
HAL Id: hal-00654716
https://hal.science/hal-00654716v1

Submitted on 22 Dec 2011 (v1), last revised 24 Sep 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian analysis of hierarchical multi-fidelity codes.
Loic Le Gratiet

To cite this version:
Loic Le Gratiet. Bayesian analysis of hierarchical multi-fidelity codes.. 2012, pp.RSPA-2011-0742.
�hal-00654716v1�

https://hal.science/hal-00654716v1
https://hal.archives-ouvertes.fr


Bayesian analysis of hierarchical multi-fidelity codes.

Loic Le Gratiet

CEA, DAM, DIF, F-91297 Arpajon, France

loic.le-gratiet@cea.fr

December 22, 2011

1 Abstract

This paper deals with the Gaussian process based approximation of a code which can be run
at different levels of accuracy. This co-kriging method allows us to improve a surrogate model
of a complex computer code using fast approximations of it. In particular, we focus on the
case of a large number of code levels on the one hand and on a Bayesian approach when we
have 2 levels on the other hand. Moreover, based on a Bayes linear formulation, an extension
of the universal kriging equations are provided for the co-kriging model. We also address the
problem of nested space-filling design for multi-fidelity computer experiments and we provide
a significant simplification of the computation of the co-kriging cross-validation equations. A
hydrodynamic simulator example is used to illustrate the comparison Bayesian versus non-
Bayesian co-kriging. A thermodynamic example is used to illustrate the comparison between
2-level and 3-level co-kriging.
Keywords: surrogate models, co-kriging, multi-fidelity computer experiment, Bayesian analy-
sis, cross-validation, nested space-filling design.

2 Introduction

Large computer codes are widely used in science and engineering to study physical systems
since real experiments are often costly and sometimes impossible. Nevertheless, simulations
can sometimes be costly and time-consuming as well. In this case, conception based on an
exhaustive exploration of the input space of the code is generally impossible under reasonable
time constraints. Therefore, a mathematical approximation of the output of the code - also
called surrogate or metamodel - is often built with a few simulations to represent the real
system.
Gaussian Process regression is a particular class of surrogate which makes the assumption
that prior beliefs about the code can be modelled by a Gaussian Process. We focus here
on this metamodel and on its extension to multiple response models. The reader is refered
to [Santner, Williams & Notz (2003)] and [Rasmussen & Williams (2006)] for further detail
about Gaussian Process models.
Actually, a computer code can often be run at different levels of complexity and a hierarchy
of levels of code can hence be obtained. The aim of this paper is to study the use of several
levels of a code to predict the output of a costly computer code.
A first metamodel for multi-level computer codes was built by [Kennedy & O’Hagan (2000)]
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using a spatial stationary correlation structure. This multi-stage model is a particular case of
co-kriging which is a well known geostatistical method. Then, [Qian et al. (2006)] built an ex-
tension to this model in a case of non spatial stationarity and [Forrester, Sobester & Keane (2007)]
went into more detail about the estimation of the model parameters. Furthermore, Forrester et

al. presented the use of co-kriging for multi-fidelity optimization based on the EGO (Efficient
Global Optimization) algorithm created by [Jones, Schonlau & Welch (1998)]. A Bayesian ap-
proach was also proposed by [Qian & Wu (2008)] which was computationally expensive and
does not provide explicit formulas for the joint distribution of the parameters.
This paper presents a new approach to estimate the parameters of the model which is effective
in the case of non-spatial stationarity and when many levels of codes are available. Further-
more, this approach allows us to consider prior information in the estimation of the parameters.
We also address the problem of the inversion of the co-kriging covariance matrix when the
number of levels is large. A solution to this problem is provided which shows that the inverse
can be easily calculated. Moreover, it is known that with a non-Bayesian approach, the vari-
ance of the predictive distribution may be underestimated [Kennedy & O’Hagan (2000)]. This
paper suggests a Bayesian modelling different from the one presented in [Qian & Wu (2008)]
which provides an explicit representation of the joint distribution for the parameters and avoids
prohibitive implementation. Furthermore, thanks to the joint density of the parameters, we
can deduce closed form formulas for the mean and covariance of the posterior predictive dis-
tribution. Due to their similarities with the universal kriging equations, we call these formulas
the universal co-kriging equation. Then, we suggest a new experimental design strategy for
multi-fidelity computer experiments which is more flexible than the previous ones and not
time-consuming. Finally, we present a fast method to compute the cross-validation equations
of the co-kriging surrogate model.

3 Building a surrogate model based on a hierarchy of s levels

of code

Let us assume that we have s levels of code z1(x), . . . , zs(x), x ∈ R
d, d > 0. For all t = 1, . . . , s

the tth scalar output zt(x) is modelled by zt(x) = Zt(x, ω) where Zt(x, ω), ω ∈ Ω is a realization
of the Gaussian process Zt(x). We will introduce below a consistent set of hypotheses so that
the joint process (Zt(x))x∈Rd,t=1,...,s is Gaussian given a certain set of parameters.
[Kennedy & O’Hagan (2000)] suggest an autoregressive model to build a metamodel based on
a multi-level computer code. Hence, we have a hierarchy of s levels of code - from the less
accurate to the most accurate - and for each level, the conditional distribution of the Gaussian
process Zt(x) knowing Z1(x), . . . , Zt−1(x) is entirely determined by Zt−1(x). Let us introduce
here the mathematical formalism that we will use in this paper.
Q ⊂ R

d is a compact subset of R
d called the input space or the domain of interest. For

t = 1, . . . , s, Dt = {x
(t)
1 , . . . , x

(t)
nt } is the experimental design set at level t containing nt

points in Q. Let Zt = Zt(Dt) = (Zt(x
(t)
1 ), . . . , Zt(x

(t)
nt ))

T be the random Gaussian vector
containing the values of Zt(x) for x ∈ Dt. Let Z = (ZT

1 , . . . ,Z
T
s )

T be the Gaussian random
vector containing the values of the processes (Zt(x))t=1,...,s at the points of the design sets
(Dt)t=1,...,s. We assume here that the code output is observed without measurement error. The

column vector of responses is written z = (zT1 , . . . , z
T
s )

T , where zt = (zt(x
(t)
1 ), . . . , zt(x

(t)
nt ))

T is
the output vector for the level t and T stands for the transpose.
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If we consider Zs(x), the Gaussian process modelling the most accurate code, we want to
determine the predictive distribution of Zs(x0), x0 ∈ Q given Z = z, i.e. the following
conditional distribution: [Zs(x0)|Z = z].
We assume the Markow property introduced in [Kennedy & O’Hagan (2000)]:

Cov(Zt(x), Zt−1(x
′)|Zt−1(x)) = 0 ∀x 6= x′ (1)

This means that if Zt−1(x) is known, then nothing more can be learnt about Zt(x) from any
other run of the cheaper code Zt−1(x

′) for x′ 6= x. This assumption leads to the following
autoregressive model:

Zt(x) = ρt−1(x)Zt−1(x) + δt(x) t = 2, . . . , s (2)

where δt(x) is a Gaussian process independent of Zt−1(x), . . . , Z1(x) and ρt−1(x) represents
a scale factor between Zt(x) and Zt−1(x). We assume that ρt−1(x), t = 2, . . . , s is a linear
regression function:

∀t = 2, . . . , s ρt−1(x) = fρt−1(x)
Tβρt−1 (3)

where fρt−1(x) = (f1
ρt−1

(x), . . . , f
qt−1
ρt−1 (x))

T is a vector of qt−1 regression functions - generally
including the constant function : x ∈ Q → 1 - and βρt−1 ∈ R

qt−1.
Conditioning on parameters σt, βt and θt, δt(x) is assumed to be a Gaussian process with
mean ft(x)

Tβt, where ft(x) is a pt-dimensional vector of regression functions, and with a
covariance function of the form ct(x, x

′) = cov(δt(x), δt(x
′)) = σ2

t rt(x−x′; θt), where σ2
t is the

variance of the Gaussian process and θt are the hyper parameters of the correlation function rt.
Moreover, conditioning on parameters σ1, β1 and θ1, the simplest code Z1(x) is modelled as a
Gaussian process with mean f1(x)

Tβ1 and with covariance function c1(x, x
′) = σ2

1r1(x−x′; θ1).
With this consistent set of hypotheses, the joint process (Z1(x), . . . , Zt(x))x∈Q,t=1,...,s given
σ2 = (σ2

i )i=1,...,t, θ = (θi)i=1,...,t, β = (βi)i=1,...,t and βρ = (βρi−1)i=2,...,t, is Gaussian with
mean:

E[Zt(x)|σ
2, θ, β, βρ] = h′t(x)

Tβ (4)

h′t(x)
T =

((

t−1
∏

i=1

ρi(x)

)

fT
1 (x),

(

t−1
∏

i=2

ρi(x)

)

fT
2 (x), . . . , ρt−1(x)f

T
t−1(x), f

T
t (x)

)

(5)

and covariance:

cov(Zt(x), Zt(x
′)|σ2, θ, β, βρ) =

t
∑

j=1

σ2
j





t−1
∏

i=j

ρ2i (x)



 rj(x− x′; θj) (6)

For each level t = 2, . . . , s, the experimental design Dt is assumed to be such that Dt ⊆
Dt−1. Note that this assumption is not necessary but allows us to have closed form expression
for the parameter estimation formula. Furthermore, we denote by Rt(Dk,Dl) the correlation
matrix between points in Dk and Dl, 1 ≤ k, l ≤ s. Rt(Dk,Dl) is a (nk ×nl) matrix with (i, j)
entry given by:

[Rt(Dk,Dl)]i,j = rt(x
(k)
i − x

(l)
j ; θt) 1 ≤ i ≤ nk 1 ≤ j ≤ nl ∀x

(k)
i ∈ Dk
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We will use the notation: Rt(Dk) = Rt(Dk,Dk).
[Kennedy & O’Hagan (2000)] have presented the case where ∀t ∈ [2, s], ρt−1(x) = ρt−1 are
constant and [Qian et al. (2006)] the case where ft(x) = 1 and t = 2, i.e. the case of 2
levels. Here, we will consider the general model presented in equations (2) and (3). We will
also propose a new approach to estimate the coefficients (βt, βρt−1)t=2,...,s based on a Bayesian
estimation, which allows us to get information about their uncertainties. In the following
section, we describe the case of 2 levels of code where the scaling coefficient ρ is constant and
then we will extend it for s levels in Section 9. The general case in which ρ depends on x, is
addressed in Appendix A.

