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Abstract

The hyperbolic space Hd can be defined as a pseudo-sphere in the pd � 1q Minkowski space-time. In
this paper, a Fuchsian group Γ is a group of linear isometries of the Minkowski space such that Hd{Γ is a
compact manifold. We introduce Fuchsian convex bodies, which are closed convex sets in Minkowski space,
globally invariant for the action of a Fuchsian group. A volume can be associated to each Fuchsian convex
body, and, if the group is fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be
studied in the same manner as convex bodies of Euclidean space in the classical Brunn–Minkowski theory.
For example, support functions can be defined, as functions on a compact hyperbolic manifold instead of
the sphere.

The main result is the convexity of the associated volume (it is log concave in the classical setting).
This implies analogs of Alexandrov–Fenchel and Brunn–Minkowski inequalities. Here the inequalities are
reversed.
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1 Introduction

There are two main motivations behind the definitions and results presented here. See next section for a precise
definition of Fuchsian convex bodies, the main object of this paper, and Fuchsian convex surfaces (boundaries
of Fuchsian convex bodies).

The first motivation is to show that the geometry of Fuchsian convex surfaces in the Minkowski space is
the right analogue of the classical geometry of convex compact hypersurfaces in the Euclidean space. In the
present paper, we show the analogue of the basics results of what is called Brunn–Minkowski theory. Roughly
speaking, the matter is to study the relations between the sum and the volume of the bodies under consideration.
Actually here we associate to each convex set the volume of another region of the space, determined by the
convex set, so we will call it the covolume of the convex set. This generalization is as natural as, for example,
going from the round sphere to compact hyperbolic surfaces. To strengthen this idea, existing results can be put
into perspective. Indeed, Fuchsian convex surfaces are not new objects. As far I know, smooth Fuchsian hyper-
surfaces appeared in [Oliker and Simon, 1983], see Subsection 3.3. The simplest examples of convex Fuchsian
surfaces are convex hulls of the orbit of one point for the action of the Fuchsian group. They were considered
in [Näätänen and Penner, 1991], in relation with the seminal papers [Penner, 1987, Epstein and Penner, 1988].
See also [Charney et al., 1997]. The idea is to study hyperbolic problems via the extrinsic structure given by the
Minkowski space. For a recent illustration see [Espinar et al., 2009]. The first study of Fuchsian surfaces for
their own is probably [Labourie and Schlenker, 2000]. The authors proved that for any Riemannian metric on a
compact surface of genus ¥ 2 with negative curvature, there exists an isometric convex Fuchsian surface in the
2�1-Minkowski space, up to a quotient. In the Euclidean case, the analog problem is known as Weyl problem.
A uniqueness result is also given. This kind of result about realization of abstract metrics by (hyper)surfaces in-
variant under a group action seems to go back to former papers of F. Labourie and to [Gromov, 1986]. The poly-
hedral analog of [Labourie and Schlenker, 2000] is considered in [Fillastre, 2011a]. An important intermediate
result, about polyhedral infinitesimal rigidity in d � 2, was proved in [Schlenker, 2007] (Fuchsian analogue
of Dehn theorem). More recently, a Fuchsian analogue of the “Alexandrov prescribed curvature problem” was
proved in [Bertrand, 2010]. The proof uses optimal mass transport. A refinement of this result in the polyhedral
d � 2 case was obtained in [Iskhakov, 2000]. A solution for the Christoffel problem (prescribed sum of the
radii of curvature in the regular case) for Fuchsian convex bodies will be given in [Fillastre and Veronelli, 2012]
as well as for more general convex sets in the Minkowski space (with or without group action), similarly to
[Lopes de Lima and Soares de Lira, 2006].

The second motivation is that, up to a quotient, the results presented here are about the covolume defined
by convex Cauchy surfaces in the simplest case of flat Lorentzian manifolds, namely the quotient of the interior
of the future cone by a Fuchsian group. It is relevant to consider them in a larger class of flat Lorentzian
manifolds, known as maximal globally hyperbolic Cauchy-compact flat spacetimes. They were considered
in the seminal paper [Mess, 2007], see [Andersson et al., 2007] and [Barbot, 2005, Bonsante, 2005]. Roughly
speaking, one could consider hypersurfaces in the Minkowski space invariant under a group of isometries whose
set of linear isometries forms a Fuchsian group (translations are added). In d � 2, for such smooth strictly
convex surfaces, a Minkowski theorem (generalizing Theorem 3.8 in this dimension) was proved recently in
[Béguin et al., 2011]. Maybe some of the basic objects introduced in the present paper could be extended to the
point to these manifolds.

The paper is organized as follows. Section 2 introduces, among main definitions, the tool to study (Fuch-
sian) convex bodies, the support functions. The case of the C2

� Fuchsian convex bodies (roughly speaking, the
ones with a sufficiently regular boundary) is treated in Section 3 and the one of polyhedral Fuchsian convex
bodies in Section 4. These two sections are independent. In Section 5 the general results are obtained by poly-
hedral approximation. It appears that the proofs of the main results, even though very analogous to the classical
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ones, are simpler than in the Euclidean case.
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2 Definitions

2.1 Fuchsian convex bodies

The Minkowski space-time of dimension pd � 1q, d ¥ 1, is Rd�1 endowed with the symmetric bilinear form

xx, yy� � x1y1 � � � � � xdyd � xd�1yd�1.

We will denote by F the interior of the future cone of the origin. It is the set of future time-like vectors: the set
of x such that xx, xy�   0 (time-like) and the last coordinate of x for the standard basis is positive (future). The
pseudo-sphere contained in F at distance t from the origin of Rd�1 is

Hd
t � tx P Rd�1|xx, xy� � �t2, xd�1 ¡ 0u.

All along the paper we identifyHd
1 with the hyperbolic spaceHd. In particular the isometries ofHd are identified

with the linear isometries of the Minkowski space keeping Hd
1 invariant [Benedetti and Petronio, 1992, A.2.4].

Note that for any point x P F , there exists t such that x P Hd
t .

Definition 2.1. A Fuchsian group is a subgroup of the linear isometries group of Rd�1, fixing setwise F and
acting freely cocompactly on Hd (i.e. Hd{Γ is a compact manifold).

A Fuchsian convex body is the data of a convex closed proper subset K of F , together with a Fuchsian
group Γ, such that ΓK � K. A Γ-convex body is a Fuchsian convex body with Fuchsian group Γ.

A Fuchsian convex surface is the boundary of a Fuchsian convex body.

A Fuchsian convex body has to be thought as the analogue of a convex body (compact convex set), with
the compactness condition replaced by a “cocompactness” condition (we will see that a Fuchsian convex body
is never bounded). Joan Porti pointed out to the author that what is done in this paper is probably true without
the requirement that the group has no torsion.

We will adapt the classical theory to the Fuchsian case. For that one we mainly follow [Schneider, 1993].

Examples The simplest examples of Fuchsian convex surfaces are the Hd
t (note that all Fuchsian groups act

freely and cocompactly on Hd
t ). Their convex sides are Fuchsian convex bodies, denoted by Bd

t , and Bd
1 is

sometimes denoted by Bd or B. This example shows that a given convex set can be a Fuchsian convex body for
many Fuchsian groups.

Given a Fuchsian group Γ, we will see in the remaining of the paper two ways of constructing convex
Fuchsian bodies. First, given a finite number of points in F , the convex hull of their orbits for Γ is a Fuchsian
convex body, see Subsection 4.1, where a dual construction is introduced. Second, we will see in Subsection 3.1
that any function on the compact hyperbolic manifold Hd{Γ satisfying a differential relation corresponds to a
Fuchsian convex body. Hence the question of examples reduces to the question of finding the group Γ, that
implies to find compact hyperbolic manifolds. Standard concrete examples of compact hyperbolic manifolds
can be easily found in the literature about hyperbolic manifolds. For a general construction in any dimension
see [Gromov and Piatetski-Shapiro, 1988].
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Notwithstanding it is not obvious to get explicit generators. Of course the case d � 1 is totally trivial as a

Fuchsian group is generated by a boost
�

cosh t sinh t
sinh t cosh t



, for a non-zero real t. For d � 2, explicit generators

can be constructed following [Maskit, 2001]. For Figure 2 and a computation at the end of the paper (the figure
comes from a part of a Fuchsian convex body that can be manipulate on the author’s webpage), the group is
the simpliest acting on H2, namely the one having a regular octagon as fundamental domain in a disc model.
Generators are given in [Katok, 1992].

