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Abstract

We obtain some integrability properties and some limit Theorems for the exit

time from a cone of a planar Brownian motion, and we check that our computations

are correct via Bougerol’s identity.
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1 Introduction

We consider a standard planar Brownian motion§ (Zt = Xt + iYt, t ≥ 0), starting from
x0 + i0, x0 > 0, where (Xt, t ≥ 0) and (Yt, t ≥ 0) are two independent linear Brownian
motions, starting respectively from x0 and 0.
As is well known [ItMK65], since x0 6= 0, (Zt, t ≥ 0) does not visit a.s. the point 0 but
keeps winding around 0 infinitely often. In particular, the continuous winding process
θt = Im(

∫ t

0
dZs

Zs
), t ≥ 0 is well defined. A scaling argument shows that we may assume

x0 = 1, without loss of generality, since, with obvious notation:

(

Z
(x0)
t , t ≥ 0

)

(law)
=
(

x0Z
(1)

(t/x2
0
)
, t ≥ 0

)

. (1)
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Thus, from now on, we shall take x0 = 1.
Furthermore, there is the skew product representation:

log |Zt|+ iθt ≡
∫ t

0

dZs

Zs
= (βu + iγu)

∣

∣

∣

u=Ht=
∫ t

0

ds

|Zs|2

, (2)

where (βu + iγu, u ≥ 0) is another planar Brownian motion starting from log 1 + i0 = 0.
Thus, the Bessel clock H plays a key role in many aspects of the study of the winding
number process (θt, t ≥ 0) (see e.g. [Yor80]).
Rewriting (2) as:

log |Zt| = βHt
; θt = γHt

, (3)

we easily obtain that the two σ-fields σ{|Zt| , t ≥ 0} and σ{βu, u ≥ 0} are identical,
whereas (γu, u ≥ 0) is independent from (|Zt| , t ≥ 0).
We shall also use Bougerol’s celebrated identity in law [Bou83, ADY97] and [Yor01] (p.
200), which may be written as:

for fixed t, sinh(βt)
(law)
= β̂At(β) (4)

where (βu, u ≥ 0) is 1-dimensional BM, Au(β) =
∫ u

0
ds exp(2βs) and (β̂v, v ≥ 0) is

another BM, independent of (βu, u ≥ 0). For the random times T
|θ|
c ≡ inf{t : |θt| = c},

and T
|γ|
c ≡ inf{t : |γt| = c}, (c > 0) by using the skew-product representation (3) of

planar Brownian motion [ReY99], we obtain:

T |θ|
c = A

T
|γ|
c
(β) ≡

∫ T
|γ|
c

0

ds exp(2βs) = H−1
u

∣

∣

∣

u=T
|γ|
c

. (5)

Moreover, it has been recently shown that, Bougerol’s identity applied with the random
time T

|θ|
c instead of t in (4) yields the following [Vak11]:

Proposition 1.1 The distribution of T
|θ|
c is characterized by its Gauss-Laplace trans-

form:

E

[
√

2c2

πT
|θ|
c

exp

(

− x

2T
|θ|
c

)

]

=
1√
1 + x

ϕm(x), (6)

for every x ≥ 0, with m = π
2c

, and:

ϕm(x) =
2

(G+(x))m + (G−(x))m
, G±(x) =

√
1 + x±

√
x. (7)

The remainder of this article is organized as follows: in Section 2 we study some inte-
grability properties for the exit times from a cone; more precisely we obtain some new
results concerning the negative moments of T

|θ|
c and of T θ

c ≡ inf{t : θt = c}. In Section 3
we state and prove some limit Theorems for these random times for c → 0 and for c → ∞
followed by several generalizations (for extensions of these works to more general planar
processes, see e.g. [DoV12]). We use these results in order to obtain (see Remark 3.4) a
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new simple non-computational proof of Spitzer’s celebrated asymptotic Theorem [Spi58],
which states that:

2

log t
θt

(law)−→
t→∞

C1 , (8)

with C1 denoting a standard Cauchy variable (for other proofs, see also e.g. [Wil74,
Dur82, MeY82, BeW94, Yor97, Vak11]). Finally, in Section 4 we use the Gauss-Laplace
transform (6) which is equivalent to Bougerol’s identity (4) in order to check our results.

2 Integrability Properties

Concerning the moments of T
|θ|
c , we have the following (a more extended discussion is

found in e.g. [MaY05]):

Theorem 2.1 For every c > 0, T
|θ|
c enjoys the following integrability properties:

(i) for p > 0, E
[(

T
|θ|
c

)p]

< ∞, if and only if p < π
4c

.

