. T3: the most accurate code modelling the experiment.

3. T2: a simplified version of T3.

4. T1: the lowest accurate code modelling the experiment.

The differences between T1, T2 and T3 are discussed by Dewettinck et al.
(1999). The aim of this study is to predict the experimental response Texp

given the two levels of code T3 and T2. We only focus on a 3-level co-kriging
using T3 and T2 to predict Texp since 28 responses available for each level
is not enough to build a nested experimental design relevant for a 4-level
co-kriging. The experimental design set and the responses T1, T2, T3 and
Texp are given by [12] who have presented a 2-level co-kriging using Texp and
T2. Furthermore, the responses are parameterized by a 6-dimensional input
vector presented by Dewettinck et al. (1999).

8.1 Building the 3-level co-kriging

To build the 3-level co-kriging, we use 10 measures of Texp (measures 1, 3,
8, 10, 12, 14, 18, 19, 20, 27 in Table 4 in [12]), 20 simulations of T3 (runs

21



1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 24, 27) and the
28 simulations of T2 and the input vector is scaled between 0 and 1. The
last 18 measures of Texp are used for validation. The design sets are nested
such that Dt−1 = (Dt−1 \Dt,Dt) for t = 2, 3 and we use a Matern5

2 kernel
for the three covariance functions. The estimations of the hyper-parameters
which represent correlation lengths of the three covariance kernels are given
in Table 5.

θ̂1 1.790 3.988 1.218 1.790 3.595 0.722

θ̂2 1.810 1.842 2.008 1.036 0.001 0.345

θ̂3 0.890 0.721 2.008 2.952 1.790 0.241

Table 5: Example: fluidized-bed process. Estimation of the hyper-
parameters (correlation lengths) for the 3-level co-kriging.

The estimations of hyper-parameters in Table 5 show us that the sur-
rogate model will be very smooth in the first four directions. For the fifth
direction the Gaussian processes modelling the cheap code T2 and the bias
between Texp and T3 are very smooth and the one modelling the bias be-
tween T3 and T2 is close to a regression. Finally, the model is sharper in the
sixth direction in particular for the two biases where correlation lengths are
around 0.3.

Furthermore, Table 6 gives the estimation of the variance and regression
parameters (see section 7.1).

Regression coefficient Posterior mean Posterior Covariance
σ2
t

β1 47.02 0.134
(

βρ1
β2

) (

0.97
−0.17

) (

0.001 −0.034
−0.034 1.610

)

(

βρ2
β3

) (

0.95
1.93

) (

0.003 −0.121
−0.121 5.188

)

Variance coefficient Qt αt

σ2
1 1032 13.5

σ2
2 5.30 9

σ2
3 8.39 4

Table 6: Example: fluidized-bed process. Bayesian estimation of the variance
and regression parameters for the 3-level co-kriging.

Table 6 shows that the responses have approximately the same scale since
the adjustment coefficients are close to 1. Furthermore, we see an important
bias between T3 and T2 with β3 = 1.93. Finally, the variance coefficients for

22



the biases indicate that they are possibly much simpler to model than the
cheap code T2 as their estimations are smaller.

8.2 3-level co-kriging prediction: predictions when code out-

put is available

The aim of this Section is to show that co-kriging can improve significantly
the accuracy of the surrogate model at points where at least one level of
responses is available.

The predictions of the 3-level co-kriging are here presented and compared
with the predictions obtained with a 2-level co-kriging using only the 10 re-
sponses of Texp and the 20 responses of T3. The predictions for the 2-level
and the 3-level co-krigings vs. the real values (i.e., the measured tempera-
ture Texp) are shown in Figure 5. The 3-level co-kriging gives us the same

35 40 45 50 55

35
40

45
50

55

Texp

P
re

di
ct

io
n

2−level co−kriging
3−level co−kriging

Figure 5: Predictions of the 2-level and the 3-level co-krigings for the
fluidized-bed process. The 3-level co-kriging improves significantly the pre-
dictions of the 2-level one.

prediction means as the 2-level co-kriging at the 10 points (points 2, 5, 6,
7, 9, 11, 13, 16, 22, 24) where T3 is known. These overlapped points mean
that T2 does not influence the surrogate model at these points. This follows
from the Markov property introduced in Section 3, which implies that the
prediction of Texp is entirely determined by T3 at these points. We also note
that, in general, the 2-level co-kriging predictions - at points where T3 is
unknown - are not accurate and the 3-level co-kriging improves significantly

23



the prediction means compared to the 2-level co-kriging. Table 7 compares
the 2-level co-kriging with the 3-level co-kriging and summarizes some results
about the quality of the predictions on the 18 validation points. Nonetheless,
it is important to notice that, in the 3-level case, the output of the cheapest
code T2 is known at the 18 test points. This means that the results of this
subsection show that the 3-level co-kriging prediction is more accurate than
the 2-level co-kriging prediction at a point where the cheapest response T2

is available. In the next subsection we show that the 3-level co-kriging pre-
diction is more accurate than the 2-level one at a point where no response is
available.