Remark on the signature of the bilinear form The classical theory of convex bodies uses the usual scalar
product on Rd�1. Here we used the usual bilinear form of signature pd, 1q. A natural question is to ask what
happens if we consider a bilinear form of signature pd� 1� k, kq. (Obviously, the vector structure, the volume,
the Levi-Civita connection (and hence the geodesics), the topology and the notion of convexity don’t depend
on the signature. Moreover, any linear map preserving the bilinear form is of determinant one, hence preserves
the volume.)

Let us consider first the case of the usual bilinear form with signature pd� 1, 2q (d ¥ 3). The set of vectors
of pseudo-norm �1 is a model of the Anti-de Sitter space, which is the Lorentzian analogue of the Hyperbolic
space. First of all, we need groups of linear isometries acting cocompactly on the Anti-de Sitter space. They
exist only in odd dimensions [Barbot and Zeghib, 2004]. Moreover, Anti-de Sitter space does not bound a
convex set.

Finally, another interest of the present construction is that, as noted in the introduction, some objects intro-
duced here could serve to study some kind of flat Lorentzian manifolds (with compact Cauchy surface), which
can themselves be related to some problems coming from General Relativity. It is not clear if as many attention
is given to pseudo-Riemannian manifolds with different signatures.

2.2 Support planes

For a subset A of Rd�1, a support plane of A at x is an hyperplaneH with x P AXH and A entirely contained
in one side ofH .

Lemma 2.2. Let K be a Γ-convex body. Then
(i) K is not contained in a codimension ¡ 0 plane.

(ii) K is future convex:
(a) through each boundary point there is a support plane;
(b) all support planes are space-like;
(c) K is contained in the future side of its support planes.

Proof. By definition K is not empty. Let x P K. As K � F , there exists a t such that x P Hd
t , and by definition,

all the elements of the orbit Γx of x belong to K X Hd
t . Suppose that K is contained in a codimension ¡ 0

hyperplane H . Then there would exist a codimension 1 hyperplane H 1 with H � H 1, and Γx P H 1 X Hd
t .

This means that on Hd
t (which is homothetic to the hyperbolic space for the induced metric), Γx is contained in

a totally geodesic hyperplane, a hypersphere or a horosphere (depending on H 1 to be time-like, space-like or
light-like), that is clearly impossible. (i) is proved.

(ii)(a) is a general property of convex closed subset of Rd�1 [Schneider, 1993, 1.3.2].
Let x P K and let H be the support plane of K at x. There exists t such that Γx � Hd

t , and all elements of
Γx must be on one side ofH X Hd

t on Hd
t . ClearlyH X Hd

t can’t be a totally geodesic hyperplane (of Hd
t ), and

it can’t either be a horosphere by Sublemma 2.3. Hence H must be space-like, that gives (ii)(b). The fact that
all elements of Γx belong to Hd

t implies that K is in the future side of its support planes, hence (ii)(c). �

Sublemma 2.3. Let Γ be a group of isometries acting cocompactly on the hyperbolic spaceHd. For any x P Hd,
the orbit Γx meets the interior of any horoball.
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Proof. As the action of Γ onHd is cocompact, it is well-known that the orbit Γx is discrete and that the Dirichlet
regions for Γx

DapΓq � tp P Hd|dpa, pq ¤ dpγa, pq,@γ P ΓztIduu, a P Γx (1)

where d is the hyperbolic distance, are bounded [Ratcliffe, 2006]. The sublemma is a characteristic property of
discrete sets with bounded Dirichlet regions [Charney et al., 1997, Lemma 3]. �

Lemma 2.4. Let K be a Γ-convex body and x P K. For any λ ¥ 1, λx P K.

Proof. From the definition of K, it is not hard to see that it has non empty interior. And as K is closed, if the
lemma was false, there would exist a point on the boundary of K and a support plane at this point such that x in
its past, that is impossible because of Lemma 2.2. �

Let us recall the following elementary results, see e.g. [Ratcliffe, 2006, 3.1.1,3.1.2].

Sublemma 2.5. (i) If x and y are nonzero non space-like vectors inRd�1, both past or future, then xx, yy� ¤ 0
with equality if and only if x and y are linearly dependent light-like vectors.

(ii) If x and y are nonzero non space-like vectors in Rd�1, both past (resp. future), then the vector x�y is past
(resp. future) non space-like. Moreover x � y is light-like if and only if x and y are linearly dependent
light-like vectors.

A future time-like vector η orthogonal to a support plane at x of a future convex set A is called an inward
normal of A at x. This means that @y P A, y � x and η are two future time-like vectors at the point x, then by
Sublemma 2.5,

@y P A, xη, y � xy� ¤ 0, i.e. xη, yy� ¤ xη, xy�
or equivalently the sup on all y P A of xη, yy� is attained at x. Notice that the set

ty P Rd�1|xy, ηy� � xx, ηy�u

is the support hyperplane of A at x with inward normal η.

Lemma 2.6. Let K be a Γ-convex body. For any future time-like vector η, suptxx, ηy�|x P Ku exists, is attained
at a point of K and is negative. In particular any future time-like vector η is an inward normal of K.

A future time-like vector η is the inward normal of a single support hyperplane of K.

Proof. From (i) of Lemma 2.5, txx, ηy�|x P Ku is bounded from above by zero hence the sup exists. The sup
is a negative number, as a sufficiently small translation of the vector hyperplaneH orthogonal to η in direction
of F does not meet K. This follows from the separation theorem [Schneider, 1993, 1.3.4], because the origin is
the only common point betweenH and the boundary of F . As K is closed, the sup is attained when the parallel
displacement ofH meets K.

Suppose that two different support hyperplanes of K have the same inward normal. Hence one is contained
in the past of the other, that is impossible. �

2.3 Support functions

Let K be a Γ-convex body. The extended support function H of K is

@η P F ,Hpηq � suptxx, ηy�|x P Ku. (2)

We know from Lemma 2.6 that it is a negative function on F . As an example the extended support function of
Bd

t is equal to �t
a
�xη, ηy�.
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Definition 2.7. A function f : A Ñ R on a convex subset A of Rd�1 is sublinear (on A) if it is positively
homogeneous of degree one:

@η P A, f pληq � λ f pηq @λ ¡ 0, (3)

and subadditive:
@η, µ P A, f pη� µq ¤ f pηq � f pµq. (4)

A sublinear function is convex, in particular it is continuous (by assumptions it takes only finite values in
A). (It is usefull to note that for a positively homogeneous of degree one function, convexity and sublinearity
are equivalent.) It is straightforward from the definition that an extended support function is sublinear and
Γ-invariant. It is useful to expand the definition of extended support function to the whole space. The total
support function of a Γ-convex body K is

@η P Rd�1, H̃pηq � suptxx, ηy�|x P Ku. (5)

We will consider the total support function for any convex subset of Rd�1. The infinite value is allowed. We
have the following important property, see [Hörmander, 2007, Theorem 2.2.8].

Proposition 2.8. Let f be a lower semi-continuous, convex and positively homogeneous of degree one function
on Rd�1 (the infinite value is allowed). The set

F � tx P Rd�1|xx, ηy� ¤ f pηq @η P Rd�1u

is a closed convex set with total support function f .

From the definition we get:

Lemma 2.9. A convex subset of Rd�1 is a point if and only if its total support function is a linear form. (If the
point is p, the linear form is x�, py�.)

In particular, the total support function of a Fuchsian convex body is never a linear form.

The relation between the extended support function and the total support function is as follows.

Lemma 2.10. The total support function H̃ of a Γ-convex body with extended support function H is equal to:
• H on F ,
• 0 on the future light-like vectors and at 0,
• �8 elsewhere.