4 Building a model with 2 levels of code

Let us assume that we have 2 levels of code z2(x) and z1(x). From the previous section we
assume that:

{

Z2(x) = ρZ1(x) + δ(x), x ∈ Q

(Z1(x))x∈Q ⊥ (δ(x))x∈Q
(7)

The goal of this section is to build a surrogate model for Z2(x) given the observations Z = z

with an uncertainty quantification. The strategy is the following one. In Subsection 4.1 we
describe the statistical distribution of the output Z2(x0) at a new point x0 given the parameters
(β1, β2, ρ), (σ

2
1 , σ

2
2) and (θ1, θ2) and the observations z. In Subsection 4.2 we describe the

Bayesian estimation of the parameters (β1, β2, ρ) and (σ2
1 , σ

2
2) given the observations. As

pointed out at the end of Subsection 4.2 the hyper-parameters (θ1, θ2) are estimated using a
concentrated restricted log-likelihood method.

4.1 Conditional distribution of the output

For a point x0 ∈ Q we determine in this subsection the distribution of [Z2(x0)|Z = z, (β1, β2, ρ),
(σ2

1 , σ
2
2), (θ1, θ2)]. Standard results for normal distribution give that:

[Z2(x0)|Z = z, (β1, β2, ρ), (σ
2
1 , σ

2
2), (θ1, θ2)] ∼ N (mZ2(x0), s

2
Z2
(x0)) (8)

with mean function:
mZ2(x) = h′(x)Tβ + t(x)TV −1(z −Hβ) (9)

and variance:
s2Z2

(x) = ρ2σ2
1 + σ2

2 − t(x)TV −1t(x) (10)

where we have denoted:

β =

(

β1
β2

)

z =

(

z1
z2

)

and where H is defined by:

H =























fT
1 (x

(1)
1 ) 0

...
...

fT
1 (x

(1)
n1 ) 0

ρfT
1 (x

(2)
1 ) fT

2 (x
(2)
1 )

...
...

ρfT
1 (x

(2)
n2 ) fT

2 (x
(2)
n2 )























=

















F1(D1) 0

ρF1(D2) F2(D2)

















4



with the notation Fi(Dj) =







fT
i (x

(j)
n1 )

...

fT
i (x

(j)
nj )






. Furthermore, we have:

t(x)T = Cov(Z2(x),Z)
=
(

ρσ2
1R1({x},D1), ρ

2σ2
1R1({x},D2) + σ2

2R2({x},D2)
) (11)

h′(x) =
(

ρfT
1 (x), f

T
2 (x)

)

The covariance matrix V of the Gaussian vector Z =

(

Z1

Z2

)

can be written :

V =

(

σ2
1R1(D1) ρσ2

1R1(D1,D2)
ρσ2

1R1(D2,D1) ρ2σ2
1R1(D2) + σ2

2R2(D2)

)

(12)

4.2 Bayesian estimation of the parameters with 2 levels of code

In this Subsection, we describe the estimation of the parameters (β1, β2, ρ, σ
2
1 , σ

2
2, θ1, θ2) for

the 2-level model given the observations Z = z. Due to the conditional independence be-
tween Z1(x) and δ(x), it is possible to estimate separately the parameters (β1, σ

2
1 , θ1) and

(β2, ρ, σ
2
2 , θ2). We first describe the estimations of (β1, σ

2
1) given θ1 and (β2, σ

2
2 , ρ) given θ2,

which can be obtain in closed forms. We then describe how to estimate θ1 and θ2

Firstly, we consider the parameters (β1, σ
2
1 , θ1). We choose prior distribution with the

following form :

p(β1|σ
2
1 , θ1) ∝ 1 p(σ2

1) ∝
1

σ2
1

(13)

These priors are non-informative, they correspond to the “Jeffreys priors" [Jeffreys (1961)].
Considering the likelihood:

p(z1|β1, σ
2
1 , θ1) =

1

(2πσ2
1)

n1
2

√

det(R1(D1))
e
−

(z1−F1(D1)β1)
TR1(D1)

−1(z1−F1(D1)β1)

2σ2
1

and the Bayes formula, the posterior distribution of [β1|z1, σ
2
1 , θ1] is :

[β1|z1, σ
2
1 , θ1] ∼ Np1

(

[F T
1 R1(D1)

−1F1]
−1[F T

1 R1(D1)
−1z1], [F

T
1

R1(D1)
−1

σ2
1

F1]
−1

)

(14)

Then, using the Bayes formula:

p(σ2|y) ∝
p(y|σ2, β)p(β|σ2)p(σ2)

p(β|σ2, y)

we obtain that the posterior distribution of [σ2
1 |z1, θ1] is:

[σ2
1 |z1, θ1] ∼ IG(ασ2

1 |n1
,
Q1

2
) (15)
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where IG(α,Q) stands for the inverse gamma distribution with density function

pα,Q(x) =
Qα

Γ(α)

e−
Q
x

xα+1
x > 0

and the parameters are given by:

ασ2
1 |n1

=
n1 − p1

2
(16)

and:
Q1 = zT1 [R1(D1)

−1 −R1(D1)
−1F1(F

T
1 R1(D1)

−1F1)
−1F T

1 R1(D1)
−1]z1

= (z1 − F1β̂1)
TR1(D1)

−1(z1 − F1β̂1)
(17)

β̂1 = E[β1|z1, σ
2
1 , θ1] = [F T

1 R1(D1)
−1F1]

−1[F T
1 R1(D1)

−1z1] (18)

Bayesian estimation of parameters with non-informative “Jeffreys priors" [Jeffreys (1961)] gives
the same results as maximum likelihood estimation for the parameter β1. For the parameter
σ2
1 , the estimation given by Q1

2α
σ2
1
|n1

is identical to the one obtained with the restricted maxi-

mum likelihood method. This method was introduced by [Patterson & Thompson (1971)] in
order to reduce the bias of the maximum likelihood estimator.

Secondly, let us consider the set of parameters (β2, ρ, σ
2
2 , θ2). In order to have closed form

formulas for the estimation of (β2, ρ), we estimate them together. The idea to carry out a
joint estimation is proposed for the first time in this paper and we believe it is important.
Indeed, if the cheaper code is perfectly known, it can be considered as a regression function
and so ρ will be a regression parameter. In this case, an independent estimation of β2 and ρ

will not be consistent.
Using similar Jeffrey prior distributions as in (13) and the same methodology as for the
estimation of (β1, σ

2
1), we find that:

[(ρ, β2)|z1, z2, σ
2
2 , θ2] ∼ Np2+1

(

[F TR2(D2)
−1F ]−1[F TR2(D2)

−1F ], [F T R2(D2)
−1

σ2
2

F ]−1

)

(19)
and:

[σ2
2 |z2, z1, θ2] ∼ IG(ασ2

2 |n2
,
Q2

2
) (20)

where:

ασ2
2 |n2

=
n2 − p2 − 1

2
(21)

and:
Q2 = zT2 [R2(D2)

−1 −R2(D2)
−1F (F TR2(D2)

−1F )−1F TR2(D2)
−1]z2

= (z2 − Fλ̂)TR2(D2)
−1(z2 − Fλ̂)

(22)

λ̂ = E[(ρ, β2)|z1, z2, σ
2
2 , θ2] = [F TR2(D2)

−1F ]−1[F TR2(D2)
−1F ] (23)

The design matrix F is such that F = [ρz1(D2) F2]. Furthermore, the estimation of σ2
2 given

by Q2

2α
σ2
2
|n2

is the same as the restricted maximum likelihood one.

The hyper-parameters θ1 and θ2 are found by minimizing the opposite of the concentrated
restricted log-likelihoods:

log (|det (R1(D1)) |) + (n1 − p1)log(σ̂1
2) (24)
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and:
log (|det (R2(D2)) |) + (n2 − p2 − 1)log(σ̂2

2) (25)

These equations must be numerically minimized with a global optimization method. We
use an evolutionary method coupled with a BFGS algorithm. The drawback of the max-
imum likelihood estimation (see [Lehmann & Casella (1998)]) is that, contrarily to Bayes
estimation, we do not have any information about the variance of the estimator. Never-
theless, Bayes estimation of the hyper parameters θ1 and θ2 are prohibitive and as noted in
[Santner, Williams & Notz (2003)] the choice of the prior distribution is non trivial. There-
fore, we will always consider these parameters as known and we will estimate them with a
concentrated restricted likelihood method.

5 Bayesian prediction for a code with 2 levels

The aim of a Bayesian prediction is to provide a predictive distribution integrating the poste-
rior distributions of the parameters and hence taking into account their uncertainty.
A Bayesian prediction for a code with 2 levels was suggested by [Qian & Wu (2008)]. Never-
theless, we propose here a new Bayesian approach with some significant differences. First, we
assume that the adjustment coefficient is a regression function whereas [Qian & Wu (2008)]
model it with a Gaussian process. Secondly, we use different prior distributions for the pa-
rameter estimation. More specifically, according to the Bayesian estimation of parameters
previously presented, we use a joint prior distribution for (β2, ρ) conditioned by σ2

2 whereas
[Qian & Wu (2008)] use separated prior distributions with ρ not conditioned by σ2

2. Then, we
use a hierarchy between the different parameters. At the lowest level is the regressor param-
eter β. At the second level is the variance parameter σ2 which controls the distribution of
the parameter β. At the top level is the parameter θ which controls the distribution of the
parameters at the bottom levels. It is common to use a hierarchical specification of models for
Bayesian prediction as presented in [Rasmussen & Williams (2006)]. This strategy will allow
us to obtain explicit formulas for the joint distribution of the parameters and above all, to
reduce the cost of the numerical implementation of the complete Bayesian prediction.
We will also present the case in which we do not have any prior information about the pa-
rameters. In order to avoid computationally expensive implementation, we will consider the
hyper parameter θ to be known. In practice, it is estimated by minimizing the opposite of the
concentrated restricted log-likelihood.

