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Abstract

This paper deals with the Gaussian process based approximation of a code which can be run
at di�erent levels of accuracy using co-kriging. This method allows us to improve a surrogate
model of a complex computer code using fast approximations of it. In particular, we focus
on the case of large number of code levels. A thermodynamic example is used to illustrate a
3-level co-kriging.
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1 Introduction

Large computer codes are widely used in engineering to study physical systems since real ex-
periments are often costly and sometimes impossible. Nevertheless, simulations can sometimes
be time-consuming as well. In this case, conception based on an exhaustive exploration of the
input space of the code is generally impossible under reasonable time constraints. There-
fore, a mathematical approximation of the output of the code - also called surrogate model
or metamodel - is often built with a few simulations to represent the real system. Gaus-
sian Process regression is a particular class of surrogate model which makes the assumption
that prior beliefs about the code can be modelled by a Gaussian Process. We focus here on
this metamodel and on its extension to multiple response models. The reader is referred to
[Rasmussen & Williams (2006)] for further detail about Gaussian Process models.

Actually, a computer code can often be run at di�erent levels of complexity and a hierarchy
of levels of code can hence be obtained. The aim of our research is to study the use of several
levels of a code to predict the output of a costly computer code. The presented multi-stage
metamodel is a particular case of co-kriging which is a well known geostatistical method.

A �rst metamodel for multi-level computer codes was built by [Kennedy & O'Hagan (2000)]
using a spatial stationary correlation structure. Then, [Qian & Wu (2008)] built an extension
to this model in a case of non spatial stationarity and [Forrester, Sobester & Keane (2007)]
went into more detail about the estimation of the model parameters. Furthermore, Forrester
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et al. presented the use of co-kriging for multi-�delity optimization based on the EGO (Ef-
�cient Global Optimization) algorithm. A linear Bayesian approach was also proposed by
[Cumming & Goldstein (2009)].

We present a new approach to estimate the parameters of the multi-level surrogate model
which is e�ective even when many levels of code are available. Furthermore, this approach
can allow us to consider prior information in the parameter estimation. We also address the
problem of the co-kriging covariance matrix inversion when the number of levels is large. A
solution to this problem is provided which shows that the inverse can be easily calculated.
Finally, we address the problem of model validation. In particular, we present virtual cross-
validation equations which give the result of the leave-one-out procedure without building
sub-metamodels.

A thermodynamic example is used to illustrate a 3-level co-kriging. The purpose of this
example is to predict the result of a physical experiment - which can be considered as the most
costly code - modelled by an accurate computer code and by another one less accurate. The
reader is referred to [Dewettinck, De Visscher, Deroo, Huyghebaert (1999)] for further detail
about the example.

2 Example presentation: Fluidized-bed process

A �uidized-bed process is a device used in many industrial applications. In this type of pro-
cess, a �uid is passed through a granular solid material at high enough velocities to suspend
the solid and cause it to behave as though it were a �uid. This phenomenon is called �u-
idization. Fluidized-bed processes are used in the petroleum industry to produce gasoline and
other fuels; they are also used in the pharmaceutical and food industries and in the water and
waste treatment.

We are interested here on a particular experiment which is the measurement of the temper-
ature of the steady-state thermodynamic operation point for a �uidized-bed process. It was
presented by [Dewettinck, De Visscher, Deroo, Huyghebaert (1999)], who developed a com-
puter model named �Topsim� to calculate the measured temperature. The code, developed
for a Glatt GPCG-1 �uidized-bed unit in the top-spray con�guration, can be run at 3 levels
of complexity. We hence have 4 available responses:

1. Texp: the experimental response.

2. T3: the most accurate code modelling the experiment.

3. T2: a simpli�ed version of T3.

4. T1: the less accurate code modelling the experiment.

The di�erences between T1, T2 and T3 are discussed by Dewettinck et al. (1999). The aim of
this study is to predict the experimental response Texp given the two levels of code T3 and T2.
We only focus on a 3-level co-kriging since 28 observations are available for each level and it
is not enough for a relevant 4-level co-kriging. The experimental design set and the responses
T1, T2, T3 and Texp are given by [Qian & Wu (2008)] who have presented a 2-level co-kriging
using Texp and T2. Furthermore, the responses are parameterized by a 6-dimensional input
vector presented by Dewettinck et al. (1999).
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3 Building a model with 3 levels of code