Q2 RMSE MaxAE
2-level co-kriging 61.23 % 4.24 14.04
3-level co-kriging 98.71 % 0.89 1.98

Average Std. dev. Median Std. dev. Maximal Std. dev
2-level co-kriging 2.90 1.02 5.68
3-level co-kriging 0.90 1.02 1.04

Table 7: Example: fluidized-bed process. Comparison between 2-level co-
kriging and 3-level co-kriging. Predictions are better in the 3-level case and
the prediction variance seems well-evaluated since the RMSE and the average
standard deviation are close.

Figure 6 shows the prediction errors of the 2-level co-kriging and the
confidence interval at plus or minus twice the prediction standard deviation.
The last 10 prediction errors and their confidence intervals are the same
as those of the 3-level case since it corresponds to the points where T3 is
known. We see in Figure 6 that the confidence intervals are well predicted.
Furthermore, we see a significant difference between the accuracy of the
prediction means and their confidence intervals for the point where T3 is
unknown (the 8 first validation points) and for the ones where it is known
(the last 10 validation points).

8.3 3-level co-kriging prediction: predictions when code out-

put is not available

In this subsection, we show that a multi-level co-kriging can significantly
improve the prediction of a surrogate model at points where no response is
available.

We have seen in Section 8.2 that the 3-level co-kriging improves signif-
icantly the 2-level co-kriging at points where T3 is unknown and T2 has
been sampled. Nevertheless, to have a fair comparison between these two
co-kriging models, we compare their accuracy by applying a Leave-One-Out
Cross-Validation (LOO-CV) procedure at the 10 points where Texp is known.

24



5 10 15

−
20

−
10

0
10

20

Validation point

E
rr

or

Prediction error
Confidence interval at 95%

Figure 6: Prediction errors of the 2-level co-kriging and confidence intervals
at plus or minus twice the standard deviation. We see a significant difference
between the accuracy of the predictions means and their confidence intervals
for the point where T3 is unknown (the 8 first validation points) and for the
ones where it is known (the last 10 validation points).

This means that we perform for each of these 10 points the following proce-
dure:

1. The experimental and the two code outputs corresponding to the point
are removed from the data set.

2. The 2-level co-kriging method and the 3-level co-kriging method are
applied using the truncated data set in order to give a confidence in-
terval for the experimental output at the point.

Figure 7 shows the result of the LOO-CV procedure for the 2-level and 3-
level co-kriging. We see that the 3-level co-kriging is more accurate than the
2-level one. Indeed, the LOO-CV RMSE for the 2-level co-kriging is equal
to 1.88 whereas it is equal to 1.09 for the 3-level co-kriging. This shows that
the 3-level co-kriging provides better predictions also at points where no
response is available. This highlights the strength of the proposed method
and shows that a co-kriging method with more than 2 levels of code can be
worthwhile.

25



2 4 6 8 10

−
10

0
10

20

Index

R
es

id
ua

l

3−level co−kriging LOO−CV error
2−level co−kriging LOO−CV error
3−level co−kriging LOO−CV confidence interval at 95%
2−level co−kriging LOO−CV confidence interval at 95%

Figure 7: Leave-One-Out Cross-Validation predictive errors and variances
of the 2-level and 3-level co-kriging. We see that the confidence intervals
are accurate and the precision of the 3-level co-kriging is significantly better
than the one of the 2-level co-kriging.

9 Conclusion

We have presented a method for building kriging models using a hierarchy
of codes with different levels of accuracy. This method allows us to improve
a surrogate model built on a complex code using information from a cheap
one. It is particularly useful when the complex code is very expensive. We
see in our literature review that the first multi-level metamodel originally
suggested is a first-order auto-regressive model built with Gaussian processes.
The AR(1) relation between two levels of code is natural and the building
of the model is straightforward. Nevertheless, we have highlighted some key
issues which makes it difficult to use this model in practical ways.