5.1 Prior distributions and Bayesian estimation of the parameters

Many choices of priors can be made for the Bayesian modelling. Here we study the two
following cases:

(I) Priors for each parameter are informative.

(II) Priors for each parameter are non-informative.

For the non-informative case (II), we use the improper distributions corresponding to the
“Jeffreys prior” and then the posterior distributions are given in Section 4.2. Note that non-
informative distributions are used when we do not have prior knowledge. For the informative

7



case (I), we will consider the following prior distributions:

[β1|σ
2
1 ] ∼ Np1(b1, σ

2
1V1), [(ρ, β2)|z1, σ

2
2 ] ∼ N1+p2

(

bλ =

(

bρ
b2

)

, σ2
2Vλ = σ2

2

(

Vρ 0
0 V2

))

[σ2
1 ] ∼ IG(α1, γ1), [σ2

2 |z1] ∼ IG(α2, γ2)

where b1 ∈ R
p1 , bλ ∈ R

1+p2 , V1 is a (p1 × p1) diagonal matrix, Vλ is a ((1 + p2) × (1 + p2))
diagonal matrix and α1, γ1, α2, γ2 > 0. The forms of the priors are chosen in order to be able
to get closed form expressions for the posterior distributions. Note that there are enough free
parameters in the priors to allow the user to prescribe their means and variances. From the
previous prior definitions, the posterior distributions of the parameters are:

[β1|z1, σ
2
1 ] ∼ Np1(A

1
i ν

1
i , A

1
i ) [(ρ, β2)|z1, z2, σ

2
2 ] ∼ Np2+1(A

λ
i ν

λ
i , A

λ
i ) (26)

where:

A1
i =







[F T
1

R−1
1 (D1)

σ2
1

F1 +
V −1
1

σ2
1
]−1 i = (I)

[F T
1

R−1
1 (D1)

σ2
1

F1]
−1 i = (II)

ν1i =







[F T
1

R−1
1 (D1)

σ2
1

z1 +
V −1
1

σ2
1
b1] i = (I)

[F T
1

R−1
1 (D1)

σ2
1

z1] i = (II)

(27)

Aλ
i =







[F T R−1
2 (D2)

σ2
2

F +
V −1
λ

σ2
2
]−1 i = (I)

[F T R−1
2 (D2)

σ2
2

F ]−1 i = (II)
νλi =







[F T R−1
2 (D2)

σ2
2

z2 +
V −1
λ

σ2
2
bλ] i = (I)

[F T R−1
2 (D2)

σ2
2

z2] i = (II)

(28)
and F = [ρz1(D2) F2]. Furthermore, we have:

[σ2
1|z1] ∼ IG(α

σ2
1 |n1

i ,
Q1

i

2
), [σ2

2 |z2, z1] ∼ IG(α
σ2
2 |n2

i ,
Q2

i

2
) (29)

where:

Q1
i =

{

γ1 + (b1 − β̂1)
T (V1 + [F T

1 R−1
1 (D1)F1]

−1)−1(b1 − β̂1) +Q1
2 i = (I)

zT1 [R
−1
1 (D1)−R−1

1 (D1)F1(F
T
1 R−1

1 (D1)F1)
−1F T

1 R−1
1 (D1)]z1 i = (II)

Q2
i =

{

γ2 + (bλ − λ̂)T (Vλ + [F TR−1
2 (D2)F ]−1)−1(bλ − λ̂) +Q2

2 i = (I)

zT2 [R
−1
2 (D2)−R−1

2 (D2)F (F TR−1
2 (D2)F )−1F TR−1

2 (D2)]z2 i = (II)

β̂1 = (F T
1 R−1

1 (D1)F1)
−1F T

1 R−1
1 (D1)z1 λ̂ = (F TR−1

2 (D2)F )−1F TR−1
2 (D2)z2

α
σ2
1 |n1

i =

{

n1
2 + α1 i = (I)
n1−p1

2 i = (II)
α
σ2
2 |n2

i =

{

n2
2 + α2 i = (I)
n2−p2−1

2 i = (II)

Mixing of informative and non-informative priors are of course possible and easy to im-
plement. As we will discuss in Subsection 5.4 and see in the examples of Section 7, the use of
informative priors has minor impact on the mean estimation but may have a strong impact
on variance estimation.
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5.2 Predictive distributions when β2, ρ, σ
2
1 and σ2

2 are known

As a preliminary step towards the Bayesian prediction carried out in the next subsection, we
give here Bayesian prediction in the form of closed form expressions when the parameters β2,
ρ, σ2

1 and σ2
2 are known. Then the conditional distribution of [Z2(x)|Z = z, β2, ρ, σ

2
1 , σ

2
2 ] is

given by:
[Z2(x)|Z = z, β2, ρ, σ

2
1 , σ

2
2 ] ∼ N

(

µi(x), σ
2
i (x)

)

(30)

where:

µi(x) = h′(x)T
(

A1
i ν

1
i

β2

)

+ t(x)TV −1

(

z −H

(

A1
i ν

1
i

β2

))

σ2
i (x) = s2Z2

(x) + k1A
1
i k

T
1

and A1
i and ν1i are defined by (27).

Note that the estimated variance is augmented by the term k1A
1
i k

T
1 which quantifies the

uncertainty due to the estimation of β1. k1 is a (1 × p1) vector composed of the p1 first
elements of the (1× p1, 1× p2) vector k given by:

k = (k1, k2) = h′(x)T − t(x)TV −1H

H is given by (4.1). The existence of closed form formulas is important as it will allow for a
fast numerical implementation.

5.3 Bayesian prediction

Before performing the Bayesian prediction we note that - thanks to the explicit joint prior
distribution for β2 and ρ, the independance hypotheses and the hierarchical specification of
the paramaters - conditioning on θ, we have an explicit formula for the following joint density:

p(β1, β2, ρ, σ
2
1 , σ

2
2 |z1, z2) = p(β1|σ

2
1|z1)p(β2, ρ|σ

2
2 |z1, z2)p(σ

2
1 |z1)p(σ

2
2 |z1, z2) (31)

This explicit joint density is an original result which constrasts with [Qian & Wu (2008)]
and which allows us to avoid prohibitive implementation for the Bayesian analysis.

First, we consider the predictive distribution with σ2
1 and σ2

2 known. Considering the con-
ditional independence assumption between (δ(x))x∈Q and (Z1(x))x∈Q, the probability density
function of [Z2(x)|Z = z, σ2

1 , σ
2
2 ] can be deduced from the following integral:

p(z2(x)|z1, z2, σ
2
1 , σ

2
2) =

∫

R1+p2

p(z2(x)|z1, z2, β2, ρ, σ
2
1 , σ

2
2)p(ρ, β2|z1, z2, σ

2
2) dρdβ2 (32)

where p(z2(x)|z1, z2, β2, ρ, σ
2
1 , σ

2
2) is given by (8). This integral has to be numerically evaluated.

Since [ρ, β2|z1, z2, σ
2
2 ] has a known normal distribution given by (26), we here use a crude

Monte-Carlo algorithm when the dimension of β2 and ρ is high, or a trapezoidal quadrature
method when it is low.
Then, we infer from the parameters σ2

1 and σ2
2. Due to the independence between (δ(x))x∈Q

and (Z1(x))x∈Q, the probability density function of [Z2(x)|Z = z] is:

p(z2(x)|z1, z2) =

∫

R2

p(z2(x)|z1, z2, σ
2
1 , σ

2
2)p(σ

2
1 |z1)p(σ

2
2 |z1, z2) dσ

2
1dσ

2
2 (33)

9



where p(σ2
1 |z1) and p(σ2

2 |z1, z2) are given by (29). This integral has also to be numerically eval-
uated. Since we have a double integration, a quadrature method will be efficient. We use here a
trapezoidal numerical integration, defining the region of integration [σ2

1inf
, σ2

1sup ]×[σ2
2inf

, σ2
2sup ]

from the equation (29) and such that p(σ2
1inf

|z1), p(σ
2
1sup |z1) p(σ

2
2inf

|z1, z2) and p(σ2
2sup |z1, z2)

are close to 0. This region essentially contains the support of the function. Furthermore, we
create a non-uniform integration grid distributed with a geometric progression.