Moreover H̃ is a Γ invariant sublinear function.

Proof. We have the following cases
• If η is future time-like then H̃pηq � Hpηq.
• If η is past time-like or past light-like, then by (i) of Sublemma 2.5 for x P K, xx, ηy� ¡ 0, and by

Lemma 2.4, H̃pηq � �8.
• If η is space-like, as seen in the proof of (ii)(b) of Lemma 2.2, there exists points of K on both side of the

orthogonal (for x�, �y�) of η. Hence there exists x P K with xx, ηy� ¡ 0, and by the preceding argument,
H̃pηq � �8.

• If η is future light-like, then H̃pηq � 0. As H̃ is lower semi-continuous (as supremum of a family of
continuous functions) and as H̃ � �8 outside of the future cone, this follows from Sublemma 2.11.
• By definition, H̃p0q � 0.

That H̃ is a Γ invariant sublinear function follows easily. �

Sublemma 2.11. Let H be a sublinear function on F with finite values. Let us extend it as a convex function on
Rd�1 by giving the value�8 outsideF . Let H̃ be the lower semi-continuous hull of H: H̃pxq � liminfxÑyHpyq.

If H is invariant under the action of Γ, then H is negative or H � 0 on F , and H̃ � 0 on BF .
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Note that H � 0 is the support function of (the closure of) F .

Proof. Let ` be a future light-like vector. As Γ acts cocompactly on Hd, there exists a sequence of γk P Γ such
that for any future time-like ray r, the sequence γnr converges to the ray containing ` [Ratcliffe, 2006, Example
2, 12.2]. From this sequence we take a sequence γkη for a future time-like vector η. We have H̃pγkηq � H̃pηq.
From this sequence we take a sequence of vectors η1k which all have the same pd�1qth coordinate pη1kqd�1 as `,
say `d�1 (hence η1k Ñ `). We have η1k � `d�1{pγkηqd�1γkη, and by homogeneity H̃pη1kq � H̃p`d�1ηq{pγkηqd�1
that goes to 0 as k goes to infinity (pγkηqd�1 goes to infinity). This proves tH̃ � 0 on BF as for any ` P BF �

and any η P F , H̃Kp`q � lim
tÓ0

HKp` � tpx � `qq (see for example Theorem 7.5 in [Rockafellar, 1997]). In the

same way we get that H̃p0q � 0.
As H̃ is convex and equal to 0 on BF , it is non-positive on F . Suppose that there exists x P F with

H̃pxq � 0, and let y P F ztxu. By homogeneity, H̃pλxq � 0 for all λ ¡ 0. Up to choose an appropriate λ,
we can suppose that the line joining x and y meets BF in two points. Let ` be the one such that there exists
λ Ps0, 1r such that x � λ` � p1 � λqy. By convexity and because H̃pxq � H̃p`q � 0, we get 0 ¤ H̃pyq, hence
H̃pyq � 0. �

Lemma 2.12. Let H be a negative sublinear Γ-invariant function on F . The set

K � tx P F |xx, ηy� ¤ Hpηq @η P F u
is a Γ-convex body with extended support function H.

Proof. Let H̃ be as in Sublemma 2.11. From Proposition 2.8, the set

K̃ � tx P Rd�1|xx, ηy� ¤ H̃pηq @η P Rd�1u
is a closed convex set, with total support function H̃. Let us see that K̃ � K.

As H̃pηq � �8 outside the closure F of the future cone we have

K̃ � tx P Rd�1|xx, ηy� ¤ H̃pηq @η P F u.
For η P F , H̃pηq ¤ 0, it follows that K̃ is contained in F :

K̃ � tx P F |xx, ηy� ¤ H̃pηq @η P F u.
As H is Γ-invariant, H̃ and K̃ are Γ-invariant too. For x P K̃ X BF , the origin is an accumulating point of Γx
from Sublemma 2.13. So for any η P F , H̃pηq, which is the sup of xx, ηy� for x P K̃, should be zero, that is
false. Hence

K̃ � tx P F |xx, ηy� ¤ H̃pηq @η P F u
and as H̃pηq � 0 on BF we get

K̃ � tx P F |xx, ηy� ¤ H̃pηq @η P F u � K.

The remainder is easy. �

Sublemma 2.13. Let Γ be a Fuchsian group and let x be a future light-like vector. Then the origin is an
accumulating point of Γx.

Proof. Suppose it is false. As Γ acts cocompactly on Hd, there exists an horizontal space-like hyperplane S
such that a fundamental domain on Hd for the action of Γ lies below S . If the origin is not an accumulating
point, then there exists λ ¡ 0 such that the horoball

ty P Hd| � 1 ¤ xλx, yy�   0u
and its images for the action of Γ remain above S . This contradicts the definition of fundamental domain. �
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The polar dual K� of a Γ-convex body K is, if H is the extended support function of K:

K� � tx P F |Hpxq ¤ �1u.

For example, pBd
t q� � Bd

1{t. It is not hard to see that K� is a Γ-convex body, and that K�� � K (see the convex

bodies case [Schneider, 1993, 1.6.1]). Moreover the points of the boundary of K� are the �1
Hpηqη for η P Hd. The

inverse of this map is the projection f pxq � x?
�xx,xy�

. Hence, exchanging the roles of K and K�, we get that

the projection of a Fuchsian convex body along rays from the origin gives is a homeomorphism between BK
and Hd.

2.4 Minkowski sum and covolume

The (Minkowski) addition of two sets A, B � Rd�1 is defined as

A � B :� ta � b|a P A, b P Bu.

It is well-known that the addition of two convex sets is a convex set. Moreover the sum of two future time-like
vectors is a future time-like vector, in particular it is never zero. So the sum of two Γ-convex bodies is contained
in F and closed [Rockafellar and Wets, 1998, 3.12]. As a Fuchsian group Γ acts by linear isometries, the sum is
a Γ-convex body, and the spaceKpΓq of Γ-convex bodies is invariant under the addition. Note also thatKpΓq is
invariant under multiplication by positive scalars. It is straightforward to check that extended support functions
behave well under these operations:

HK�L � HK � HL, K, L P KpΓq,

HλK � λHK , λ ¡ 0,K P KpΓq.
Note also that from the definition of the extended support function,

K � L ô HK ¤ HL.

Identifying Γ-convex bodies with their support functions, KpΓq is a cone in the vector space of homoge-
neous of degree 1, continuous, real, Γ-invariant, functions on F . By homogeneity this corresponds to a cone
in the vector space of continuous real Γ-invariant functions on Hd � F , and to a cone in the vector space of
continuous real functions on the compact hyperbolic manifold Hd{Γ. A function in one of this two last cones is
called a support function.

Let K P KpΓq. Its covolume covolpKq is the volume of pF zKq{Γ (for the Lebesgue measure of Rd�1). It is
a finite positive number and

covolpλKq � λd�1covolpKq.
Note that

K � L ñ covolpKq ¥ covolpLq.
As defined above, the covolume of a Γ-convex body K is the volume of a compact set of Rd�1, namely the

volume of the intersection of F zK with a fundamental cone for the action of Γ. For such compact (non-convex)
sets there is a Brunn–Minkowski theory, see for example [Gardner, 2002]. See also [Bahn and Ehrlich, 1999].
But this does not give results about covolume of Γ-convex bodies. The reason is that, for two Γ-convex bodies
K1 and K2, F zpK1 � K2q (from which we define the covolume of K1 � K2) is not equal to pF zK1q � pF zK2q.
For example in d � 1,

�
0

1{2

	
�
�

5{8
9{8

	
P pF zB� F zBq but does not belong to F zpB� Bq.
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3 C2
� case

The first subsection is an adaptation of the classical case [Schneider, 1993]. The remainder is the analog
of [Alexandrov, 1938] (in [Alexandrov, 1996]). See also [Bonnesen and Fenchel, 1987], [Leichtweiß, 1993],
[Hörmander, 2007], [Busemann, 2008], and [Guan et al., 2010] for a kind of extension.

The objects and results in this section which can be defined intrinsically on a hyperbolic manifold are
already known in more generality, see [Oliker and Simon, 1983] and the references therein. See also Subsec-
tion 3.3.

