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We obtain some integrability properties and some limit Theorems for the exit time from a cone of a planar Brownian motion, and we check that our computations are correct via Bougerol's identity.

Introduction

We consider a standard planar Brownian motion § (Z t = X t + iY t , t ≥ 0), starting from x 0 + i0, x 0 > 0, where (X t , t ≥ 0) and (Y t , t ≥ 0) are two independent linear Brownian motions, starting respectively from x 0 and 0. As is well known [START_REF] Itô | Diffusion Processes and their Sample Paths[END_REF], since x 0 = 0, (Z t , t ≥ 0) does not visit a.s. the point 0 but keeps winding around 0 infinitely often. In particular, the continuous winding process θ t = Im( t 0 dZs Zs ), t ≥ 0 is well defined. A scaling argument shows that we may assume x 0 = 1, without loss of generality, since, with obvious notation:

Z (x 0 ) t , t ≥ 0 (law) = x 0 Z (1) (t/x 2 0 ) , t ≥ 0 .
(1) Thus, from now on, we shall take x 0 = 1. Furthermore, there is the skew product representation:

log |Z t | + iθ t ≡ t 0 dZ s Z s = (β u + iγ u ) u=Ht= t 0 ds |Zs| 2 , (2) 
where (β u + iγ u , u ≥ 0) is another planar Brownian motion starting from log 1 + i0 = 0. Thus, the Bessel clock H plays a key role in many aspects of the study of the winding number process (θ t , t ≥ 0) (see e.g. [START_REF] Yor | Loi de l'indice du lacet Brownien et Distribution de Hartman-Watson[END_REF]). Rewriting (2) as:

log |Z t | = β Ht ; θ t = γ Ht , (3) 
we easily obtain that the two σ-fields σ{|Z t | , t ≥ 0} and σ{β u , u ≥ 0} are identical, whereas

(γ u , u ≥ 0) is independent from (|Z t | , t ≥ 0).
We shall also use Bougerol's celebrated identity in law [START_REF] Ph | Exemples de théorèmes locaux sur les groupes résolubles[END_REF][START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers[END_REF] and [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF] (p. 200), which may be written as:

for fixed t, sinh(β t ) (law) = βAt(β) (4) 
where 

(β u , u ≥ 0) is 1-dimensional BM, A u (β) = u 0 ds exp(2β s ) and ( βv , v ≥ 0) is another BM, independent of (β u , u ≥ 0).
T |θ| c = A T |γ| c (β) ≡ T |γ| c 0 ds exp(2β s ) = H -1 u u=T |γ| c . (5) 
Moreover, it has been recently shown that, Bougerol's identity applied with the random time T |θ| c instead of t in (4) yields the following [START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF]:

Proposition 1.1 The distribution of T |θ| c
is characterized by its Gauss-Laplace transform:

E 2c 2 πT |θ| c exp - x 2T |θ| c = 1 √ 1 + x ϕ m (x), (6) 
for every x ≥ 0, with m = π 2c , and:

ϕ m (x) = 2 (G + (x)) m + (G -(x)) m , G ± (x) = √ 1 + x ± √ x. (7) 
The remainder of this article is organized as follows: in Section 2 we study some integrability properties for the exit times from a cone; more precisely we obtain some new results concerning the negative moments of T |θ| c and of T θ c ≡ inf{t : θ t = c}. In Section 3 we state and prove some limit Theorems for these random times for c → 0 and for c → ∞ followed by several generalizations (for extensions of these works to more general planar processes, see e.g. [START_REF] Doney | Windings of planar stable processes[END_REF]). We use these results in order to obtain (see Remark 3.4) a new simple non-computational proof of Spitzer's celebrated asymptotic Theorem [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF], which states that:

2 log t θ t (law) -→ t→∞ C 1 , (8) 
with C 1 denoting a standard Cauchy variable (for other proofs, see also e.g. [START_REF] Williams | A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion[END_REF][START_REF] Durrett | A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion[END_REF][START_REF] Messulam | On D. Williams' "pinching method" and some applications[END_REF][START_REF] Bertoin | Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process[END_REF][START_REF] Yor | Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings[END_REF][START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF]). Finally, in Section 4 we use the Gauss-Laplace transform (6) which is equivalent to Bougerol's identity (4) in order to check our results.