Finally p(z2(x)|z1, z2) is a predictive density function integrating the posterior distribution
of parameters (β2, ρ, β1, σ

2
1 , σ

2
2). We hence have a predictive distribution taking into account

the uncertainties due to the parameter estimations. This predictive distribution is clearly not
Gaussian but we have observed in practice that it is extremely close to normality. Therefore,
it is relevant to consider in our analysis only the mean E[Z2(x)|Z1 = z1,Z2 = z2] and the
variance Var(Z2(x0)|Z1 = z1,Z2 = z2). With classical formulas of the total mean, variance
and covariance, parameter estimations in (26) and results of Subsection 9.2, it can be shown
that:

E[Z2(x)|Z = z] =
(

E[Z1(x)|Z1 = z1] fT
1 (x)

)

Aλ
i ν

λ
i +R2({x},D2)R

−1
2

(

z2 − FAλ
i ν

λ
i

)

(34)

E[Z1(x)|Z1 = z1] = fT
1 (x)A

1
i ν

1
i +R1({x},D1)R

−1
1

(

z1 − F1A
1
i ν

1
i

)

(35)

Var(Z2(x0)|Z = z) = ρ̂2Var(Z1(x0)|Z1 = z1) +
(

hT2 A
λ
i h2
)

+
Q2

i

2

(

α
σ2
2
|n2

i −1

)

(

1−R2({x},D2)R
−1
2 R2(D2, {x})

)

(36)

where hT2 =
((

E[Z1(x)|Z1 = z1] fT
1 (x)

)

−R2({x},D2)R
−1
2 F

)

, ρ̂ = Aλ
i ν

λ
i (1) and:

Var(Z1(x0)|Z1 = z1) =
Q1

i

2
(

α
σ2
1 |n1

i − 1
)

(

1−R1({x},D1)R
−1
1 R1(D1, {x})

)

+
(

hT1 A
1
i h1
)

(37)

where hT1 =
(

fT
1 (x)−R1({x},D1)R

−1
1 F1

)

.

We note that, in the mean of the predictive distribution, the parameters have been just
replaced by their posterior means. Furthermore, in the variance of the predictive distribution,
the variance paramaters have been replaced by their posterior means and two terms have
been added: hT1 A

1
i h1 and hT2 A

λ
i h2. They represent the uncertainty due to the estimation of

the regression parameters (including the adjustment coefficient). We call these formulas the
universal co-kriging equations due to their similarities with the well known universal kriging
equations. These formulas can naturally be extended for the case of ρ depending on x and
with more than 2-levels of code.

5.4 Discussion about the numerical evaluations of the integrals

We saw in the previous section that we can obtain an analytical prediction when β2, ρ, σ
2
1

and σ2
2 are known. From this, we can have a Bayesian prediction with only two nested simple

integrations. One of them can be approximated with a quadrature or a crude Monte Carlo
method, which is not too expensive. The other is a double integration approximated with a
quadrature method which is efficient and not expensive. Therefore, we do not use any Markov
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chain Monte Carlo method and we considerably reduce the time and the complexity of the
method. This allows us to easily build an accurate Bayesian metamodel. Note that this
metamodel is build with two nested integrations. Indeed, at each integration points used to
evaluate the integral (33), we evaluate the integral (32) with a crude Monte-Carlo procedure.
Practically, we use 441 integration points to approximate (33) and 1000 Monte-Carlo particles
to approximate (32). Therefore, we have 441000 call to the predictive density function (30).

To avoid a prohibitive implementation, another approach has also been proposed by
[Cumming & Goldstein (2009)]. They adopt a Bayes linear formulation which requires only
the specification of the means, variances and covariance. See [Goldstein & Wooff (2007)] for
further details about the Bayes linear approach. The strength of this method is that its compu-
tationally cost is low. Nonetheless, since it only focuses on posterior means and covariances, it
does not provide the full posterior predictive distribution. Moreover, [Cumming & Goldstein (2009)]
provide a multi-level analysis considering (β1, σ

2
1) as known and their approach does not pro-

vide posterior distributions for the parameters. The universal co-kriging equations presented
in Subsection 5.3 can be viewed as an extension of the ones of [Cumming & Goldstein (2009)].
Indeed, we provide a full linear Bayesian formulation by inferring from all the known posterior
distributions of the parameters.

Finally, we highlight the fact that our Bayesian procedure can be used to perform multi-
fidelity analysis with more than 2 levels of code whereas the cost of the one presented by
[Qian & Wu (2008)] is to high to allow such analysis. We illustrate in Section 11 through an
industrial case the importance of using more than 2 levels of code.

6 Experimental design

As presented in Section 3 we consider nested experimental designs ∀t = 2, . . . , s Dt ⊆
Dt−1. Therefore, we have to adopt particular design strategies to uniformly spread the
inputs for all Dt. Space-filling designs are widely used in computer experiments, such as
Latin hypercube (see [McKay, Beckman & Conover (1979)], [Morris & Mitchell (1995)]), Or-
thogonal array-based Latin hypercube (see [Owen (1992)], [Tang (1993)]) and uniform de-
signs (see [Fang, Lin, Winker & Zhang (2000)]). A strategy based on Orthogonal array-based
Latin hypercube for nested space-filling designs is proposed by [Qian, Ai & Wu (2009)] and
[Qian, Tang & Wu (2009)].
We consider here another strategy for space-filling design, described in the following algorithm,
which is very simple and not time-consuming. The number of points nt for each design Dt is
prescribed by the user, as well as the experimental design method applied to determine the
coarsest grid Ds used for the most expensive code zs.

ALGORITHM

build Ds = {x
(s)
j }j=1,...,ns with the experimental design method prescribed by the user.

for t = s to 2 do:

build design D̃t−1 with the experimental design method prescribed by the user.

for i = 1 to nt do:

find x̃
(t−1)
j ∈ D̃t−1 the closest point from x

(t)
i ∈ Dt where j ∈ [1, nt−1].

11



remove x̃
(t−1)
j from D̃t−1.

end for

Dt−1 = D̃t−1 ∪Dt.

end for

This strategy allows us to use any space-filling design method. Therefore it is more flexible
that the one presented by [Qian, Ai & Wu (2009)]. Furthermore, it conserves the initial struc-
ture of the experimental design Ds of the most accurate code, contrarily to a strategy based
on selection of subsets of an experimental design for the less accurate code as presented by
[Kennedy & O’Hagan (2000)], [Floater & Iske (1996)] and [Forrester, Sobester & Keane (2007)].
We hence can ensure that Ds has excellent space-filling properties. Moreover, the experimental
design Dt−1 being equal to D̃t−1 ∪Dt, this method ensure the nested property.

7 Toy examples

We will present in this section some co-kriging metamodels using one-dimensional functions
inspired by the example presented in [Forrester, Sobester & Keane (2007)]. For the follow-
ing examples, we will use a non-Bayesian co-kriging model - i.e. the one presented in
[Kennedy & O’Hagan (2000)] - but with a Bayesian estimation of the parameters (see Sec-
tion 4.2) and for the second example we will also use a Bayesian co-kriging. Furthermore, the
correlation kernels are assumed to be:

rt(x
(k)
i − x

(l)
j ; θt) = exp

(

−
‖x

(k)
i − x

(l)
j ‖2

θ2t

)

where:
t, k, l = 1, 2 1 ≤ i ≤ n1 1 ≤ j ≤ n2 x

(k)
i ∈ Dk x

(l)
j ∈ Dl

Example 1. We assume that the expensive code is given by z2(x) = (6x− 2)2sin(12x− 4) and
the cheaper code by z1(x) = 0.5z2(x) + 10(x − 0.5) − 5. The experimental design set of the
cheapest code is D1 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and the one of the expensive
code is D2 = {0, 0.4, 0.6, 1}. This example is identical to the one-dimensional demonstration
presented in [Forrester, Sobester & Keane (2007)]. Figure 1 shows the functions x 7→ z2(x)
and x 7→ z1(x), the training data for z2 and z1, the ordinary kriging using only the expensive
data and the co-kriging using expensive and cheap data. To validate the model, the Root-
mean-square errors (RMSE) and Q2 coefficient (38) are computed:

Q2 = 1−

∑

x∈T (mZ2(x)− z2(x))
2

∑

x∈T (mZ2(x)− z̄2)
2 (38)

The test set T is composed of a regular grid points sampled from 0 to 1 with a grid step equal
to 0.01 and z̄2 is the empirical mean evaluated in T . The estimated RMSE is 5.68 × 10−2

and the coefficient Q2 is 99.98%, so we have a prediction error closed to 0. The Bayesian
estimation of the parameters of co-kriging are given in Table 1. Furthermore, the estimations
of the hyper-parameters (θ1, θ2), calculated by maximizing the concentrated log-likelihoods
(24) and (25), are θ̂1 = 0.25 and θ̂2 = 0.80. D1 being a regular grid with a grid step equal to
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Figure 1: A co-kriging example with one-dimensional functions. The co-kriging metamodel
is very close to the expensive output z2(.) and improves significantly the ordinary kriging
metamodel using the small design D2.

0.1 and D2 being composed of points sampled from 0 to 1, points of the experimental designs
are hence strongly correlated which will imply a smooth surrogate model.

Coefficient Estimation

ρ 2

β2 (20,−20)

β1 −3.49

σ2
1 32.75

σ2
2 7.02 × 10−30

Table 1: A co-kriging example with one-variable functions. Bayesian estimation of parameters.

We see that the Bayesian estimation of parameters is very effective since the estimations
of parameters ρ and β2 are perfect. Nevertheless this example does not highlight the strength
of the method since there is a relation between z2(x)x∈[0,1] and z1(x)x∈[0,1] which exactly cor-
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responds to the equation (2) with the error δ2 that can be written in terms of the regression
functions f2 exactly. Therefore, if the cheap code is well modelled, like in our case, the co-
kriging is equivalent to a linear regression. Moreover, the very small value of σ2

2 illustrates this.

Example 2. We assume that the expensive code is given by z2(x) = (6x − 2)2 sin(12x −
4) + sin(10 cos(5x)) and the cheaper code is given by z1(x) = 0.5((6x − 2)2 sin(12x − 4)) +
10(x − 0.5) − 5. Through the term sin(10 cos(5x)), the expensive code has high frequencies
which are not captured by the cheap code and the error δ2 is not a simple linear combination
of the regression functions f2. Figure 2 shows the results of kriging and co-kriging for these
two functions. The estimated RMSE is 1.05 and the coefficient Q2 is 93.57%, we still have

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

15

x

y
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z1(x)
co−kriging
ordinary kriging
z2

z1

Figure 2: A co-kriging example with one-dimensional functions. The high frequency compo-
nents of the expensive code are not predicted since they are not captured by the cheap code
and the coarse grid used for the expensive code cannot detect them either. Nevertheless, the
co-kriging improves the ordinary kriging metamodel since the cheap code allows us to predict
the low frequencies of the expensive code accurately.

a good prediction. The Bayesian estimations of the parameters are given in Table 2 and we
have θ̂1 = 0.25 and θ̂2 = 0.07. The values of these parameters have been fixed according the
following arguments. As the cheap code is the same as the one of the Example 1, we keep the
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same estimation for θ1. Then, we consider that there are not enough points to carry out a
significant estimation of θ2. Therefore, we fix the value of θ̂2 according to the high frequencies
introduced by the term sin(10 cos(5x)).