First, important parameters of the model, which are the adjustment
coefficients between two successive levels of codes, were numerically esti-
mated. We propose here an analytical estimation of these parameters with
a Bayesian method. This method allows us to have information about the
uncertainties of the estimations and above all, to easily use the AR(1) model
and its generalization to the case of non-spatial stationarity. Furthermore, a
strength of the proposed method is that it even works for a code with more
than 2 levels since its implementation is such that the estimations of the
parameters of a s-level co-kriging is equivalent to the ones of s independent

26



krigings. It is important to highlight that this method is based on a joint
estimation between the adjustment coefficient and the mean of the Gaussian
process modelling the difference between two successive levels of code.

Second, we have seen that the variance of the predictive distribution
of the AR(1) model could be underestimated. A natural approach to im-
prove this estimation is a Bayesian modelling. We propose here a Bayesian
co-kriging for 2 levels of code and to avoid computationally expensive im-
plementation, we suggest another model than the one presented. This new
model is based on a hierarchical specification of the parameters of the model.
This allows us to have a Bayesian model including only two nested integra-
tions without Markov chain Monte Carlo procedure.

Finally, for a non-Bayesian s-level co-kriging, we have proved that build-
ing a s-level co-kriging is equivalent to build s independent krigings. This
result is very important since it solves one of the most important key issues
of the co-kriging which is the inversion of the covariance matrix. A 3-level
co-kriging example has been provided to show the efficiency of the presented
method.

10 Acknowledgements

The author thanks his supervisor Josselin Garnier for his valuable guidance.
He also thanks Claire Cannamela for her advice and constructive suggestions.

A The case of ρ depending on x

A.1 Building a model with s levels of code

Let us consider s levels of code, if we note β = (βT
1 , . . . , β

T
s )

T , βρ = (βT
ρ1
, . . . , βT

ρs−1
)T ,

σ2 = (σ2
1 , . . . , σ

2
s) and θ = (θ1, . . . , θs), we have [Zs(x)|Z = z, β, βρ, σ

2, θ] ∼
N
(

mZs(x), s
2
Zs
(x)
)

where mZs(x) and s2Zs
(x) are defined in equations (29)

and (30). Let us define the notation
⊙l

i=k Ai = Ak ⊙ · · · ⊙Al where ⊙ rep-
resents the matrix element-by-element product. Furthermore, let us denote
by ρt = ρt(Dt) the vector containing the values of ρt(x), x ∈ Dt. The s
diagonal blocks of Vs (31) of size nt × nt are defined by:

V (t,t) = σ2
tRt(Dt)+σ2

t−1

(

ρt−1(Dt)ρ
T
t−1(Dt)

)

⊙Rt−1(Dt)+· · ·+σ2
1

(

t−1
⊙

i=1

ρi(Dt)ρ
T
i (Dt)

)

⊙R1(Dt)

and the off-diagonal blocks of size nt × nt′ are given by:

V (t,t′) =



1nt

(

t′−1
⊙

i=t

ρi(Dt′)

)T


⊙ V (t,t)(Dt,Dt′) 1 ≤ t < t′ ≤ s

27



The vector ts(x) in equations (29) and (30) is such that ts(x) = (t∗1(x,D1)
T , . . . , t∗s(x,Ds)

T )T ,
where:

t∗t (x,Dt)
T = ρTt−1(Dt)⊙ t∗t−1(x,Dt)

T +

(

s−1
∏

i=t

ρi(x)

)

σ2
tRt(x,Dt)

where 1 < t ≤ s,
(

∏s−1
i=s ρi(x)

)

= 1 and t∗1(x,D1)
T =

(

∏s−1
i=1 ρi(x)

)

σ2
1R1(x,D1).

Furthermore, the matrix Hs in equations 35 can be written as:

Hs =











...
. . .

((

⊙j−1
i=1 ρi(Dj)

)

1
T
p1

)

⊙ F1(Dj)
((

⊙j−1
i=2 ρi(Dj)1

T
p2

))

⊙ F2(Dj) . . . Fj(Dj) 0

...
. . .











A.2 Bayesian estimation of parameters for s levels of code

We can extend the Bayesian estimation of the parameters to the case of ρ
depending on x. Note that we do not assume the independence of βt and
βρt−1

. We have:

[(βρt−1
, βt)|zt, zt−1, θt, σ

2
t ] ∼ N

(

(

HT
t R

−1
t (Dt)Ht

)−1
HT

t R
−1
t (Dt)zt, σ

2
t

(

HT
t R

−1
t (Dt)Ht

)−1
)

where Ht = [Fρt−1
(Dt)⊙ (zt−1(Dt)1

T
qt−1

) Ft(Dt)]. Furthermore, we have:

[σ2
t |zt, zt−1, θt] ∼ IG(αt,

Qt

2
)

where

αt =
nt − pt − qt−1

2

Qt = (zt −Htλ̂t)
TR−1

t (Dt)(zt −Htλ̂t)