Integrability Properties

Concerning the moments of T |θ| c , we have the following (a more extended discussion is found in e.g. [START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at fixed time[END_REF]):

Theorem 2.1 For every c > 0, T |θ| c enjoys the following integrability properties:

(i) for p > 0, E T |θ| c p < ∞, if and only if p < π 4c . (ii) for any p < 0, E T |θ| c p < ∞. Corollary 2.2 For 0 < c < d, the random times T θ -d,c ≡ inf{t : θ t / ∈ (-d, c)}, T
|θ| c and T θ c satisfy the inequality:

T θ c ≥ T θ -d,c ≥ T |θ| c . (9) 
Thus, their negative moments satisfy: ), but we only need to take µ = 0 for our purpose, and we note A t ≡ A (0) t ) [START_REF] Vakeroudis | Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymère[END_REF]. However, we can also obtain this result by simply remarking that the RHS of the Gauss-Laplace transform (6) in Proposition 1.1 is an infinitely differentiable function in 0 (see also [START_REF] Vakeroudis | Some infinite divisibility properties of the reciprocal of planar Brownian motion exit time from a cone[END_REF]), thus:

f or p > 0, E 1 (T θ c ) p ≤ E 1 T θ -d,c p ≤ E   1 T |θ| c p   < ∞. ( 10 
)
E   1 T |θ| c p   < ∞, for every p > 0. (11) 
Now, Corollary 2.2 follows immediately from Theorem 2.1 (ii). Proposition 3.1 a) For c → 0, we have:

1 c 2 T |θ| c (law) -→ c→0 T |γ| 1 . (12) 
b) For c → ∞, we have:

1 c log T |θ| c (law) -→ c→∞ 2|β| T |γ| 1 . (13) 
c) For ε → 0, we have:

1 ε 2 T |θ| c+ε -T |θ| c (law) -→ ε→0 exp 2β T |γ| c T γ ′ 1 , (14) 
where γ ′ stands for a real Brownian motion, independent from γ, and

T γ ′ 1 = inf{t : γ ′ t = 1}
Proof of Proposition 3.1:

We rely upon (5) for the three proofs. By using the scaling property of BM, we obtain:

T |θ| c = A T |γ| c (β) (law) = A u (β) u=c 2 T |γ| 1
thus: -2 c log c and on the RHS:

1 c 2 T |θ| c (law) = T |γ| 1 0 dv exp (2cβ v ) . (15 
1 c log T |γ| 1 0 dv exp (2cβ v ) = log T |γ| 1 0 dv exp (2cβ v ) 1/c
, which, from the classical Laplace argument:

f p p→∞ -→ f ∞ , converges for c → ∞, to- wards: 2 sup v≤T |γ| 1 (β v ) (law) = 2|β| T |γ| 1 . This proves part b) of the Proposition. c) T |θ| c+ε -T |θ| c = T |γ| c+ε T |γ| c du exp (2β u ) = T |γ| c+ε -T |γ| c 0 dv exp 2β T |γ| c exp 2 β v+T |γ| c -β T |γ| c = exp 2β T |γ| c T |γ| c+ε -T |γ| c 0 dv exp (2B v ) , (16) 
where

B s ≡ β s+T |γ| c -β T |γ| c , s ≥ 0 is a BM independent of T |γ| c . We study now T |γ| c,c+ε ≡ T |γ| c+ε -T |γ| c
, the first hitting time of the level c+ε from |γ|, starting from c. Thus, we define: ρ u ≡ |γ u |, starting also from c. Thus, ρ u = c + δ u + L u , where (δ s , s ≥ 0) is a BM and (L s , s ≥ 0) is the local time of ρ at 0. Thus:

T |γ| c,c+ε = inf {u ≥ 0 : ρ u = c + ε} ≡ inf {u ≥ 0 : δ u + L u = ε} u=ε 2 v = ε 2 inf v ≥ 0 : 1 ε δ vε 2 + 1 ε L vε 2 = 1 . ( 17 
)
From Skorokhod's Lemma [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]:

L u = sup y≤u ((-c -δ y ) ∨ 0)
we deduce:

1 ε L vε 2 = sup y≤vε 2 ((-c -δ y ) ∨ 0) y=ε 2 σ = sup σ≤v -c -ε 1 ε δ σε 2 ∨ 0 = 0. (18) 
Hence, with γ ′ denoting a new BM independent from γ, (16) writes:

T |θ| c+ε -T |θ| c = exp 2β T |γ| c ε 2 T γ ′ 1 0 dv exp (2B v ) . (19) 
Thus, dividing both sides of (19) by ε 2 and making ε → 0, we obtain part c) of the Proposition.