Coefficient Estimation

ρ 1.86

β2 (18.39,−17.00)

β1 −3.49

σ2
1 32.75.03

σ2
2 0.30

Table 2: A co-kriging example with one-dimensional functions. Bayesian estimation of pa-
rameters.

Due to the additional term sin(10 cos(5x)), the estimation of the parameter ρ is less ef-
fective than in the first example. This highlights the dependence between the estimation of ρ
and the mean of δ(x)x∈[0,1].
Furthermore, Figure 3 represents the confidence interval at plus or minus twice the standard
deviation of the predictive distribution in the Bayesian and non-Bayesian case. We see that
we underestimate the variance of the predictive distribution in the non-Bayesian case. This
estimation is adjusted in the Bayesian case; nevertheless, it seems to be slightly overestimated.
According to the universal co-kriging equations presented in Subsection 5.3, the means of the
predictive distributions for the two cases are equivalent. We finally consider the case in which
we have prior information:

[(ρ, β2)|z1, σ
2
2 ] ∼ N









2
20
−20



 , σ2
2





0.05 0 0
0 0.05 0
0 0 0.05







 , [σ2
2 |z1] ∼ IG(3, 1)

Figure 4 shows the result of the Bayesian co-kriging with the given prior information. The
estimated RMSE is 0.79 and the coefficient Q2 is 96.57%, we hence improve the accuracy of
the metamodel. The predictive mean is closer to the true function and the predictive variance
is reduced compared to the non-informative Bayesian case, with the confidence interval that
still contains the true function. The posterior estimations of the parameters are given in Table
3 and we have θ̂1 = 0.25 and θ̂2 = 0.07.

Coefficient Estimation

ρ 2.00

β2 (20.12,−19.81)

β1 −3.49

σ2
1 32.75

σ2
2 0.29

Table 3: A co-kriging example with one-dimensional functions and prior information. Posterior
estimation of parameters.
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Figure 3: A co-kriging example with one-dimensional functions and without any prior infor-
mation. Comparison between Bayesian and non-Bayesian co-kriging. The thick dotted line
represents the prediction mean, the thin dotted lines represent the confidence interval at plus
or minus twice the standard deviation in the non-Bayesian case and the dashed lines represent
the same confidence interval in the Bayesian case.

8 Example 1: hydrodynamic simulator

This example illustrates the comparison between Bayesian and non-Bayesian co-kriging. The
co-kriging method is applied to a hydrodynamic code named “MELTEM”. This code simu-
lates a second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov
instability [Gregoire, Souffland & Gauthier (2005)]. We consider here two parameters X1 and
X2 which are phenomenological coefficients used in the equations of the energy of dissipation
of the turbulent flow. These two coefficients vary into the region [0.5, 1.5] × [1.5, 2.3]. The
considered code output, called R, is the ratio between the longitudinal and the transversal
speed variations in the turbulence area. The simulator is a finite-elements code which can
be run at different levels of accuracy by altering the finite-elements mesh. The simple code
z1(.), using a coarse mesh, takes 20 seconds to produce an output whereas the complex code
z2(.), using a fine mesh, takes 8 minutes. A Latin hypercube design of 200 points was built in
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Figure 4: A Bayesian co-kriging example with one-dimensional functions and prior infor-
mation. The prior information improves the accuracy of the co-kriging metamodel and the
variance of the predictive distribution has decreased.

the input parameter space and optimized with a maximin criterion. The two codes were run
on this experimental design set. The aim of the study is to build a prediction as accurate as
possible using only a few runs of the complex code. Therefore, we extract a subset from the
outputs of the complex code that we use as data (the complementary subset is used for the
validation step). Furthermore, no prior information is available: we are in the non-informative
case.

8.1 Comparison between ordinary kriging and non Bayesian co-kriging

Figure 5 shows the prediction RMSE for ordinary kriging and non Bayesian co-kriging when
the number of runs for the complex code varies. We use for both ordinary kriging and co-
kriging a Matern5

2 covariance kernel and we consider that fT
ρ (x) = (1, x1) (see Section A for

the case of ρ depending on x), f2(x) = 1 and f1(x) = 1. For the co-kriging, we use the 200 runs
of the Latin hypercube for the fast code and the RMSE is estimated with the complex-code
outputs that had not been used to build the model. Furthermore, for a fixed number of runs
for the accurate simulator, the figure gives the average RMSE calculated from 20 different
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Latin hypercube designs. In the Figure 5, we see that the error saturates when there are
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Figure 5: Comparison between ordinary kriging and non-Bayesian co-kriging. Co-kriging
predictions are better than the ordinary kriging ones and with only 10 simulations we already
have an excellent model with co-kriging.

more than 10 runs for the accurate simulator. Therefore, 10 will be the number of calls of the
complex code in the remainder of this study.

8.2 Comparison between non Bayesian co-kriging and Bayesian co-kriging

In this section, we compare a model obtained with a non-Bayesian co-kriging - as presented
in [Kennedy & O’Hagan (2000)] and [Forrester, Sobester & Keane (2007)] - and a model ob-
tained with a Bayesian co-kriging as presented in this paper. We use 200 simulations for the
cheap code and 10 for the expensive code. The 190 others simulations of the complex code
are used to validate and compare our models. To build the different covariance matrices, we
consider a matern-52 kernel (see [Rasmussen & Williams (2006)]), fT

ρ (x) = (1, x1), f2(x) = 1,
f1(x) = 1 and, using the concentrated maximum likelihood, we have the following estimation
for the hyper-parameters of correlation: θ̂1 = (0.47, 1.59); θ̂2 = (0.18, 1.42). According to
the values of the hyper-parameter estimates, the co-kriging model is very smooth since the
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correlation length is large compared to the size of the input parameter space. Furthermore,
the estimated correlation between the two codes is 98.96%, the cheap code hence well approx-
imates the response.
Table 3 presents the Bayesian estimation of the parameters.

Regression coefficient Posterior mean Posterior Covariance
σ2
t

β1 3.12 0.40
(

βρ
β2

)





1.04
−0.15
−0.02









0.21 −0.16 −0.21
−0.16 0.36 −0.57
−0.21 −0.57 2.84





Variance coefficient Qt αt

σ2
1 74.14 99.5

σ2
2 0.30 3.5

Table 4: Example: hydrodynamic simulator. Bayesian estimation of the parameters (26) and
(29).

We see in Table 4 that the correlation between βρ and β2 is non-negligible which highlights
the importance of taking into account the correlation between these two coefficients. We also
see that the adjustement parameter βρ is close to 1 with a linear trend with a smooth slope,
both code have hence the same order of magnitude. Finally, the variance of the bias between
the two codes is ten times lower than the one of the cheap code due to the fact that it is much
easier to model than the cheap code itself.

Table 5 compares the prediction accuracy of the Bayesian and the non-Bayesian co-kriging.
The different coefficients (MaxAE: Maximal Absolute Error, RMSE, Q2, . . . ) are estimated
with the 190 responses of the complex code that have not been used to build the model.

Q2 RMSE MaxAE
Bayesian co-kriging 99.86% 0.042 0.111

Non-Bayesian co-kriging 99.86% 0.042 0.111

Average Std. dev. Median Std. dev. Maximal Std. dev.
Bayesian co-kriging 0.068 0.065 0.153

Non-Bayesian co-kriging 0.041 0.038 0.091

Table 5: Example: hydrodynamic simulator. Comparison between Bayesian and non-Bayesian
co-kriging. The non-Bayesian predictions are identical to the Bayesian ones and the variance
of the predictive distribution in the Bayesian case is slightly larger than the one in the non-
Bayesian case (Std. dev represents the standard deviation of the predictive distribution).

We see that the accuracies of the two models are identical. Indeed, according to (34),
the posterior means of these two models are equivalent. Nevertheless, the average standard
deviation of the prediction is slightly larger in the Bayesian case than in the non-Bayesian
one. Comparing the RMSE and the average standard deviation estimations in Table 5, it
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seems that we slightly overestimate a little the variance of the predictive distribution in the
Bayesian case whereas in the non-Bayesian case, this estimation seems correct.
Figure 6 shows the experimental designs for the 2 levels of code. Figure 7 represents the
mean and the confidence interval at plus or minus twice the standard deviation of the pre-
dictions for points along the lines 1 and 2 plotted in Figure 6. In particular in Figure 7 in
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Figure 6: Comparison between Bayesian co-kriging and non Bayesian co-kriging for the hy-
drodynamic simulator. The crosses represent the experimental design set for the cheap code,
the circled crosses represent the experiments design set for the complex code, and the thick
points represent the set at which predictions are calculated and reported in Figure 7.

line 1, we see necked points at coordinate (0.55,1.15,1.25) since, in the direction of X2, the
hyper-parameter of correlation for (δ(x))x∈Q is 1.42 and points of D2 have almost the same
coordinate: (0.56,1.13,1.135).
Finally, we see that in this case the difference between the Bayesian and the non-Bayesian
confidence interval is less important than the one in the example 2 Section 7. This is due
to the fact that the number of data to evaluate the hyper-parameters is here larger than in
Section 7 and their estimations are hence less uncertain. Moreover, the high correlation degree
between the two codes indicates that it is very easy to learn the bias between them and so
the predictive variance of the bias is small.