3.1 Regularity of the support function

Differentiability Let K be a Γ-convex body with extended support function H, and let η P F . From
Lemma 2.6 there exists a unique support hyperplaneH of K with inward normal η.

Lemma 3.1. The intersection F of H and K is reduced to a single point p if and only if H is differentiable at
η P F . In this case p � ∇ηH (the gradient for x�, �y� of H at η).

Proof. As H is convex all one-sided directional derivatives exist [Schneider, 1993, p. 25]. Let us denote such
derivative in the direction of u P Rd�1 at the point η by dηHpuq. The proof of the lemma is based on the
following fact:

The function Rd�1 Q u ÞÑ dηHpuq is the total support function of F.
Indeed, if H is differentiable at η, the fact says that the total support function of F is a linear form, and from

Lemma 2.9, F is a point. Conversely, if F is a point p, from Lemma 2.9 its total support function is a linear
form, hence partial derivatives of H exist and as H is convex, this implies differentiability [Schneider, 1993,
1.5.6]. Moreover for all u P Rd�1, xp, uy� � dηHpuq.

Now we prove the fact. The function dηH is sublinear on Rd�1 [Schneider, 1993, 1.5.4], Proposition 2.8
applies and dηH is the total support function of

F1 � tx P Rd�1|xx, uy� ¤ dηHpuq @u P Rd�1u.
We have to prove that F1 � F. Let H̃ be the extension of H to Rd�1. By definition of directional derivative, the
sublinearity of H̃ gives dηH ¤ H̃. From the proof of Lemma 2.12, this implies that F1 � K. In particular, for
y P F1, xy, ηy� ¤ Hpηq. On the other hand y P F1 implies xy,�ηy� ¤ dηHp�ηq � �Hpηq (the last equality
follows from the definition of directional derivative, using the homogeneity of H). Then xy, ηy� � Hpηq so
y P H , hence F1 � F � H X K.

Let y P F. By definition xy, ηy� � Hpηq and for any w P F , xy,wy� ¤ Hpwq. For sufficiently small
positive λ and any u P Rd�1, w � η� λu is future time-like and

xy, uy� ¤ Hpη� λuq � Hpηq
λ

so when λÑ 0 we have xy, uy� ¤ dηHpuq hence F � F1. The fact is proved. �

If the extended support function H of a Γ-convex body K is differentiable, the above lemma allows to define
the map

G̃pηq � ∇ηH

from F to BK � Rd�1. This can be expressed in term of h, the restriction of H to Hd. We use “hyperbolic
coordinates” onF : an orthonormal frame onHd extended to an orthonormal frame ofF with the decomposition
r2gHd � d r2 of the metric on F . ∇ηH has d � 1 entries, and, at η P Hd, the d first ones are the coordinates of
∇ηh (here ∇ is the gradient on Hd). We identify ∇ηh P TηHd � Rd�1 with a vector of Rd�1. The last component
of ∇ηH is �BH{Brpηq, and, using the homogeneity of H, it is equal to �hpηq when η P Hd. Note that at such a
point, TηF is the direct sum of TηHd and η. It follows that, for η P Hd,

∇ηH � ∇ηh � hpηqη. (6)

This has a clear geometric interpretation, see Figure 1.
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η

p

BK

�hpηqη

Hdη

0
∇h

Figure 1: Recovering the convex body from its support function in the Minkowski space.

C2 support function If the extended support function H is C2, G̃ is C1, and its differential W̃ satisfies

xW̃ηpXq,Yy� � D2
ηHpX,Yq.

We denote by G the restriction of G̃ to Hd and by W its differential (the reversed shape operator). If Tν
is the hyperplane of Rd�1 orthogonal to ν P Hd for x�, �, y�, W is considered as a map from Tν to Tν. We get
from (6), or from the equation above, the Gauss formula and the 1-homogeneity of H, using again hyperbolic
coordinates on F :

Wi j � p∇2hqi j � hδi j, (7)

with ∇2 the second covariant derivative (the Hessian) on Hd, δi j the Kronecker symbol and h the restriction of
H to Hd. In particular W is symmetric, and its real eigenvalues r1, . . . , rd are the radii of curvature of K. Taking
the trace on both parts of the equation above leads to

r1 � � � � � rd � ∆Hd h � dh (8)

where ∆Hd is the Laplacian on the hyperbolic space. It is easy to check that, for γ P Γ, ∇γηH � γ∇ηH and
D2
γηH � D2

ηH. In particular the objects introduced above can be defined on Hd{Γ.

C2
� body Let K be a Γ-convex body. The Gauss map N is a multivalued map which associates to each x in

the boundary of K the set of unit inward normals of K at x, which are considered as elements of Hd. If the
boundary of K is a C2 hypersurface and if the Gauss map is a C1-homeomorphism from the boundary of K
to Hd, K is C2

�. In this case we can define the shape operator B � ∇N, which is a self-adjoint operator. Its
eigenvalues are the principal curvatures κi of K, and they are never zero as B has maximal rank by assumption.
As K is convex, it is well-known that its principal curvatures are non-negative, hence they are positive. (This
implies that K is actually strictly convex.)

Lemma 3.2. Under the identification of a Γ-convex body with its support function, the set of C2
� Γ-convex body

is C2
�pΓq, the set of negative C2 functions h on M � Hd{Γ such that

pp∇2hqi j � hδi jq ¡ 0 (9)

(positive definite) for any orthonormal frame on M.

It follows that in the C2
� case G � N�1,W � B�1, and ri � 1

κi � N�1 .
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Proof. Let K be a C2
� Γ-convex body, h its support function and H its extended support function (h is the

restriction of H to Hd). For any η P Hd we have

hpηq � xN�1pηq, ηy�, (10)

and for η P F , introducing the 0-homogeneous extension Ñ�1 of N�1 we obtain

DηHpXq � xÑ�1pηq, Xy� � xDηÑ�1pXq, ηy�,

but DηÑ�1pXq belongs to the support hyperplane of K with inward normal η so DηHpXq � xÑ�1pηq, Xy�.
Hence D2

ηHpX,Yq � xB�1pXq,Yy�, in particular H is C2, so h is C2 and (9) is known. As h is Γ-invariant, we
get a function of C2

�pΓq.
Now let h P C2

�pΓq. We also denote by h the Γ-invariant map on Hd which projects on h, and by H the
1-homogeneous extension of h to F . The 1-homogeneity and (9) imply that H is convex (in the hyperbolic
coordinates, row and column of the Hessian of H corresponding to the radial direction r are zero), hence
negative sublinear Γ-invariant, so it is the support function of a Γ-convex body K by Lemma 2.12. As h is C2,
we get a map G from Hd to BK � Rd�1 which is C1, and regular from (7) and (9). Moreover G is surjective
by Lemma 2.6. It follows that BK is C1. This implies that each point of BK has a unique support plane
[Schneider, 1993, p. 104], i.e that the map G is injective. Finally it is a C1 homeomorphism.

Let K� be the polar dual of K. We know that the points on the boundary of K� are graphs above Hd as
they have the form η{p�hpηqq for η P Hd. Hence BK� is C2 as h is. Moreover the Gauss map image of the
point η{p�hpηqq of BK� is Gpηq{

a
�xGpηq,Gpηqy�: the Gauss map of K� is a C1 homeomorphism. It follows

that K� is C2
�. In particular its support function is C2. Repeating the argument, it follows that the boundary of

K�� � K is C2. �

To simplify the matter in the following, we will restrict ourselves to smooth (C8) support functions, al-
though this restriction will be relevant only in Subsection 3.4. We denote by C8

� pΓq the subset of smooth
elements of C2

�pΓq. It corresponds to C8
� Γ-convex bodies, i.e. Γ-convex bodies with smooth boundary and

with the Gauss map a C1 diffeomorphism (hence smooth).

Lemma 3.3. C8
� pΓq is a convex cone and

C8
� pΓq �C8

� pΓq � C8pΓq

(any smooth function on Hd{Γ is the difference of two functions of C8
� pΓq).