Remark 3.2 The asymptotic result c) in Proposition 3.1 may also be obtained in a straightforward manner from ( 16) by analytic computations. Indeed, using the Laplace transform of the first hitting time of a fixed level by the absolute value of a linear Brownian motion E e - 

E e -λ 2 2 T |γ| b -T |γ| c = cosh(λc) cosh(λb) (20) 
Using now b = c + ε, for every ε > 0, the latter equals:

cosh( λc ε ) cosh λ ε (c + ε) ε→0 -→ e -λ .
The result follows now by remarking that e -λ is the Laplace transform (for the argument λ 2 /2) of the first hitting time of 1 by a linear Brownian motion γ ′ , independent from γ.

Generalizations

Obviously we can obtain several variants of Proposition 3.1, by studying T θ -bc,ac , 0 < a, b ≤ ∞, for c → 0 or c → ∞, and a, b fixed. We define T γ -d,c ≡ inf{t : γ t / ∈ (-d, c)} and we have:

• 1 c 2 T θ -bc,ac (law) 
-→ c→0 T γ -b,a .

• 1 c log T θ -bc,ac

(law) -→ c→∞ 2|β| T γ -b,a .
In particular, we can take b = ∞, hence:

Corollary 3.3 a) For c → 0, we have:

1 c 2 T θ ac (law) -→ c→0 T γ a . (21) 
b)For c → ∞, we have:

1 c log T θ ac (law) -→ c→∞ 2|β| T γ a (law) = 2|C a |, (22) 
where (C a , a ≥ 0) is a standard Cauchy process.

Remark 3.4 (Yet another proof of Spitzer's Theorem) Taking a = 1, from Corollary 3.3(b), we can obtain yet another proof of Spitzer's celebrated asymptotic Theorem stated in (8). Indeed, (22) can be equivalently stated as:

P log T θ c < cx (law) -→ c→∞ P (2|C 1 | < x) . (23) 
Now, the LHS of (23) equals:

P log T θ c < cx ≡ P T θ c < exp(cx) ≡ P sup u≤exp(cx) θ u > c = P |θ exp(cx) | > c = P |θ t | > log t x , (24) 
with t = exp(cx). Thus, because

|C 1 | (law)
= |C 1 | -1 , (23) now writes:

f or every x > 0 given, P |θ t | > log t x (law) -→ t→∞ P |C 1 | > 2 x , (25) 
which yields precisely Spitzer's Theorem (8).

Speed of convergence

We can easily improve upon Proposition 3.1 by studying the speed of convergence of the distribution of 1 c 2 T |θ| c towards that of T |γ| 1 , i.e.:

Proposition 3.5 For any function ϕ ∈ C 2 , with compact support,

1 c 2 E ϕ 1 c 2 T |θ| c -E ϕ T |γ| 1 -→ c→0 E ϕ ′ T |γ| 1 T |γ| 1 2 + 2 3 ϕ ′′ T |γ| 1 T |γ| 1 3 .( 26 
)
Proof of Proposition 3.5:

We develop exp (2cβ v ), for c → 0, up to the second order term, i.e.:

e 2cβv = 1 + 2cβ v + 2c 2 β 2 v + . . . .
More precisely, we develop up to the second order term, and we obtain:

E ϕ 1 c 2 T |θ| c = E ϕ T |γ| 1 0 dv exp (2cβ v ) = E ϕ T |γ| 1 + ϕ ′ T |γ| 1 T |γ| 1 0 2cβ v + 2c 2 β 2 v dv + 1 2 E   ϕ ′′ T |γ| 1 4c 2 T |γ| 1 0 β v dv 2   + c 2 o(c).
We then remark that

E t 0 β v dv = 0, E t 0 β 2 v dv = t 2 /2 and E t 0 β v dv 2 = t 3 /3,
thus we obtain (26).