9 The case of s levels of code

The aim of this Section is to perform a multi-level co-kriging with any number of codes. Let us
consider s levels of code. The generalization of the previous model is straightforward. Actually,
if we note β = (βT

1 , . . . , β
T
s )

T , ρ = (ρ1, . . . , ρs−1), σ
2 = (σ2

1 , . . . , σ
2
s) and θ = (θ1, . . . , θs), we

have:
∀x ∈ Q [Zs(x)|Z = z, β, ρ, σ2, θ] ∼ N

(

mZs(x), s
2
Zs
(x)
)
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Figure 7: Comparison between Bayesian co-kriging and non Bayesian co-kriging. The thick
dotted lines represent the prediction mean, the thin dashed lines represent the prediction
confidence interval at plus or minus twice the standard deviation in the Bayesian case and
the thin dotted lines represent the prediction confidence interval at plus or minus twice the
standard deviation in the non-Bayesian case. The locations of line 1 and line 2 in the input
space are plotted in Figure 6.

where:
mZs(x) = h′s(x)

Tβ + ts(x)
TV −1

s (z −Hsβ) (39)

and:
s2Zs

(x) = σ2
Zs

− ts(x)
TV −1

s ts(x) (40)

Furthermore, let us denote by Rt = Rt(Dt) the correlation matrix for Dt and ρs = 0, ∀s ≤ 0.
The matrix Vs has the form:

Vs =







V (1,1) . . . V (1,s)

...
. . .

...

V (s,1) . . . V (s,s)






(41)

The s diagonal blocks of size nt × nt are defined by:

V (t,t) = σ2
tRt(Dt) + σ2

t−1ρ
2
t−1Rt−1(Dt) + · · ·+ σ2

1

(

t−1
∏

i=1

ρ2i

)

R1(Dt) (42)

and the off-diagonal blocks of size nt × nt′ are given by:

V (t,t′) =

(

t′−1
∏

i=t

ρi

)

V (t,t)(Dt,Dt′) (43)
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where 1 ≤ t < t′ ≤ s.
The vector ts(x) is such that ts(x) = (t∗1(x,D1)

T , . . . , t∗s(x,Ds)
T )T , where:

t∗t (x,Dt)
T = ρt−1t

∗
t−1(x,Dt)

T +

(

s−1
∏

i=t

ρi

)

σ2
tRt(x,Dt) (44)

where 1 < t ≤ s,
(

∏s−1
i=s ρi

)

= 1 and t∗1(x,D1)
T =

(

∏s−1
i=1 ρi

)

σ2
1R1(x,D1). Furthermore, if

we define:

Fk(Dl) =







fT
k (x

(l)
1 )

...

fT
k (x

(l)
nl
)






1 ≤ k, l ≤ s

then the matrix Hs can be written as:

Hs =

















F1(D1)
ρ1F1(D2) F2(D2) 0
ρ1ρ2F1(D3) ρ2F2(D3)
...

...
. . .

(

∏s−1
i=1 ρi

)

F1(Ds)
(

∏s−1
i=2 ρi

)

F2(Ds) . . . Fs(Ds)

















(45)

h′s(x)
T and var(Zs(x)) = σ2

Zs
are given by the equations (4) and (6).

9.1 Bayesian estimation of parameters for s levels of code

From the assumptions of conditional independence between (δt(x))x∈Q and (Zt−1(x), . . . , Z1(x))x∈Q,
we can extend the Bayesian estimation of the parameters to the case of s levels. Note that we
do not assume the independence of βt and ρt−1. We can obtain a closed form expression for
the estimation of (βt, ρt−1). For all t = 2, . . . , s, we have:

[(ρt−1, βt)|zt, zt−1, θt, σ
2
t ] ∼ N

(

(

HT
t R

−1
t (Dt)Ht

)−1
HT

t R
−1
t (Dt)zt, σ

2
t

(

HT
t R

−1
t (Dt)Ht

)−1
)

(46)
where Ht = [ρt−1zt−1(Dt) Ft(Dt)]. Furthermore, if we note:

λ̂t = E[(ρt−1, βt)|zt, zt−1, θt, σ
2
t ]

then we have:

[σ2
t |zt, zt−1, θt] ∼ IG(αt,

Qt

2
) (47)

where:

αt =
nt − pt − 1

2
(48)

and:
Qt = (zt −Htλ̂t)

TR−1
t (Dt)(zt −Htλ̂t) (49)

The REML estimator of σ2
t is σ̂2

t = Qt

2αt
and we can estimate θt by minimizing the expression:

log(|det(Rt(Dt))|) + (nt − pt − qt−1)log(σ̂
2
t ) (50)

The generalization of the Bayesian estimation previously presented is important since it shows
that the parameters estimation for a s-levels co-kriging is equivalent to the one for s indepen-
dent krigings.
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9.2 Some important results about the covariance matrix Vs

Vs is an (
∑s

i=1 ni ×
∑s

i=1 ni) matrix, its inverse can hence be difficult to process. We present
in this Subsection a method to reduce the complexity of the processing of V −1

s . From the
previous section the covariance matrix Vs can be written as:

Vs =

(

Vs−1 Us−1

UT
s−1 V (s,s)

)

Us−1 =







V (1,s)

...

V (s−1,s)






=







ρs−1V
(1,s−1)(D1,Ds)

...

ρs−1V
(s−1,s−1)(Ds−1,Ds)







By sorting the experimental design sets such that:

∀t = 2, . . . , s Dt−1 = (x
(t−1)
1 , . . . , x

(t−1)
nt−1−nt

, x
(t)
1 , . . . , x(t)nt

) = (Dt−1 \Dt,Dt)

it can be shown that ∀t = 2, . . . , s the inverse of the matrix Vs has the form:

V −1
s =









V −1
s−1 +

(

0 0

0 ρ2s−1
R−1

s

σ2
s

)

−

(

0

ρs−1
R−1

s

σ2
s

)

−
(

0 ρ2s−1
R−1

s

σ2
s

)

R−1
s

σ2
s









(51)

V −1
1 =

R−1
1

σ2
1

with V −1
s−1 an (

∑s−1
i=1 ni ×

∑s−1
i=1 ni) matrix and R−1

s an (ns × ns) matrix. This is a very

important result since it shows that we can deduce V −1
s from R−1

t , t = 1, . . . , s. Therefore,
the complexity of the processing of V −1

s is O(
∑s

i=1 n
3
i ) instead of O((

∑s
i=1 ni)

3). Furthermore,
from the equation (51) and the Bayesian estimation of parameters presented in Section 9.1,
we have shown here that building a s-level co-kriging is equivalent to build s independent
krigings.
Since (t∗1(x,D1)

T , . . . , t∗s−1(x,Ds−1)
T ) = ρs−1t

T
s−1(x) it can also be shown that in the equation

(39):

ts(x)
TV −1

s =
(

ρs−1t
T
s−1(x)V

−1
s−1 − [01×(

∑s−1
i=1 ni−ns)

, ρs−1Rs({x},Ds)R
−1
s ],Rs({x},Ds)R

−1
s

)

(52)
Therefore, ts(x)

TV −1
s is independent of σ2

s . Since t1(x)
TV −1

1 = R1({x},D1)R
−1
1 does not

depend on σ2
1 , by induction, ts(x)

TV −1
s is independent of σ2

i for all 1 ≤ i ≤ s. We have just
shown here that the co-kriging mean does not depend on the variance coefficients.
Finally, the determinant of the covariance matrix is given by:

|Vs| =
s
∏

i=1

(σ2
i )

ni |Ri|

Therefore, |Vs| does not depend on the adjustment coefficients. It strengthens the result pre-
sented in Section 9.1 which shows that we can independently estimate the variance parameters
(σ2

t )t=1,...,s and the hyper-parameters (θt)t=1,...,s as well.
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10 Fast cross-validation for kriging and co-kriging surrogate

models

The idea of a cross-validation procedure is to split the training set into two disjoints sets, one
is used for training and the other is used to monitor the performance of the model. Then, the
performance on the validation set is used as a proxy for the generalization error. A particular
case of this method is the Leave-One-Out Cross-Validation (noted LOO-CV) where n valida-
tion sets are obtained by removing one observation at a time. This procedure can be time-
consuming for a kriging model but [Dubrule (1983)] shows that there are computational short-
cuts. These shortcuts are also presented by [Marcotte (1995)], [Rasmussen & Williams (2006)]
and [Zhang & Wang (2009)] and we present in this section their adaptation for co-kriging mod-
els. Furthermore, the cross-validation equations proposed in this section extend the ones of
[Dubrule (1983)] since they do not suppose that the regression and the variance coefficients
are known. Therefore, only the hyper-parameters of the correlation function are fixed and
the other parameters are re-estimated at each training set. We note that the re-estimation
of the variance coefficient is an original result which is important since fixing this parameter
can lead huge errors for the estimation of the cross-validation predictive variance when the
number of observations is small or when the number of points in the validation set is important.

If we denote by ξs the ntrain indices of points in Ds constituting the training set Dtrain and
ξt with 1 ≤ t < s the corresponding points in Dt - indeed, we have Ds ⊂ Ds−1 ⊂ · · · ⊂ D1,

therefore Dtrain ⊂ Dt and if we denote D
ξt
t = (x

(t)
ξt(1)

, x
(t)
ξt(2)

, . . . , x
(t)
ξt(ntrain)

), we have D
ξt
t =

Dtrain for all 1 ≤ t ≤ s. The nested experimental design assumption implies that, in the
cross-validation procedure, if we remove a point from Ds we also have to remove it from Dt,
t < s. Considering, the hyper-parameters θ as known, the Woodbury formula presented in
[Harville (1997)] and the results of Section 9.2, it can be shown that the vectors of the cross-
validation predictive errors ǫZs,ξs and variances ςZs,ξs at points in the training set Dtrain are
given by the recursive equations (53) and (54).