Proof. It is clear that C8
� pΓq is a convex cone. Let h1 P C8

� pΓq and Z P C8pΓq. As Hd{Γ is compact, for
t sufficiently large, Z � th1 satisfies (9) and is a negative function, hence there exists h2 P C8

� pΓq such that
Z � th1 � h2. �

3.2 Covolume and Gaussian curvature operator

Let K be a C2
� Γ-convex body and let PpKq be F minus the interior of K. As PpKq{Γ is compact, the divergence

theorem gives »
PpKq{Γ

divX d PpKq � �
»
BK{Γ

xX, ηy� d BK,

where η is the unit outward normal of BK{Γ in PpKq{Γ (hence it corresponds in the universal cover to the unit
inward normal of K). If X is the position vector in F we get

pd � 1qcovolpKq � �
»
BK{Γ

h � N d BK

with h the support function of K and N the Gauss map.
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The Gaussian curvature (or Gauss–Kronecker curvature) κ of K is the product of the principal curvatures.
We will consider the map κ�1 which associates to each h P C8

� pΓq the inverse of the Gaussian curvature of the
convex body supported by h:

κ�1phq �
d¹

i�1

riphq (7)� det
�p∇2hqi j � hδi j

�
. (11)

As the curvature is the Jacobian of the Gauss map, we get

pd � 1qcovolpKq � �
»

M
hκ�1phq d M

where d M is the volume form on M � Hd{Γ. Finally let us consider the covolume as a functional on C8
� pΓq,

which extension to the whole C8pΓq is immediate:

covolpXq � � 1
d � 1

pX, κ�1pXqq, X P C8pΓq (12)

with p�, �q the scalar product on L2pMq.
We will consider C8pΓq as a Fréchet space with the usual seminorms

} f }n �
ņ

i�1

sup
xPM

|∇i f pxq|,

with ∇i the i-th covariant derivative and |�| the norm, both given by the Riemannian metric of M. All derivatives
will be directional (or Gâteaux) derivatives in Fréchet spaces as in [Hamilton, 1982]:

DYcovolpXq � lim
tÑ0

covolpY � tXq � covolpYq
t

, X,Y P C8pΓq. (13)

Lemma 3.4. The function covol is C8 on C8pΓq, and for h P C8
� pΓq, X,Y P C8pΓq, we have:

DhcovolpXq � �pX, κ�1phqq, (14)

D2
hcovolpX,Yq � �pX,Dhκ

�1pYqq. (15)

Moreover (14) is equivalent to
pX,Dhκ

�1pYqq � pY,Dhκ
�1pXqq. (16)

Proof. The second order differential operator κ�1 is smooth as the determinant is smooth [Hamilton, 1982,
3.6.6]. Differentiating (12) we get

DhcovolpXq � � 1
d � 1

�
pX, κ�1phqq� ph,Dhκ

�1pXqq� , (17)

but the bilinear form p�, �q is continuous for the seminorms } � }n (recall that it suffices to check continuity in
each variable [Rudin, 1991, 2.17]). It follows that covol is C1, and by iteration that it is C8.

If (14) is true we get (15), and this expression is symmetric as covol is C2, so (16) holds.
Let us suppose that (16) is true. From (11), κ�1 is homogeneous of degree d, that gives Dhκ

�1phq � dκ�1phq.
Using this in (16) with Y � h gives

dpX, κ�1phqq � ph,Dhκ
�1pXqq.

Inserting this equation in (17) leads to (14).
A proof of (16) is done in [Cheng and Yau, 1976] (for the case of C2 functions on the sphere). See also

[Oliker and Simon, 1983] and reference therein for more generality. We will prove (14) following [Hörmander, 2007].
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From the definition of κ�1, the map Dhκ
�1p�q is linear, hence from (17) Dhcovolp�q is also linear, so by

Lemma 3.3 it suffices to prove (14) for X � h1 P C8
� pΓq. We denote by K (resp. K1) the Γ-convex body

supported by h (resp. h1) and by N (resp. N1) its Gauss map. We have, for η P F , ε ¡ 0,

hpηq � εh1pηq � xη,N�1pηq � εpN1q�1pηqy�
i.e h � εh1 supports the hypersurface with position vector N�1pηq � εpN1q�1pηq.

For a compact U � Rd, if f : U Ñ Rd�1 is a local parametrization of BK, let us introduce

F : U � r0, εs Ñ Rd�1, py, tq ÞÑ f pyq � tpN1q�1pNp f pyqqq.

It is a local parametrization of the set between the boundary of K and the boundary of K � εK1. Locally, its
covolume (which corresponds to covolph � εh1q � covolphq) is computed as

»
FpU�r0,εsq

d vol �
» ε

0

»
U
|JacF| d y d t. (18)

The Jacobian of F is equal to
�
pN1q�1pNp f pyqqq, B f

By1
, . . . ,

B f
Byd

	
� tR where R is a remaining term, and its de-

terminant is equal to the determinant of
�
pN1q�1pNp f pyqqq, B f

By1
, . . . ,

B f
Byd

	
plus t times remaining terms. As

p B f
By1
, . . . ,

B f
Byd
q form a basis of the tangent hyperplane of BK, and as N is normal to this hyperplane, the determi-

nant is equal to xpN1q�1pNp f pyqqq,Np f pyqqy� � h1pNp f pyqqq times |Jac f |, plus t times remaining terms. The
limit of (18) divided by ε when εÑ 0 gives

»
U

h1pNp f pyqq|Jac f | d y �
»

f pUq
h1pNq d BK.

The result follows by decomposing the boundary of K with suitable coordinate patches. �

The main result of this section is the following.

Theorem 3.5. The second derivative of covol : C8pΓq Ñ R is positive definite. In particular the covolume of
C8
� Γ-convex bodies is strictly convex.

Let us have a look at the case d � 1. In this case κ�1 � r, the unique radius of curvature. We parametrize
the branch of the hyperbola by psinh t, cosh tq, and h becomes a function from R to R�. Then (8) reads

κ�1phqptq � �hptq � h2ptq,

and, as h is Γ-invariant, we can consider κ�1 as a linear operator on the set of C8 functions on r0, `s, if ` is the
length of the circle H1{Γ. Using integration by parts and the fact that h is `-periodic, we get

D2
hcovolph, hq � �ph, κ�1phqq � �

» `

0
hκ�1phq �

» `

0
ph2 � h12q.

We will prove a more general version of Theorem 3.5 in the next section, using the theory of mixed-volume.
The proof is based on the following particular case.

Lemma 3.6. Let h0 be the support function of Bd (i.e. h0pηq � �1). Then D2
h0

covol is positive definite.

Proof. Let X P C8pΓq. From the definition (11) of κ�1

Dhκ
�1pXq � κ�1phq

ḑ

i�1

r�1
i phqDhripXq
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and as riph0q � 1,

Dh0κ
�1pXq �

ḑ

i�1

Dh0ripXq.

Differentiating (8) on both side at h0 and passing to the quotient, the equation above gives

Dh0κ
�1pXq � �dX � ∆MX,

where ∆M is the Laplacian on M � Hd{Γ. From (15),

D2
h0

covolpX, Xq � dpX, Xq� p∆MX, Xq,

which is positive by property of the Laplacian, as M � Hd{Γ is compact. �

3.3 Smooth Minkowski Theorem

One can ask if, given a positive function f on a hyperbolic compact manifold M � Hd{Γ, it is the Gauss
curvature of a C2

� convex Fuchsian surface and if the former one is unique. By Lemma 3.2 and definition of
the Gauss curvature, the question reduces to know if there exists a (unique) function h on M such that, in an
orthogonal frame on M,

f � detpp∇2hqi j � hδi jq
and

pp∇2hqi j � hδi jq ¡ 0.

This PDE problem is solved in [Oliker and Simon, 1983] in the smooth case. Their main result (Theorem 3.4)
can be written as follows.

Theorem 3.7. Let Γ be a Fuchsian group, f : Hd Ñ R� be a positive C8 Γ-invariant function.
There exists a unique C8

� Γ-convex body with Gauss curvature f .