Checks via Bougerol's identity

So far, we have not made use of Bougerol's identity (4), which helps us to characterize the distribution of T |θ| c [START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF]. In this Subsection, we verify that writing the Gauss-Laplace transform in (6) as:

E   2 π 1 1 c 2 T |θ| c exp - xc 2 2T |θ| c   = 1 √ 1 + xc 2 ϕ m (xc 2 ), (27) 
with m = π/(2c), we find asymptotically for c → 0 the Gauss-Laplace transform of T |γ| 1 . Indeed, from (27), for c → 0, we obtain:

E   2 π 1 T |γ| 1 exp - x 2T |γ| 1   = lim c→0 2 √ 1 + xc 2 + √ xc 2 π/2c + √ 1 + xc 2 - √ xc 2 π/2c . (28) 
Let us now study:

√ 1 + xc 2 + √ xc 2 π/2c = exp π 2c log 1 + √ 1 + xc 2 -1 + √ xc 2 ∼ exp π 2c c √ x + xc 2 2 -→ c→0 exp π √ x 2 .
A similar calculation finally gives:

E   2 π 1 T |γ| 1 exp - x 2T |γ| 1   = 1 cosh π 2 √ x , (29) 
a result which is in agreement with the law of β T |γ| 1 , whose density is:

E   1 2πT |γ| 1 exp - y 2 2T |γ| 1   = 1 2 cosh π 2 y . (30) 
Indeed, the law of β T |γ| c may be obtained from its characteristic function which is given by [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], page 73:

E exp(iλβ T |γ| c ) = 1 cosh(λc)
.

It is well known that [START_REF] Dugué | 158 Random Functions: General Theory with Special Reference to Laplacian Random Functions by Paul Lévy[END_REF][START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF]: , and for c = 1, we obtain (30). We recall from Remark 3.2 that (see also [START_REF] Pitman | Infinitely divisible laws associated with hyperbolic functions[END_REF], where further results concerning the infinitely divisible distributions generated by some Lévy processes associated with the hyperbolic functions cosh, sinh and tanh can also be found):

E exp(iλβ
E exp - λ 2 2 T |γ| c = 1 cosh(λc) , (32) 
thus, for c = 1 and λ = π 2 √ x, (29) now writes:

E   2 π 1 T |γ| 1 exp - x 2T |γ| 1   = E exp - xπ 2 8 T |γ| 1 , (33) 
a result which gives a probabilistic proof of the reciprocal relation in [START_REF] Biane | Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions[END_REF] (using the notation of this article, Table 1, p.442):

f C 1 (x) = 2 πx 3/2 f C 1 4 π 2 x .

  For the random times T |θ| c ≡ inf{t : |θ t | = c}, and T |γ| c ≡ inf{t : |γ t | = c}, (c > 0) by using the skew-product representation (3) of planar Brownian motion [ReY99], we obtain:
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  Limit Theorems for T |θ| c 3.1 Limit Theorems for T |θ| c , as c → 0 and c → ∞ The skew-product representation of planar Brownian motion allows to prove the three following asymptotic results for T |θ| c :

  ) a) For c → 0, the RHS of (15) converges to T |γ| 1 , thus we obtain part a) of the Proposition. b) For c → ∞, taking logarithms on both sides of (15) and dividing by c, on the LHS we obtain 1 c log T |θ| c

  ) (see e.g. Proposition 3.7, p 71 in Revuz and Yor[START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]), we have that for 0 < c < b, and λ ≥ 0:

  density h -c,c of β T |γ| c

  formula for the negative moments of A t [Duf00], Theorem 4.2, p. 417 (in fact, Dufresne also considers A

	(µ) t	=	t 0 ds exp(2β s + 2µs

Proofs of Theorem 2.1 and of Corollary 2.2 (i) The original proof is given by Spitzer

[START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF]

, followed later by many authors

[START_REF] Williams | A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion[END_REF][START_REF] Burkholder | Exit times of Brownian Motion, Harmonic Majorization and Hardy Spaces[END_REF][START_REF] Messulam | On D. Williams' "pinching method" and some applications[END_REF][START_REF] Durrett | A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion[END_REF][START_REF] Yor | Une décomposition asymptotique du nombre de tours du mouvement brownien complexe[END_REF]

. See also

[START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] 

Ex. 2.21/page 196. (ii) In order to obtain this result, we might use the representation T |θ| c = A T |γ| c together with a recurrence