Let assume that we have 3 levels of response, T2, T3 and Texp. Our prior beliefs about these
responses are that, given a certain set of parameters, they can be modelled by a Gaussian
process. Since we have a hierarchy of 3 responses - from the less accurate to the most accurate,
we can assume the autoregressive model suggested by [Kennedy & O'Hagan (2000)]:

Texp(x) = ρ3T3(x) + δ3(x) T3(x) ⊥ δ3(x)

T3(x) = ρ2T2(x) + δ2(x) T2(x) ⊥ δ2(x)

where:
δ3(x) ∼ PG(µδ3 , σ

2
δ3r(x, x

′; θδ3))

δ2(x) ∼ PG(µδ2 , σ
2
δ2r(x, x

′; θδ2))

T2(x) ∼ PG(µT2 , σ
2
T2
r(x, x′; θT2))

and r(x, x′; θ) is a correlation function with parameter θ representing the characteristic length-
scale. We note D2, D3 and Dexp the experimental design sets of T2, T3 and Texp such that
D2 ⊂ D3 ⊂ Dexp, T

∗
2 , T

∗
3 and T ∗

exp are the known responses of T2, T3 and Texp at points in D2,
D3 and Dexp and Rδ3 = r(Dexp, Dexp; θδ3), Rδ2 = r(D3, D3; θδ2) and RT2 = r(D2, D2; θT2)
are the correlation matrices of the di�erent Gaussian processes. We want to determine
the predictive distribution of Texp given (T ∗

exp, T
∗
2 , T

∗
3 ,Ψ), where Ψ = (µδ3 , µδ2 , µT2 , σδ3 , σδ2 ,

ρ2, ρ3, σT2 , θδ3 , θδ2 , θT2). We see here that the estimation of the parameters could be an issue
since they are numerous. Classical results for normal distribution give that:

Texp(x)|T ∗
exp, T

∗
2 , T

∗
3 ,Ψ ∼ N (µ(x), s2(x))

where:
µ(x) = ρ2ρ3µT2 + ρ3µδ2 + µδ3 + t(x)TV −1M

s2(x) = ρ22ρ
2
3σ

2
T2

+ ρ23σ
2
δ2 + σ2

δ3 − t(x)TV −1t(x)

with:

M =

 T ∗
2 − 1nT2

1µT2

T ∗
3 − 1nT3

(ρ2µT2 + µδ2)

T ∗
exp − 1nTexp

(ρ3ρ2µT2 + ρ3µδ2 + µδ3)



t(x) =

 ρ2ρ3σ
2
T2
r(D2, x; θT2)

ρ22ρ3σ
2
T2
r(D3, x; θT2) + ρ3σ

2
δ2
r(D3, x; θδ2)

ρ22ρ
2
3σ

2
T2
r(Dexp, x; θT2) + ρ23σ

2
δ2
r(Dexp, x; θδ2) + σ2

δ3
r(Dexp, x; θδ3)


with 1n a vector of n elements equal to 1 and V = var(T ∗

2 , T
∗
3 , T

∗
exp). We note that it could

be an issue to invert V when the number of observations is large.

4 Parameter estimation and inversion of V

We deal in this section with the estimation of Ψ and the inversion of V . To simplify the
notations, we use deterministic parameter estimation with the maximum likelihood estimate
(MLE). The proposed equations can easily be used in a Bayesian approach in order to consider
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prior information in the parameter estimation.

The MLE of (µδ3 , µδ2 , µT2 , σδ3 , σδ2 , σT2 , ρ2, ρ3) are given by:

(µ̂δ3 , ρ̂3) =
(
hT
nTexp

R−1
δ3

hnTexp

)−1
hT
nTexp

R−1
δ3

T ∗
exp

(µ̂δ2 , ρ̂2) =
(
hT
nT3

R−1
δ2

hnT3

)−1
hT
nT3

R−1
δ2

T ∗
3

µ̂T2 =
(
1TnT2

R−1
T2

1nT2

)−1
1TnT2

R−1
T2

T ∗
2

σ̂2
δ3 =

(
T ∗
exp − ρ̂3T

∗
3 (Dexp)− 1nTexp

µ̂δ3

)T
R−1

δ3

(
T ∗
exp − ρ̂3T

∗
3 (Dexp)− 1nTexp

µ̂δ3

)
nTexp − 2

σ̂2
δ2 =

(
T ∗
3 − ρ̂2T

∗
2 (D3)− 1nT3

µ̂δ2

)T
R−1

δ2

(
T ∗
3 − ρ̂2T

∗
2 (D3)− 1nT3

µ̂δ2

)
nT3 − 2

σ̂2
T2

=

(
T ∗
2 − 1nT2

µ̂T2

)T
R−1

T2

(
T ∗
2 − 1nT2

µ̂T2

)
nT2 − 1

with T ∗
3 (Dexp) the responses of T

∗
3 at points in Dexp, T

∗
2 (D3) the responses of T

∗
2 at points

in D3, hnTexp
= (1nTexp

T ∗
3 (Dexp)) and hnT3

= (1nT3
T ∗
2 (D3)). The closed form expression

for the estimation of (µδ3 , µδ2 , µT2 , σδ3 , σδ2 , σT2 , ρ2, ρ3) is an original result which is not present
in the cited papers. We estimate (θδ3 , θδ2 , θT2) by minimizing the opposite of the concentrated
restricted log-likelihoods:

log(|det(Rδ3)|) + (nTexp − 2)log(σ̂2
δ3)

log(|det(Rδ2)|) + (nT3 − 2)log(σ̂2
δ2)

log(|det(RT2)|) + (nT2 − 1)log(σ̂2
T2
)

The parameter estimation previously presented is important since it shows that the pa-
rameter estimation for a 3-level co-kriging is equivalent to the one for 3 independent krigings.
Furthermore, this result can be extended to a s-level co-kriging.

We now address the problem of the inversion of V . By sorting the experimental design
sets such that D3 = (D3 \ Dexp, Dexp) and D2 = (D2 \ D3, D3), it can be shown that the
inverse of V has the form:

V −1 =


W−1 +

 0 0

0 ρ23
R−1

δ3

σ2
δ3

 −

 0

ρ3
R−1

δ3

σ2
δ3


−
(

0 ρ3
R−1

δ3

σ2
δ3

)
R−1

δ3

σ2
δ3



W−1 =


R−1

T2

σ2
T2

+

 0 0

0 ρ22
R−1

δ2

σ2
δ2

 −

 0

ρ2
R−1

δ2

σ2
δ2


−
(

0 ρ2
R−1

δ2

σ2
δ2

)
R−1

δ2

σ2
δ2


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We have here reduced the complexity of the processing of V −1 by deducing it from
R−1

δ3
, R−1

δ2
and R−1

T2
. This result shows that building a 3-level co-kriging is equivalent to build

3 independent krigings. This can also be extended for a s-level co-kriging.

5 Model Validation

In this section, we consider how to use the cross-validation method for model validation.The
idea is to split the training set into two disjoints sets, one is used for training and the
other is used to monitor the performance of the model. Then, the performance on the
validation set is used as a proxy for the generalization error. We present here the case of
the Leave-One-Out Cross-Validation (LOO-CV) where n validation sets are obtained by re-
moving one observation at a time. This procedure can be expensive but Rasmussen et al.
[Rasmussen & Williams (2006)] show that, in the case of kriging, there are computational
shortcuts. We present in this section the adaptation of these shortcuts to the case of co-
kriging.

Considering Ψ as known and using the proof presented in [Rasmussen & Williams (2006)],
it can be shown that the expressions for the LOO-CV predictive mean and variance at point
xi ∈ Dexp is:

µi = Texp(xi)−

[
R−1

δ3

(
T ∗
exp − ρ̂3T

∗
3 (Dexp)− 1nTexp

µ̂δ3

)]
i[

R−1
δ3

]
ii

−ρ̂3

[
R−1

δ2

(
T ∗
3 − ρ̂2T

∗
2 (D3)− 1nT3

µ̂δ2

)]
i[

R−1
δ2

]
ii

− ρ̂2ρ̂3

[
R−1

T2

(
T ∗
2 − 1nT2

µ̂T2

)]
i[

R−1
T2

]
ii

σ2
i =

σ̂2
δ3[

R−1
δ3

]
ii

+ ρ̂3
2

σ̂2
δ2[

R−1
δ2

]
ii

+ ρ̂2
2ρ̂3

2
σ̂2
T2[

R−1
T2

]
ii

where Aii is the (ξi, ξi) element of A with ξi representing the line number of xi in A. Since
the equations for the LOO-CV can be directly deduced from the 3-level co-kriging equations,
the computational expense of computing these quantities is negligible. We note that we have
also removed xi from D3 and D2. We can have similar equations if we decide to remove xi
only from Dexp or Dexp and D3.