λ̂t = E[(βρt−1
, βt)|zt, zt−1, θt, σ

2
t ]

The REML estimator of σ2
t is σ̂2

t = Qt

2αt
and we can estimate θt by minimizing

the expression:

log(|det(Rt(Dt))|) + (nt − pt − qt−1)log(σ̂
2
t )

A.3 Some important results about the covariance matrix Vs

By sorting the experimental design sets as in Subsection 7.2, it can be shown
that ∀t = 2, . . . , s the inverse of the matrix Vs has the form:

V −1
s =









V −1
s−1 +

(

0 0

0 (ρs−1(Ds)ρ
T
s−1(Ds))⊙ R−1

s

σ2
s

)

−
(

0

(ρs−1(Ds)1
T
ns
)⊙ R−1

s

σ2
s

)

−
(

0 (1nsρ
T
s−1(Ds))⊙ R−1

s

σ2
s

)

R−1
s

σ2
s









28



with V −1
1 =

R−1

1

σ2
1

, V −1
s−1 an (

∑s−1
i=1 ni×

∑s−1
i=1 ni) matrix and R−1

s an (ns×ns)

matrix. It can also be shown that:

ts(x)
TV −1

s =
(

ρs−1(x)t
T
s−1(x)V

−1
s−1 − [0, ρTs−1(Ds)⊙Rs({x},Ds)R

−1
s ],Rs({x},Ds)R

−1
s

)

A.4 Bayesian prediction for a code with 2 levels

The equations for the Bayesian prediction when ρ depends on x can be
directly derived from the Section 5 by replacing ρ with βρ and noting that
the design matrix F is such that:

F = [Fρ(D2)⊙ (z1(D2)1
T
pρ) F2]

Finally, for the Bayesian prediction, we just have to adapt the integral
(27) :

p(z2(x)|z1, z2, σ2
1 , σ

2
2) =

∫

R
pρ+p2

p(z2(x)|z1, z2, β2, βρ, σ2
1 , σ

2
2)p(βρ, β2|z1, z2, σ2

2) dβρdβ2

References

[1] J. A. Cumming & M. Goldstein, Small Sample Bayesian Designs

for Complex High-Dimensional Models Based on Information Gained

Using Fast Approximations, Technometrics, 51 (2009), pp. 377-388.

[2] K. Dewettinck, A. De Visscher, L. Deroo & A Huyghebaert,
Modeling the steady-state thermodynamic operation point of top-spray

fluidized bed processing, Journal of Food Engineering, 39 (1999), pp.
131-143.

[3] K. T. Fang, D. K. J. Lin, P. Winker & Y. Zhang, Uniform desgin:

Theory and application, Technometrics, 42 (2000), pp. 237-248.

[4] A. I. J. Forrester, A. Sobester & A. J. Keane, Multi-fidelity

optimization via surrogate modelling, Proc. R. Soc. A, 463 (2007), pp.
3251-3269.

[5] M. Goldstein, & D. A. Wooff, Bayes Linear Statistics: Theory and

Methods, Chichester, England: Wiley, 2007.

[6] D. A. Harville, Matrix Algebra from Statistician’s Perspective,
Springer-Verlag Inc, 1997.

[7] M. C. Kennedy & A. O’Hagan, Predicting the output from a complex

computer code when fast approximations are available, Biometrika, 87
(2000), pp. 1-13.

29



[8] H. Jeffreys, Theory of Probability, Oxford University Press, London,
1961.

[9] D. R. Jones, M. Schonlau & W. J. Welch, Efficient Global Op-

timization of Expensive Black-Box Functions, Journal of Global Opti-
mization, 13 (1998), pp. 455-492.

[10] E. Lehmann & G. Casella, Theory of Point Estimation, Springer-
Verlag, New York, revised edition, 1998.

[11] H. D. Patterson & R. Thompson, Recovery of interblock informa-

tion when block sizes are unequal, Biometrika, 58 (1971), pp. 545-554.

[12] Z. Qian & C. F. Jeff Wu, Bayesian Hierarchical Modeling for In-

tegrating Low-accuracy and High-accuracy Experiments, Technometrics,
50 (2008), 192-204.

[13] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Ma-

chine Learning, the MIT Press, 2006.

[14] T. J. Santner, B. J. Williams & W. I. Notz, The Design and

Analysis of Computer Experiments, New York: Springer, 2003.

[15] A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis, Wiley
Series in Probability and Statistics, Wiley, 2000.

[16] R. Stocki, A method to improve design reliability using optimal Latin

hypercube sampling, Computer Assisted Mechanics and Engineering Sci-
ences, 12 (2005), 87-105.

30