(

ǫZt,ξt − ρt−1ǫZt−1,ξt−1

) [

R−1
t

]

[ξt,ξt]
=

[

R−1
t (zt −Htλt,−ξt)

]

[ξt]
(53)

ςZt,ξt = ρ2t−1ςZt−1,ξt−1 + σ2
t,−ξt

diag

(

(

[

R−1
t

]

[ξt,ξt]

)−1
)

(54)

where 1 ≤ t ≤ s, Ht = [ρt−1zt−1(Dt) Ft] t > 1, H1 = F1 and:

λt,−ξt

(

HT
t,−ξt

KtHt,−ξt

)

= HT
t,−ξt

Ktzt(Dt,−ξt) (55)

σ2
t,−ξt

=
(zt(Dt,−ξt)−Ht,−ξtλt,−ξt)

T Kt (zt(Dt,−ξt)−Ht,−ξtλt,−ξt)

nt − pt − qt−1 − ntrain

(56)

Kt =
[

R−1
t

]

[−ξt,−ξt]
−
[

R−1
t

]

[−ξt,ξt]

(

[

R−1
t

]

[ξt,ξt]

)−1
[

R−1
t

]

[ξt,−ξt]
(57)

We note that we can easily adapt these formulas if we just remove points from Dt, t >
t0 ≥ 1, since we will so have ǫZr ,ξr = 0 and ςZr,ξr = 0 for r ≤ t0. Furthermore, these equations
are also valid when s = 1, i.e. for kriging model. We hence have closed form expression for
the equations of a k-fold cross-validation with a re-estimation of the regression and variance
parameters and directly deductible from the co-kriging equations. The complexity of this
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procedure is monitored by the inversion of the matrix
[

R−1
t

]

[ξt,ξt]
of size ntrain × ntrain. We

also note that if we suppose parameters of variance and/or regression as known, we do not have
to compute σ2

t,−ξt
and/or λt,−ξt which reduces substancially the complexity of the method.

When the variance parameter is known we find the equations presented by [Dubrule (1983)].

Notations: A[ξ,ξ] is the submatrix of elements ξ× ξ of A, a[ξ] is the subvector of elements ξ

of a, B−ξ represents the matrix B minus the rows of indice ξ, C[−ξ,−ξ] is the submatrix of C
in which we remove the elements of indice −ξ×−ξ and C[−ξ,ξ] is the submatrix of C in which
we remove the row of indice ξ and keep the column of indice ξ.

11 Example 2: Fluidized-Bed Process

This example illustrates the comparison between 2-level and 3-level co-kriging. A 3-level
co-kriging method is applied to a physical experiment modelled by a computer code. The
experiment, which is the measurement of the temperature of the steady-state thermodynamic
operation point for a fluidized-bed process, was presented by
[Dewettinck, De Visscher, Deroo, Huyghebaert (1999)], who developed a computer model named
“Topsim” to calculate the measured temperature. The code, developed for a Glatt GPCG-1,
fluidized-bed unit in the top-spray configuration, can be run at 3 levels of complexity. We
hence have 4 available responses:

1. Texp: the experimental response.

2. T3: the most accurate code modelling the experiment.

3. T2: a simplified version of T3.

4. T1: the lowest accurate code modelling the experiment.

The differences between T1, T2 and T3 are discussed by Dewettinck et al. (1999). The aim
of this study is to predict the experimental response Texp given the two levels of code T3 and
T2. We only focus on a 3-level co-kriging using T3 and T2 to predict Texp since 28 responses
available for each level is not enough for a relevant 4-level co-kriging. The experimental design
set and the responses T1, T2, T3 and Texp are given by [Qian & Wu (2008)] who have presented
a 2-level co-kriging using Texp and T2. Furthermore, the responses are parameterized by a 6-
dimensional input vector presented by Dewettinck et al. (1999).

11.1 Building the 3-level co-kriging

To build the 3-level co-kriging, we use 10 measures of Texp (measures 1, 3, 8, 10, 12, 14 ,18
,19 ,20, 27 in Table 4 in [Qian & Wu (2008)]), 20 simulations of T3 (runs 1, 2, 3, 5, 6, 7, 8,
9, 10, 11, 12 ,13 ,14 ,16 ,18, 19, 20, 22, 24, 27) and the 28 simulations of T2 and the input
vector is scaled between 0 and 1. The last 18 measures of Texp are used for validation. The
design sets are nested such that (Dt−1 = (Dt−1 \Dt,Dt))t=2,3 and we use a Matern5

2 kernel
for the three covariance functions. The estimations of the hyper-parameters which represent
correlation lengths of the three covariance kernels are given in Table 6.
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θ̂1 1.790 3.988 1.218 1.790 3.595 0.722

θ̂2 1.810 1.842 2.008 1.036 0.001 0.345

θ̂3 0.890 0.721 2.008 2.952 1.790 0.241

Table 6: Example: fluidized-bed process. Estimation of the hyper-parameters (correlation
lengths) for the 3-level co-kriging.

The estimations of hyper-parameters in Table 6 show us that the surrogate model will
be very smooth in the first four directions. For the fifth direction the Gaussian processes
modelling the cheap code T2 and the bias between Texp and T3 are very smooth and the one
modelling the bias between T3 and T2 is close to a regression. Finally, the model is sharper in
the sixth direction in particular for the two biases where correlation lengths are around 0.3.

Furthermore, Table 7 gives the estimation of the variance and regression parameters (see
section 9.1).

Regression coefficient Posterior mean Posterior Covariance
σ2
t

β1 47.02 0.134
(

βρ1
β2

) (

0.97
−0.17

) (

0.001 −0.034
−0.034 1.610

)

(

βρ2
β3

) (

0.95
1.93

) (

0.003 −0.121
−0.121 5.188

)

Variance coefficient Qt αt

σ2
1 1032 13.5

σ2
2 5.30 9

σ2
3 8.39 4

Table 7: Example: fluidized-bed process. Bayesian estimation of the variance and regression
parameters for the 3-level co-kriging.

Table 7 shows that the responses have approximately the same scale since the adjustment
coefficients are close to 1. Furthermore, we see an important bias between T3 and T2 with
β3 = 1.93. Finally, the variance coefficients for the biases indicate that they are possibly much
simpler to model than the cheap code T2 as their estimations are smaller.

11.2 3-level co-kriging prediction: predictions when code output is avail-

able

The aim of this Section is to show that co-kriging can improve significantly the accuracy of
the surrogate model at points where at least one level of responses is available.

The predictions of the 3-level co-kriging are here presented and compared with the predic-
tions obtained with a 2-level co-kriging using only the 10 responses of Texp and the 20 responses
of T3. The predictions for the 2-level and the 3-level co-krigings vs. the real values (i.e., the
measured temperature Texp) are shown in Figure 8. The 3-level co-kriging gives us the same
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Figure 8: Predictions of the 2-level and the 3-level co-krigings for the fluidized-bed process.
The 3-level co-kriging improves significantly the predictions of the 2-level one.

prediction means as the 2-level co-kriging at the 10 points (points 2, 5, 6, 7, 9, 11, 13, 16, 22,
24) where T3 is known. These overlapped points mean that T2 does not influence the surro-
gate model at these points. This follow from the Markov property introduced in Section 3,
which implies that the prediction of Texp is entirely determined by T3 at these points. We also
note that, in general, the 2-level co-kriging predictions - at points where T3 is unknown - are
not accurate and the 3-level co-kriging improves significantly the prediction means compare
to the 2-level co-kriging. Table 8 compares the 2-level co-kriging with the 3-level co-kriging
and summarizes some results about the quality of the predictions on the 18 validation points.
Nonetheless, it is important to notice that, in the 3-level case, the output of the cheapest code
T2 is known at the 18 test points.This means that the results of this subsection show that the
3-level co-kriging prediction is more accurate than the 2-level co-kriging prediction at a point
where the cheapest response T2 is available. In the next subsection we show that the 3-level
co-kriging prediction is more accurate than the 2-level one at a point where no response is
available.
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Q2 RMSE MaxAE
2-level co-kriging 61.23 % 4.24 14.04
3-level co-kriging 98.71 % 0.89 1.98

Average Std. dev. Median Std. dev. Maximal Std. dev
2-level co-kriging 2.90 1.02 5.68
3-level co-kriging 0.90 1.02 1.04

Table 8: Example: fluidized-bed process. Comparison between 2-level co-kriging and 3-level
co-kriging. Predictions are better in the 3-level case and the prediction variance seems well-
evaluated since the RMSE and the average standard deviation are close.

Figure 9 shows the prediction errors of the 2-level co-kriging and the confidence interval
at plus or minus twice the prediction standard deviation. The last 10 prediction errors and
their confidence intervals are the same as those of the 3-level case since it corresponds to the
points where T3 is known. We see in Figure 9 that the confidence intervals are well predicted.
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Figure 9: Prediction errors of the 2-level co-kriging and confidence intervals at plus or minus
twice the standard deviation. We see a significant difference between the accuracy of the
predictions means and their confidence intervals for the point where T3 is unknown (the 8 first
validation points) and for the ones where it is known (the last 10 validation points).

Furthermore, we see a significant difference between the accuracy of the prediction means and
their confidence intervals for the point where T3 is unknown (the 8 first validation points) and
for the ones where it is known (the last 10 validation points).
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11.3 3-level co-kriging prediction: predictions when code output is not

available

In this subsection, we show that a multi-level co-kriging can significantly improve the predic-
tion of a surrogate model at points where no response is available.