6 Application: Fluidized-bed process

6.1 Model building

The 3-level co-kriging is built with 10 measures of Texp, 20 simulations of T3 and 28 simulations
of T2 and we use the Matern-52 kernel for all the covariance functions. The estimates of θδ3 ,
θδ2 and θT2 are given in Table 1.
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θ̂T2 0.890 0.721 2.008 2.952 1.790 0.241

θ̂δ2 1.810 1.842 2.008 1.036 0.001 0.345

θ̂δ3 1.790 3.988 1.218 1.790 3.595 0.722

Table 1: Estimation of the hyper-parameters (characteristic length-scale) for the 3-level co-
kriging.

Furthermore, Table 2 gives the estimates of the variance and regression parameters.

µ̂T2 47.02(
ρ̂2
µ̂δ2

) (
0.95
1.93

)
(

ρ̂3
µ̂δ3

) (
0.97
−0.17

)
σ̂2
T2

38.22

σ̂2
δ2

1.05

σ̂2
δ3

0.29

Table 2: Estimation of the variance and regression parameters for the 3-level co-kriging.

6.2 Model validation

We present in this section the results of the LOO-CV presented in Section 5. We consider two
cases:

(1) For each point xi removed from Dexp, we also remove it from D3 and D2.

(2) For each point xi removed from Dexp, we do not remove it from D3 and D2.

Case (1) corresponds to the equations presented in Section 5 and in case (2) we have:

µi = Texp(xi)−

[
R−1

δ3

(
T ∗
exp − ρ̂3T

∗
3 (Dexp)− 1nTexp

µ̂δ3

)]
i[

R−1
δ3

]
ii

σ2
i =

σ̂2
δ3[

R−1
δ3

]
ii

The distinction between these two cases is important since a good performance for the
LOO-CV (1) implies that the co-kriging may be e�ective over the entire input parameter
space, while a good performance for the LOO-CV (2) only ensures that the co-kriging is
e�ective where at least T2 is available. Figures 1 and 2 show the LOO-CV predictive errors
and variances at the 10 measures of Texp:
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Figure 1: LOO-CV (1) prediction errors and con�dence intervals at plus or minus twice the
standard deviation.
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Figure 2: LOO-CV (2) prediction errors and con�dence intervals at plus or minus twice the
standard deviation.

Table 3 compares the two LOO-CV procedures and summarizes some results on the LOO-
CV performance.

Q2 RMSE MaxAE
LOO-CV (1) 84.01 % 1.86 4.04
LOO-CV (2) 97.32 % 0.77 1.45

Average Std. dev. Median Std. dev. Maximal Std. dev
LOO-CV (1) 2.03 1.82 4.68
LOO-CV (2) 0.75 0.71 1.01

Table 3: Comparison between LOO-CV (1) and (2). Predictions are better for the LOO-CV
(2) and the prediction variance seems well-evaluated since the RMSE and the average standard
deviation are close.
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Note that for the LOO-CV (2) the error can be important and the Q2 coe�cient is not so
high (it has to be close to 1). The comparison between the two LOO-CV shows that our co-
kriging model is e�ective only where at least T2 is available. This is not surprising since only
10 measures were performed in a 6-dimensional input space. However, it highlights a strength
of the proposed method, since it allows us to make good low-cost predictions requiring only
runs of the unre�ned code and not of the expensive one.

7 Conclusion

We have presented a method for building kriging models using a hierarchy of codes with
di�erent levels of accuracy. This method allows us to improve a surrogate model built on a
complex code using information from cheap ones. It is particularly useful when the complex
code is very expensive. An example has been provided showing the e�ectiveness of the method.
Indeed, even when the method does not allow us to have a good surrogate model over the
entire input parameter space, it can provide good predictions if a cheap version of the code is
available. This could be very interesting if we want low-cost predictions.
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