(ii) for any p < 0, E
[(

T
|θ|
c

)p]

< ∞.

Corollary 2.2 For 0 < c < d, the random times T θ
−d,c ≡ inf{t : θt /∈ (−d, c)}, T |θ|

c and

T θ
c satisfy the inequality:

T θ
c ≥ T θ

−d,c ≥ T |θ|
c . (9)

Thus, their negative moments satisfy:

for p > 0, E

[

1

(T θ
c )

p

]

≤ E

[

1
(

T θ
−d,c

)p

]

≤ E





1
(

T
|θ|
c

)p



 < ∞. (10)

Proofs of Theorem 2.1 and of Corollary 2.2
(i) The original proof is given by Spitzer [Spi58], followed later by many authors [Wil74,
Bur77, MeY82, Dur82, Yor85]. See also [ReY99] Ex. 2.21/page 196.

(ii) In order to obtain this result, we might use the representation T
|θ|
c = A

T
|γ|
c

together

with a recurrence formula for the negative moments of At [Duf00], Theorem 4.2, p. 417

(in fact, Dufresne also considers A
(µ)
t =

∫ t

0
ds exp(2βs + 2µs), but we only need to take

µ = 0 for our purpose, and we note At ≡ A
(0)
t ) [Vakth11]. However, we can also obtain

this result by simply remarking that the RHS of the Gauss-Laplace transform (6) in
Proposition 1.1 is an infinitely differentiable function in 0 (see also [VaY11]), thus:

E





1
(

T
|θ|
c

)p



 < ∞, for every p > 0. (11)

Now, Corollary 2.2 follows immediately from Theorem 2.1 (ii).
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3 Limit Theorems for T
|θ|
c

3.1 Limit Theorems for T
|θ|
c , as c → 0 and c → ∞

The skew-product representation of planar Brownian motion allows to prove the three
following asymptotic results for T

|θ|
c :

Proposition 3.1 a) For c → 0, we have:

1

c2
T |θ|
c

(law)−→
c→0

T
|γ|
1 . (12)

b) For c → ∞, we have:

1

c
log
(

T |θ|
c

) (law)−→
c→∞

2|β|
T

|γ|
1

. (13)

c) For ε → 0, we have:

1

ε2

(

T
|θ|
c+ε − T |θ|

c

)

(law)−→
ε→0

exp
(

2β
T

|γ|
c

)

T γ′

1 , (14)

where γ′ stands for a real Brownian motion, independent from γ, and T γ′

1 = inf{t : γ′
t = 1}

Proof of Proposition 3.1:
We rely upon (5) for the three proofs. By using the scaling property of BM, we obtain:

T |θ|
c = A

T
|γ|
c
(β)

(law)
= Au(β)

∣

∣

∣

u=c2T
|γ|
1

thus:

1

c2
T |θ|
c

(law)
=

∫ T
|γ|
1

0

dv exp (2cβv) . (15)

a) For c → 0, the RHS of (15) converges to T
|γ|
1 , thus we obtain part a) of the Proposition.

b) For c → ∞, taking logarithms on both sides of (15) and dividing by c, on the LHS we

obtain 1
c
log
(

T
|θ|
c

)

− 2
c
log c and on the RHS:

1

c
log

(

∫ T
|γ|
1

0

dv exp (2cβv)

)

= log

(

∫ T
|γ|
1

0

dv exp (2cβv)

)1/c

,

which, from the classical Laplace argument: ‖f‖p
p→∞−→‖f‖∞, converges for c → ∞, to-

wards:

2 sup
v≤T

|γ|
1

(βv)
(law)
= 2|β|

T
|γ|
1

.
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This proves part b) of the Proposition.

c)

T
|θ|
c+ε − T |θ|

c =

∫ T
|γ|
c+ε

T
|γ|
c

du exp (2βu) =

∫ T
|γ|
c+ε−T

|γ|
c

0

dv exp
(

2β
T

|γ|
c

)

exp
(

2
(

β
v+T

|γ|
c

− β
T

|γ|
c

))

= exp
(

2β
T

|γ|
c

)

∫ T
|γ|
c+ε−T

|γ|
c

0

dv exp (2Bv) , (16)

where
(

Bs ≡ β
s+T

|γ|
c

− β
T

|γ|
c
, s ≥ 0

)

is a BM independent of T
|γ|
c .