3.4 Mixed curvature and mixed-covolume

The determinant is a homogeneous polynomial of degree d, and we denote by detp�, . . . , �q its polar form, that
is the unique symmetric d-linear form such that

detpA, . . . , Aq � detpAq
for any d � d symmetric matrix A (see for example Appendix A in [Hörmander, 2007]). We will need the
following key result.

Theorem 3.8 ([Alexandrov, 1996, p. 125]). Let A, A3 . . . , Ad be positive definite d � d matrices and Z be a
symmetric matrix. Then

detpZ, A, A3, . . . , Adq � 0 ñ detpZ,Z, A3, . . . , Adq ¤ 0,

and equality holds if and only if Z is identically zero.

For any orthonormal frame on M � Hd{Γ and for Xk P C8pΓq, let us denote

X2
k :� p∇2Xkqi j � Xkδi j

and let us introduce the mixed curvature

κ�1pX1, . . . , Xdq :� detpX2
1 , . . . , X

2
dq.

As covolpXq � � 1
d�1 pX, κ

�1pXqq, covol is a homogeneous polynomial of degree d � 1. Its polar form
covolp�, . . . , �q (pd � 1q entries) is the mixed-covolume.
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Lemma 3.9. We have the following equalities, for Xi P C8pΓq.
(i) Dd�1

X2
κ�1pX3, . . . , Xd�1q � d!κ�1pX2, . . . , Xd�1q,

(ii) DX1covolpX2q � pd � 1qcovolpX2, X1, . . . , X1q,
(iii) D2

X1
covolpX2, X3q � pd � 1qdcovolpX2, X3, X1, . . . , X1q,

(iv) Dd
X1

covolpX2, . . . , Xd�1q � pd � 1q!covolpX1, . . . , Xd�1q,
(v) covolpX1, . . . , Xd�1q � � 1

d�1 pX1, κ
�1pX2, . . . , Xd�1qq.

Proof. (i) and (iv) are proved by induction on the order of the derivative, using the definition of directional
derivative and the expansion of the multilinear forms. (ii) and (iii) are obtained by the way. (v) follows from
(14), (i) and (iv). �

Corollary 3.10. For hi P C8
� pΓq, covolph1, . . . , hd�1q is positive.

Proof. As hi P C8
� pΓq, h2i is positive definite, hence κ�1ph2, . . . , hd�1q ¡ 0 [Alexandrov, 1996, (5) p. 122].

The result follows from (v) because h1   0. �

Due to (iii) of the preceding lemma, the following result implies Theorem 3.5.

Theorem 3.11. For any h1, . . . , hd�1 in C8
� pΓq, the symmetric bilinear form on pC8pΓqq2

covolp�, �, h1, . . . , hd�1q

is positive definite.

Proof. We use a continuity method. We consider the paths hiptq � thi � p1 � tqh0, i � 1, . . . , d � 1, t P r0, 1s,
where h0 is the (quotient of the) support function of Bd and we denote

covoltp�, �q :� covolp�, �, h1ptq, . . . , hd�1ptqq.

The result follows from the facts:
(i) covol0 is positive definite,

(ii) if, for each t0 P r0, 1s, covolt0 is positive definite, then covolt is positive definite for t near t0,
(iii) if tn P r0, 1s with tn Ñ t0 and covoltn is positive definite, then covolt0 is positive definite.

(i) is Lemma 3.6. Let t0 as in (ii). By Lemma 3.12, each κ�1p�, h1ptq, . . . , hd�1ptqq inherits standard properties
of elliptic self-adjoint operators on compact manifolds (see for example [Nicolaescu, 2007]), and we can apply
[Kato, 1995, Theorem 3.9 p. 392]: as the deformation of the operators is polynomial in t, the eigenvalues change
analytically with t, for t near t0. In particular if t is sufficiently close to t0, the eigenvalues remain positive and
(ii) holds.

Let tn be as in (iii). For any non zero X P C8pΓq we have covoltnpX, Xq ¡ 0 with

covoltnpX, Xq �
»

M
Xκ�1pX, p1 � tnqh0 � tnh1, . . . , p1 � tnqh0 � tnhd�1q d M.

As κ�1 is multilinear and as tn   1, it is easy to see that the function in the integrand above is bounded by
a function (of the kind X

° |κ�1pX, �, . . . , �q| where each � is h0 or a hi) which does not depend on n and is
continuous on the compact M. By Lebesgue’s dominated convergence theorem, covolt0pX, Xq ¥ 0, and by
Lemma 3.13 covolt0pX, Xq ¡ 0, and (iii) is proved. �

Lemma 3.12. For any h1, . . . , hd�1 in C8
� pΓq, the operator κ�1p�, h1, . . . , hd�1q is formally self-adjoint linear

second order elliptic.

15



Proof. It is formally self-adjoint because of the symmetry of the mixed-covolume. It is clearly second order lin-
ear. Let Z P C8pΓq. From properties of the mixed determinant [Alexandrov, 1996, p. 121], κ�1pZ, h1, . . . , hd�1q
can be written, for an orthonormal frame on M,

ḑ

i, j�1

detph21, . . . , h2d�1qi j
�p∇2Zqi j � Zδi j

�

where detph21, . . . , h2d�1qi j is, up to a constant factor, the mixed determinant of the matrices obtained from the
h2k by deleting the ith row and the jth column. Let us consider local coordinates on M around a point p such
that at p, κ�1pZ, h1, . . . , hd�1q has the expression above. By definition of C8

� pΓq, h2k are positive definite at p
and then at p

ḑ

i, j�1

detph21, . . . , h2d�1qi jxix j

is positive definite [Alexandrov, 1996, Lemma II p. 124]. �

Lemma 3.13. For any h1, . . . , hd�1 in C8
� pΓq, the symmetric bilinear form

covolp�, �, h1, . . . , hd�1q

has trivial kernel.

Proof. Suppose that Z belongs to the kernel of covolp�, �, h1, . . . , hd�1q. As p�, �q is an inner product, Z belongs
to the kernel of κ�1p�, h1, . . . , hd�1q:

detpZ2, h21, . . . , h
2
d�1q � 0.

As h2i are positive definite matrices, by definition of C8
� pΓq, Theorem 3.8 implies that

detpZ2,Z2, h22, . . . , h
2
d�1q ¤ 0

so
0 � covolpZ,Z, h1, . . . , hd�1q � �

»
M

h1κ
�1pZ,Z, h2, . . . , hd�1q ¤ 0

but h1   0 hence
detpZ2,Z2, h22, . . . , h

2
d�1q � 0,

and Theorem 3.8 says that Z2 � 0. Consider the 1-homogeneous extension Z̃ of the Γ invariant map on Hd

defined by Z. From Subsection 3.1 it follows that the Hessian of Z̃ in F is zero, hence that Z̃ is affine. By
invariance Z̃ must be constant, and by homogeneity Z̃ � 0 hence Z � 0. �

Remark on Fuchsian Hedgehogs If we apply Cauchy–Schwarz inequality to the inner product of Theo-
rem 3.11, we get a “reversed Alexandrov–Fenchel inequality” (see Theorem 5.5) for C8

� convex bodies, but
also for any smooth function h on the hyperbolic manifold Hd{Γ. From Lemma 3.3 there exist two elements
h1, h2 of C8

� pΓq with h � h1 � h2. Hence h can be seen as the “support function” of the (maybe non convex)
hypersurface made of the points ∇ηpH1 � H2q, η P F . For example if h1 and h2 are the support functions of
respectively Bt1 and Bt2 , then h is the support function of a pseudo-sphere in F if t1 � t2 ¡ 0, of a point (the
origin) if t1 � t2 � 0 and of a pseudo-sphere in the past cone if t1 � t2   0.

More generally, we could introduce “Fuchsian hedgehogs”, whose “support functions” are difference of
support functions of two Γ-convex bodies. They form the vector space in which the support functions of Γ-
convex bodies naturally live. In the Euclidean space, they were introduced in [Langevin et al., 1988]. An
Euclidean analog of the reversed Alexandrov–Fenchel inequality for smooth Fuchsian hedgehogs described
above is done in [Martinez-Maure, 1999], among other results. It would be interesting to know if other results
about hedgehogs have a Fuchsian analogue.