We have seen in Section 11.2 that the 3-level co-kriging improves significantly the 2-level
co-kriging at points where T3 is unknown and T2 has been sampled. Nevertheless, to have a
fair comparison between these two co-kriging models we can compare their accuracy at points
where no response is available. We apply the Leave-One-Out Cross-Validation (LOO-CV)
procedure at the 10 points where Texp is known by using the formulas presented in Section
10. This means that we perform for each of these 10 points the following procedure:

1. The experimental and the two code outputs corresponding to the point are removed
from the data set.

2. The 2-level co-kriging method and the 3-level co-kriging method are applied using the
truncated data set in order to give a confidence interval for the experimental output at
the point.
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Figure 10: Leave-One-Out Cross-Validation predictive errors and variances of the 2-level and
3-level co-kriging. We see that the confidence intervals are accurate and the precision of the
3-level co-kriging is significantly better than the one of the 2-level co-kriging.
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Figure 10 shows the result of the LOO-CV procedure for the 2-level and 3-level co-kriging.
We see that the 3-level co-kriging is more accurate than the 2-level one. Indeed, the LOO-CV
RMSE for the 2-level co-kriging is equal to 1.88 whereas it is equal to 1.09 for the 3-level co-
kriging. This show that the 3-level co-kriging provides better predictions also at points where
no response is available. This highlights the strength of the proposed method and shows that
a co-kriging method with more than 2 levels of code can be worthwhile.

12 Conclusion

We have presented a method for building kriging models using a hierarchy of codes with differ-
ent levels of accuracy. This method allows us to improve a surrogate model built on a complex
code using information from a cheap one. It is particularly useful when the complex code is
very expensive. We see in our literature review that the first multi-level metamodel originally
suggested is a first order auto-regressive model built with Gaussian processes. The AR(1)
relation between two levels of code is natural and the building of the model is straightforward.
Nevertheless, we have highlighted some key issues which makes it difficult to use this model
in practical ways.
First, important parameters of the model, which are the adjustment coefficients between two
successive levels of codes, were numerically estimated. We propose here an analytical estima-
tion of these parameters with a Bayesian method. This method allows us to have information
about the uncertainties of the estimations and above all, to easily use the AR(1) model and its
generalization to the case of non-spatial stationarity. Furthermore, a strength of the proposed
method is that it even works for a code with more than 2 levels since its implementation is
such that the estimations of the parameters of a s-level co-kriging is equivalent as the ones
of s independent krigings. It is important to highlight that this method is based on a joint
estimation between the adjustment coefficient and the mean of the Gaussian process modelling
the difference between two successive levels of code.
Second, we have seen that the variance of the predictive distribution of the AR(1) model could
be underestimated. A natural approach to improve this estimation is a Bayesian modelling.
We propose here a Bayesian co-kriging for 2 levels of code and to avoid computationally ex-
pensive implementation, we suggest another model than the one presented. This new model
is based on a hierarchical specification of the parameters of the model. This allows us to have
a Bayesian model including only two nested integrations without Markov chain Monte Carlo
procedure.
Finally, for a non-Bayesian s-level co-kriging, we have proved that building a s-level co-kriging
is equivalent to build s independent krigings. This result is very important since it solves one
of the most important key issues of the co-kriging which is the inversion of the covariance
matrix. A 3-level co-kriging example has been provided to show the efficiency of the presented
method.
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A The case of ρ depending on x

A.1 Building a model with s levels of code

Let us consider s levels of code, if we note β = (βT
1 , . . . , β

T
s )

T , βρ = (βT
ρ1
, . . . , βT

ρs−1
)T , σ2 =

(σ2
1 , . . . , σ

2
s) and θ = (θ1, . . . , θs), we have:

∀x ∈ Q [Zs(x)|Z = z, β, βρ, σ
2, θ] ∼ N

(

mZs(x), s
2
Zs
(x)
)

where:
mZs(x) = h′s(x)

Tβ + ts(x)
TV −1

s (z −Hsβ) (58)

and:
s2Zs

(x) = σ2
Zs
(x)− ts(x)

TV −1
s ts(x) (59)

Let us define the following notation:

l
⊙

i=k

Ai = Ak ⊙ · · · ⊙Al

where ⊙ represents the matrix element-by-element product. Furthermore, let us denote by
ρt = ρt(Dt) the vector containing the values of ρt(x), x ∈ Dt. Rt = Rt(Dt) is the correlation
matrix for Dt and ρs(x) = 0, ∀s ≤ 0. The matrix Vs has the form:

Vs =







V (1,1) . . . V (1,s)

...
. . .

...

V (s,1) . . . V (s,s)






(60)

The s diagonal blocks of size nt × nt are defined by:

V (t,t) = σ2
tRt(Dt)+σ2

t−1

(

ρt−1(Dt)ρ
T
t−1(Dt)

)

⊙Rt−1(Dt)+· · ·+σ2
1

(

t−1
⊙

i=1

ρi(Dt)ρ
T
i (Dt)

)

⊙R1(Dt)

(61)
and the off-diagonal blocks of size nt × nt′ are given by:

V (t,t′) =



1nt

(

t′−1
⊙

i=t

ρi(Dt′)

)T


⊙ V (t,t)(Dt,Dt′) (62)

where 1 ≤ t < t′ ≤ s.
The vector ts(x) is such that ts(x) = (t∗1(x,D1)

T , . . . , t∗s(x,Ds)
T )T , where:

t∗t (x,Dt)
T = ρTt−1(Dt)⊙ t∗t−1(x,Dt)

T +

(

s−1
∏

i=t

ρi(x)

)

σ2
tRt(x,Dt) (63)

where 1 < t ≤ s,
(

∏s−1
i=s ρi(x)

)

= 1 and t∗1(x,D1)
T =

(

∏s−1
i=1 ρi(x)

)

σ2
1R1(x,D1). Further-

more, if we define:

Fk(Dl) =







fT
k (x

(l)
1 )

...

fT
k (x

(l)
nl
)






1 ≤ k, l ≤ s
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then the matrix Hs can be written as:

Hs =

















F1(D1)
(ρ1(D2)1

T
p1
)⊙ F1(D2) F2(D2) 0

((ρ1(D3)⊙ ρ2(D3))1
T
p1
)⊙ F1(D3) (ρ2(D3)1

T
p2
)⊙ F2(D3)

...
...

. . .
((

⊙s−1
i=1 ρi(Ds)

)

1
T
p1

)

⊙ F1(Ds)
((

⊙s−1
i=2 ρi(Ds)1

T
p2

))

⊙ F2(Ds) . . . Fs(Ds)

















(64)
h′s(x)

T and var(Zs(x)) = σ2
Zs
(x) are given by the equations (4) and (6).

A.2 Bayesian estimation of parameters for s levels of code

We can extend the Bayesian estimation of the parameters to the case of ρ depending on x.
Note that we do not assume the independence of βt and βρt−1 . We have:

[(βρt−1 , βt)|zt, zt−1, θt, σ
2
t ] ∼ N

(

(

HT
t R

−1
t (Dt)Ht

)−1
HT

t R
−1
t (Dt)zt, σ

2
t

(

HT
t R

−1
t (Dt)Ht

)−1
)

(65)
where Ht = [Fρt−1(Dt)⊙ (zt−1(Dt)1

T
qt−1

) Ft(Dt)]. Furthermore, if we note:

λ̂t = E[(βρt−1 , βt)|zt, zt−1, θt, σ
2
t ]

then we have:

[σ2
t |zt, zt−1, θt] ∼ IG(αt,

Qt

2
) (66)

where:

αt =
nt − pt − qt−1

2
(67)

and:
Qt = (zt −Htλ̂t)

TR−1
t (Dt)(zt −Htλ̂t) (68)

The REML estimator of σ2
t is σ̂2

t = Qt

2αt
and we can estimate θt by minimizing the expression:

log(|det(Rt(Dt))|) + (nt − pt − qt−1)log(σ̂
2
t ) (69)

A.3 Some important results about the covariance matrix Vs

The covariance matrix Vs can be written as:

Vs =

(

Vs−1 Us−1

UT
s−1 V (s,s)

)

Us−1 =







V (1,s)

...

V (s−1,s)






=







(1n1ρs−1(Ds)
T )⊙ V (1,s−1)(D1,Ds)

...

(1ns−1ρs−1(Ds)
T )⊙ V (s−1,s−1)(Ds−1,Ds)







By sorting the experimental design sets such that:

∀t = 2, . . . , s Dt−1 = (x
(t−1)
1 , . . . , x

(t−1)
nt−1−nt

, x
(t)
1 , . . . , x(t)nt

) = (Dt−1 \Dt,Dt)
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it can be shown that ∀t = 2, . . . , s the inverse of the matrix Vs has the form:

V −1
s =









V −1
s−1 +

(

0 0

0 (ρs−1(Ds)ρ
T
s−1(Ds))⊙

R−1
s

σ2
s

)

−

(

0

(ρs−1(Ds)1
T
ns
)⊙ R−1

s

σ2
s

)

−
(

0 (1nsρ
T
s−1(Ds))⊙

R−1
s

σ2
s

)

R−1
s

σ2
s









(70)

V −1
1 =

R−1
1

σ2
1

with V −1
s−1 an (

∑s−1
i=1 ni ×

∑s−1
i=1 ni) matrix and R−1

s an (ns × ns) matrix.

It can also be shown that:

ts(x)
TV −1

s =
(

ρs−1(x)t
T
s−1(x)V

−1
s−1 − [01×(

∑s−1
i=1 ni−ns)

, ρTs−1(Ds)⊙Rs({x},Ds)R
−1
s ],Rs({x},Ds)R

−1
s

)

(71)

A.4 Bayesian prediction for a code with 2 levels

The equations for the Bayesian prediction when ρ depends on x can be directly derived from
the Section 5 by replacing ρ with βρ and noting that the design matrix F is such that:

F = [Fρ(D2)⊙ (z1(D2)1
T
pρ) F2]

Finally, for the Bayesian prediction, we just have to adapt the integral (32) :

p(z2(x)|z1, z2, σ
2
1 , σ

2
2) =

∫

R
pρ+p2

p(z2(x)|z1, z2, β2, βρ, σ
2
1 , σ

2
2)p(βρ, β2|z1, z2, σ

2
2) dβρdβ2 (72)
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