We study now T̃
|γ|
c,c+ε ≡ T

|γ|
c+ε−T

|γ|
c , the first hitting time of the level c+ε from |γ|, starting

from c. Thus, we define: ρu ≡ |γu|, starting also from c. Thus, ρu = c + δu + Lu, where
(δs, s ≥ 0) is a BM and (Ls, s ≥ 0) is the local time of ρ at 0. Thus:

T̃
|γ|
c,c+ε = inf {u ≥ 0 : ρu = c + ε} ≡ inf {u ≥ 0 : δu + Lu = ε}

u=ε2v
= ε2 inf

{

v ≥ 0 :
1

ε
δvε2 +

1

ε
Lvε2 = 1

}

. (17)

From Skorokhod’s Lemma [ReY99]:

Lu = sup
y≤u

((−c− δy) ∨ 0)

we deduce:

1

ε
Lvε2 = sup

y≤vε2
((−c− δy) ∨ 0)

y=ε2σ
= sup

σ≤v

((

−c− ε
1

ε
δσε2

)

∨ 0

)

= 0. (18)

Hence, with γ′ denoting a new BM independent from γ, (16) writes:

T
|θ|
c+ε − T |θ|

c = exp
(

2β
T

|γ|
c

)

∫ ε2T γ′

1

0

dv exp (2Bv) . (19)

Thus, dividing both sides of (19) by ε2 and making ε → 0, we obtain part c) of the
Proposition.

Remark 3.2 The asymptotic result c) in Proposition 3.1 may also be obtained in a

straightforward manner from (16) by analytic computations. Indeed, using the Laplace

transform of the first hitting time of a fixed level by the absolute value of a linear Brownian

motion E
[

e−
λ2

2
T

|γ|
b

]

= 1
cosh(λb)

(see e.g. Proposition 3.7, p 71 in Revuz and Yor [ReY99]),

we have that for 0 < c < b, and λ ≥ 0:

E

[

e
−λ2

2

(

T
|γ|
b

−T
|γ|
c

)

]

=
cosh(λc)

cosh(λb)
(20)

Using now b = c + ε, for every ε > 0, the latter equals:

cosh(λc
ε
)

cosh
(

λ
ε
(c+ ε)

)

ε→0−→ e−λ.

The result follows now by remarking that e−λ is the Laplace transform (for the argument

λ2/2) of the first hitting time of 1 by a linear Brownian motion γ′, independent from γ.
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3.2 Generalizations

Obviously we can obtain several variants of Proposition 3.1, by studying T θ
−bc,ac, 0 <

a, b ≤ ∞, for c → 0 or c → ∞, and a, b fixed. We define T γ
−d,c ≡ inf{t : γt /∈ (−d, c)} and

we have:

• 1
c2

T θ
−bc,ac

(law)−→
c→0

T γ
−b,a.

• 1
c
log
(

T θ
−bc,ac

) (law)−→
c→∞

2|β|T γ
−b,a

.

In particular, we can take b = ∞, hence:

Corollary 3.3 a) For c → 0, we have:

1

c2
T θ
ac

(law)−→
c→0

T γ
a . (21)

b)For c → ∞, we have:

1

c
log
(

T θ
ac

) (law)−→
c→∞

2|β|T γ
a

(law)
= 2|Ca|, (22)

where (Ca, a ≥ 0) is a standard Cauchy process.

Remark 3.4 (Yet another proof of Spitzer’s Theorem)

Taking a = 1, from Corollary 3.3(b), we can obtain yet another proof of Spitzer’s cele-

brated asymptotic Theorem stated in (8). Indeed, (22) can be equivalently stated as:

P
(

log T θ
c < cx

) (law)−→
c→∞

P (2|C1| < x) . (23)

Now, the LHS of (23) equals:

P
(

log T θ
c < cx

)

≡ P
(

T θ
c < exp(cx)

)

≡ P

(

sup
u≤exp(cx)

θu > c

)

= P
(

|θexp(cx)| > c
)

= P

(

|θt| >
log t

x

)

, (24)

with t = exp(cx). Thus, because |C1|
(law)
= |C1|−1, (23) now writes:

for every x > 0 given, P

(

|θt| >
log t

x

)

(law)−→
t→∞

P

(

|C1| >
2

x

)

, (25)

which yields precisely Spitzer’s Theorem (8).
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3.3 Speed of convergence

We can easily improve upon Proposition 3.1 by studying the speed of convergence of the
distribution of 1

c2
T

|θ|
c towards that of T

|γ|
1 , i.e.:

Proposition 3.5 For any function ϕ ∈ C2, with compact support,

1

c2

(

E

[

ϕ

(

1

c2
T |θ|
c

)]

−E
[

ϕ
(

T
|γ|
1

)]

)

−→
c→0

E

[

ϕ′
(

T
|γ|
1

) (

T
|γ|
1

)2

+
2

3
ϕ′′
(

T
|γ|
1

) (

T
|γ|
1

)3
]

.(26)

Proof of Proposition 3.5:
We develop exp (2cβv), for c → 0, up to the second order term, i.e.:

e2cβv = 1 + 2cβv + 2c2β2
v + . . . .