16



Figure 2: A piece of a Γ-convex polyhedron in d � 2 seen from the bottom. It is made with the orbit of p0, 0, 1q
for the Fuchsian group having a regular octagon as fundamental domain in H2.

4 Polyhedral case

The classical analogue of this section comes from [Alexandrov, 1937] (see [Alexandrov, 1996]). See also
[Schneider, 1993] and [Alexandrov, 2005]. The toy example d � 1 is considered in the note [Fillastre, 2011b].

4.1 Support vectors

Definition of Fuchsian convex polyhedron The notation aK will represent the affine hyperplane over the
vector hyperplane orthogonal to the vector a and passing through a:

aK � tx P Rd�1|xx, ay� � xa, ay�u. (19)

Definition 4.1. Let R � pη1, . . . , ηnq, n ¥ 1, with ηi (pairwise non-collinear) vectors in the future cone F ,
and let Γ be a Fuchsian group. A Γ-convex polyhedron is the boundary of the intersection of the half-spaces
bounded by the hyperplanes

pγηiqK,@γ P Γ,@i � 1, . . . , n,

such that the vectors ηi are inward pointing.

See Figure 2 for a simple example.

Lemma 4.2. A Γ-convex polyhedron P
(i) is a Γ-convex body,

(ii) has a countable number of facets,
(iii) is locally finite,
(iv) each face is a convex Euclidean polytope.

Here convex polytope means convex compact polyhedron.

Proof. We denote by Pi the Γ-convex polyhedron made from the vector ηi and the group Γ. We will prove the
lemma for Pi. The general case follows because P is the intersection of a finite number of Pi. All the elements
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of Γηi belong to Hd
ti , on which Γ acts cocompactly. Up to a homothety, it is more suitable to consider that Hd

ti is
Hd

1 � Hd.
Let a P Γηi and DapΓq be the Dirichlet region (see (1)). Recall that DapΓq are convex compact polyhedra in

Hd, and that the set of the Dirichlet regions Da, for all a P Γηi, is a locally finite tessellation of Hd. Using (20),
the Dirichlet region can be written

DapΓq � tp P Hd|xa, py� ¥ xγa, py�,@γ P ΓztIduu.
Let a1, a2 P Γηi such that Da1pΓq and Da2pΓq have a common facet. This facet is contained in the intersection
of Hd with the hyperplane

tp P Rd�1|xa1, py� � xa2, py�u,
and this hyperplane also contains aK1 X aK2 by (19). It follows that vertices of Pi (codimension pd � 1q faces)
project along rays from the origin onto the vertices of the Dirichlet tessellation. In particular the vertices are in
F , so Pi � F , because it is the convex hull of its vertices [Schneider, 1993, 1.4.3] and F is convex. In particular
Pi is a Γ-convex body due to Definition 2.1. And codimension k faces of Pi projects onto codimension k faces
of the Dirichlet tessellation, so Pi is locally finite with a countable number of facets.

Facets of Pi are closed, as they project onto compact sets. In particular they are bounded as contained in F
hence compact. They are convex polytopes by construction, and Euclidean as contained in space-like planes.
Higher codimension faces are convex Euclidean polytopes as intersections of convex Euclidean polytopes. �

Support numbers The extended support function of a Γ-convex polyhedron P is piecewise linear (it is linear
on each solid angle determined by the normals of the support planes at a vertex), it is why the data of the
extended support function on each inward unit normal of the facets suffices to determine it. If ηi is such a
vector and h is the support function of P, we call the positive number

hpiq :� �hpηiq
the ith support number of P.

The facet with normal ηi is denoted by Fi. Two adjacent facets Fi and F j meet at a codimension 2 face Fi j.
If three facets Fi, F j, Fk meet at a codimension 3 face, then this face is denoted by Fi jk. We denote by ϕi j the
hyperbolic distance between ηi and η j, given by (see for example [Ratcliffe, 2006, (3.2.2)])

� coshϕi j � xηi, η jy�. (20)

Let pi be the foot of the perpendicular from the origin to the hyperplaneHi containing the facet Fi. InHi,
let pi j be the foot of the perpendicular from pi to Fi j. We denote by hi j the signed distance from pi to pi j: it is
non negative if pi is in the same side of F j than P. See Figure 3.

For each i, hi j are the support numbers of the convex Euclidean polytope Fi. (Hi is identified with the
Euclidean space Rd, with pi as the origin.) If we denote by ωi jk the angle between pi pi j and pi pik, it is well-
known that [Schneider, 1993, (5.1.3)]

hik j �
hi j � hik cosωi jk

sinωi jk
. (21)

We have a similar formula in Minkowski space [Fillastre, 2011b, Lemma 2.2]:

hi j � �hp jq � hpiq coshϕi j

sinhϕi j
. (22)

In particular,

Bhi j

Bhp jq � � 1
sinhϕi j

, (23)

Bhi j

Bhpiq �
coshϕi j

sinhϕi j
. (24)
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Figure 3: Supports numbers of a Γ-convex polyhedron.

If hpiq � hp jq and if the quadrilateral is deformed under this condition, then

Bhi j

Bhpiq �
coshϕi j � 1

sinhϕi j
. (25)

Space of polyhedra with parallel facets Let P be a Γ-convex polyhedron. We label the facets of P in a
fundamental domain for the action of Γ. This set of label is denoted by I, and ΓI labels all the facets of P. Let
R � pη1, . . . , ηnq be the inward unit normals of the facets of P labeled by I.

We denote by PpΓ,Rq the set of Γ-convex polyhedra with inward unit normals belonging to the set R. By
identifying a Γ-convex polyhedron with its support numbers labeled by I, PpΓ,Rq is a subset of Rn. (The
corresponding vector of Rn is the support vector of the polyhedron.) Note that this identification does not
commute with the sum. Because the sum of two piecewise linear functions is a piecewise linear function, the
Minkowski sum of two Γ-convex polyhedra is a Γ-convex polyhedron. (More precisely, the linear functions
under consideration are of the form x�, vy�, with v a vertex of a polyhedron, hence a future time-like vector, and
the sum of two future time-like vectors is a future time-like vector.) But even if the two polyhedra have parallel
facets, new facets can appear in the sum. Later we will introduce a class of polyhedra such that the support
vector of the Minkowski sum is the sum of the support vectors.

Lemma 4.3. The set PpΓ,Rq is a non-empty open convex cone of Rn.

Proof. The condition that the hyperplane supported by η j contains a facet of the polyhedron with support vector
h can be written as

Dx P Rd�1,@i P ΓI, i , j, xηi, xy�   �hpiq and xη j, xy� � �hp jq.

By (20) PpΓ,Rq always contains the vector p1, . . . , 1q. The set is clearly open as a facet can’t disappear for
any sufficiently small deformation. It is also clearly invariant under homotheties of positive scale factor. So to
prove that PpΓ,Rq is a convex cone it suffices to check that if h and h1 belongs to PpΓ,Rq then h � h1 belongs
to PpΓ,Rq. It is immediate from the above characterization. �

4.2 Covolume of convex Fuchsian polyhedra

Let F be a facet of a Γ-convex polyhedron P, contained in a space-like hyperplane H , with support number
h. For the induced metric, H is isometric to the Euclidean space Rd, in which F is a convex polytope, with
volume ApFq. We call ApFq the area of the facet. Let C be the cone in Rd�1 over P with apex the origin.
Its volume VpCq is invariant under the action of an orientation and time-orientation preserving linear isometry
(they have determinant 1), hence to compute VpCq we can suppose thatH is an horizontal hyperplane (constant
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last coordinate). For horizontal hyperplanes, the induced metric is the same if the ambient space is endowed
with the standard Lorentzian metric or with the standard Euclidean metric. So the well-known formula applies:

VpCq � 1
d � 1

hApFq,

and then
covolpPq � 1

d � 1

¸
iPI

hpiqApFiq.