More precisely, we develop up to the second order term, and we obtain:

E

[

ϕ

(

1

c2
T |θ|
c

)]

= E

[

ϕ

(

∫ T
|γ|
1

0

dv exp (2cβv)

)]

= E

[

ϕ
(

T
|γ|
1

)

+ ϕ′
(

T
|γ|
1

)

∫ T
|γ|
1

0

(

2cβv + 2c2β2
v

)

dv

]

+
1

2
E



ϕ′′
(

T
|γ|
1

)

4c2

(

∫ T
|γ|
1

0

βvdv

)2


+ c2o(c).

We then remark that E
[

∫ t

0
βvdv

]

= 0, E
[

∫ t

0
β2
vdv
]

= t2/2 and E

[

(

∫ t

0
βvdv

)2
]

= t3/3,

thus we obtain (26).

4 Checks via Bougerol’s identity

So far, we have not made use of Bougerol’s identity (4), which helps us to characterize the

distribution of T
|θ|
c [Vak11]. In this Subsection, we verify that writing the Gauss-Laplace

transform in (6) as:

E





√

2

π

1
√

1
c2
T

|θ|
c

exp

(

− xc2

2T
|θ|
c

)



 =
1√

1 + xc2
ϕm(xc

2), (27)

with m = π/(2c), we find asymptotically for c → 0 the Gauss-Laplace transform of T
|γ|
1 .

Indeed, from (27), for c → 0, we obtain:

E





√

2

π

1
√

T
|γ|
1

exp

(

− x

2T
|γ|
1

)



 = lim
c→0

2
(√

1 + xc2 +
√
xc2
)π/2c

+
(√

1 + xc2 −
√
xc2
)π/2c

.

(28)
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Let us now study:

(√
1 + xc2 +

√
xc2
)π/2c

= exp
( π

2c
log
[

1 +
(√

1 + xc2 − 1
)

+
√
xc2
])

∼ exp

(

π

2c

[

c
√
x+

xc2

2

])

−→
c→0

exp

(

π
√
x

2

)

.

A similar calculation finally gives:

E





√

2

π

1
√

T
|γ|
1

exp

(

− x

2T
|γ|
1

)



 =
1

cosh
(

π
2

√
x
) , (29)

a result which is in agreement with the law of β
T

|γ|
1

, whose density is:

E





1
√

2πT
|γ|
1

exp

(

− y2

2T
|γ|
1

)



 =
1

2 cosh
(

π
2
y
) . (30)

Indeed, the law of β
T

|γ|
c

may be obtained from its characteristic function which is given

by [ReY99], page 73:

E
[

exp(iλβ
T

|γ|
c
)
]

=
1

cosh(λc)
.

It is well known that [Lev80, BiY87]:

E
[

exp(iλβ
T

|γ|
c
)
]

=
1

cosh(λc)
=

1

cosh(πλ c
π
)
=

∫ ∞

−∞

ei(
λc
π )y 1

2π

1

cosh(y
2
)
dy

x= cy

π=

∫ ∞

−∞

eiλx
1

2π

π
c

cosh(xπ
2c
)
dx =

∫ ∞

−∞

eiλx
1

2c

1

cosh(xπ
2c
)
dx . (31)

So, the density h−c,c of β
T

|γ|
c

is:

h−c,c(y) =

(

1

2c

)

1

cosh(yπ
2c
)
=

(

1

c

)

1

e
yπ

2c + e−
yπ

2c

,

and for c = 1, we obtain (30).
We recall from Remark 3.2 that (see also [PiY03], where further results concerning the
infinitely divisible distributions generated by some Lévy processes associated with the
hyperbolic functions cosh, sinh and tanh can also be found):

E

[

exp

(

−λ2

2
T |γ|
c

)]

=
1

cosh(λc)
, (32)

thus, for c = 1 and λ = π
2

√
x, (29) now writes:

E





√

2

π

1
√

T
|γ|
1

exp

(

− x

2T
|γ|
1

)



 = E

[

exp

(

−xπ2

8
T

|γ|
1

)]

, (33)
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a result which gives a probabilistic proof of the reciprocal relation in [BPY01] (using the
notation of this article, Table 1, p.442):

fC1
(x) =

(

2

πx

)3/2

fC1

(

4

π2x

)

.
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