Identifying P with its support vector h, if
@�, �D is the usual inner product of Rn, we have

covolphq � 1
d � 1

@
h, AphqD (26)

where Aphq is the vector formed by the area of the facets ApFiq.
Lemma 4.4. The function covol is C2 on Rn, and for h P PpΓ,Rq, X,Y P Rn, we have:

DhcovolpXq � @
X, AphqD, (27)

D2
hcovolpX,Yq � @

X,DhApYqD. (28)

Moreover (27) is equivalent to @
X,DhApYqD � @

Y,DhApXqD. (29)

Proof. Let P be the polyhedron with support function h P PpΓ,Rq. Let Fi be a facet of P, with support numbers
hi1, . . . , him. If VE is the d Euclidean volume, it is well-known that [Alexandrov, 2005, 8.2.3]

BVEpFiq
Bhik

� Lik (30)

where Lik is the area of the facet of Fi with support number hik (for d � 1, one has1 instead of Lik). ApFiq is
not exactly as VEpFiq, because it is a function of h, and, when varying a hp jq, a new facet of Fi can appear, as
well as a new support number hi j of Fi. Actually many new facets can appear, as many as hyperplanes with
normals Γη j meeting Fi. One has to consider Fi as also supported by hi j (and eventually some orbits). In this
case, Li j � 0, and the variation of the volume is still given by formula (30). So even if the combinatorics of P
changes under small change of a support number, there is no contribution to the change of the volume of the
facets. So (30) gives

BApFiq
Bhik

� Lik. (31)

We denote by E j
i � ΓI is the set of indices k P Γ j such that Fk is adjacent to Fi along a codimension 2

face. It can be empty. But for example if I is reduced to a single element i, Ei
i is the set of facets adjacent to Fi

along a codimension 2 face. If j P Iztiu we get

BApFiq
Bhp jq �

¸
kPE j

i

BApFiq
Bhik

Bhik

Bhp jq

From (23) and (31) it follows that
BApFiq
Bhp jq � �

¸
kPE j

i

Lik

sinhϕik
. (32)

20



For the diagonal terms:

BApFiq
Bhpiq �

¸
jPIztiu

¸
kPE j

i

BApFiq
Bhik

Bhik

Bhpiq �
¸
kPEi

i

BApFiq
Bhik

Bhik

Bhpiq

p31,24,25q�
¸

jPIztiu

¸
kPE j

i

coshϕik
Lik

sinhϕik
�
¸
kPEi

i

Lik
coshϕik � 1

sinhϕik
. (33)

These expressions are continuous with respect to h, even if the combinatorics changes. So A is C1 and from
(26) covol is C2.

If (27) is true, we get (28), and this expression is symmetric as covol is C2, so (29) holds. Let us suppose
that (29) is true. As made of volumes of convex polytopes of Rd, A is homogeneous of degree d so by Euler
homogeneous theorem DhAphq � dAphq. Using this in (29) with Y � h gives d

@
X, AphqD � @

h,DhApXqD.Now
differentiating (26) gives DhcovolpXq � 1

d�1

@
X, AphqD � 1

d�1

@
h,DhApXqD. Inserting the preceding equation

leads to (27).
Let us prove (29). If e1, . . . , en is the standard basis of Rn, it suffices to prove (29) for X � ei and Y � e j,

i , j i.e that the gradient of A is symmetric. The sum in (32) means that, in BP{Γ, each times the ith polytope
meets the jth polytope along a codimension 2 face, we add the quantity Lik

sinhϕik
, which is symmetric in its

arguments. Hence the gradient of A is symmetric. �

Let us consider the simplest case of Γ-convex polyhedra in the Minkowski plane, with only one support
number h P R. Then by (22) covolphq is equal to h2 times a positive number, in particular it is a strictly convex
function. This is always true.

Theorem 4.5. The Hessian of covol : Rn Ñ R is positive definite.

Recall that we are looking at the covolume on a space of support vectors, and not on a space of polyhedra
(the sum is not the same).

Proof. Due to (28) it suffices to study the Jacobian of A. The elements off the diagonal are non-positive due to
(32). Note that the formula is also correct if E j

i is empty. The diagonal terms (33) are positive, as any facet Fi

has an adjacent facet. As cosh x ¡ 1 for x , 0, (33) and (32) lead to

BApFiq
Bhpiq ¡

¸
jPIztiu

����BApFiq
Bhp jq

���� ¡ 0

that means that the Jacobian is strictly diagonally dominant with positive diagonal entries, hence positive defi-
nite, see for example [Varga, 2000, 1.22]. �

4.3 Polyhedral Minkowski Theorem

We use a classical continuity method, although its Euclidean analog is more often proved using a variational
method.

Theorem 4.6 (Minkowski Theorem). Let Γ be a Fuchsian group, R � pη1, . . . , ηnq be a set of pairwise non
collinear unit future time-like vectors of the Minkowski space contained in a fundamental domain of Γ, and let
p f1, . . . , fnq be positive real numbers.

There exists a unique Γ-convex polyhedron with inward unit normals ηi such that the facet orthogonal to ηi

has area fi.

Theorem 4.6 is equivalent to say that the map Φ fromPpΓ,Rq to pR�qn which associates to each ph1, . . . , hnq P PpΓ,Rq
the facet areas pApF1q, . . . , ApFnqq is a bijection. By Lemma 4.4, Theorem 4.5 and local inverse theorem, Φ

is locally invertible. So Φ is a local homeomorphism by the invariance of domain theorem. Lemma 4.7 below
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says that Φ is proper. As pR�qn is connected, it follows that Φ is surjective, hence a covering map. But the
target space pR�qn is simply connected and PpΓ,Rq is connected (Lemma 4.3), so Φ is a homeomorphism, in
particular bijective, and Theorem 4.6 is proved.

Lemma 4.7. The map Φ is proper: Let paαqαPN be a converging sequence of pR�qn such that for all α, there
exists hα � phαp1q, . . . , hαpnqq P PpΓ,Rq with Φphαq � aα. Then a subsequence of phαqα converges in PpΓ,Rq.
Proof. Let α P N and suppose that hαpiq is the largest component of hα. For any support number hαp jq, j P ΓI,
of a facet adjacent to the one supported by hαpiq, as hαpiq ¥ hαp jq, (22) gives:

hαi j �
hαpiq coshϕi j � hαp jq

sinhϕi j
¥ hαpiq

coshϕi j � 1
sinhϕi j

.

As Γ acts cocompactly on Hd, for any j P ΓI, ϕi j is bounded from below by a positive constant. Moreover
the function x ÞÑ cosh x�1

sinh x is increasing, then there exists a positive number λi, depending only on i, such that

hαi j ¥ hαpiqλi.

As the sequence of areas of the facets is supposed to converge, there exists positive numbers A�
i and A�

i
such that A�

i ¥ ApFα
i q ¥ A�

i , where ApFα
i q is the area of the facet Fα

i supported by hαpiq. If Perαi (resp. Peri)
is the Euclidean pd � 1q volume of the hypersphere bounding the ball with Euclidean d volume ApFα

i q (resp.
A�

i ), the isoperimetric inequality gives [Burago and Zalgaller, 1988, 10.1]
¸

j

Lαi j ¥ Perαi ¥ Peri,

where the sum is on the facets adjacent to Fα
i and Lαi j is the pd � 1q volume of the codimension 2 face between

Fα
i and Fα

j . We get

A�
i ¥ ApFα

i q �
1
d

¸
j

hαi jL
α
i j ¥ hαpiqλi

1
d

¸
j

Lαi j ¥ hαpiqλiPeri

d
.

As hαpiq is the largest component of hα, all the support numbers are bounded from above by a constant
which does not depend on α. Moreover each component of hα is positive, hence all the components of the
elements of the sequence phαqα are bounded from above and below, so there exists a subsequence phϕpαqqϕpαq
converging to php1q, . . . , hpnqq, where hpiq is a non-negative number.

Suppose that the limit of phϕpαqpiqqϕpαq is zero. Let hϕpαqp jq be the support number of a facet adjacent to

Fϕpαq
i . If ϕpαq is sufficiently large, hϕpαqp jq is arbitrary close to hp jq, which is a non-negative number, and

hϕpαqpiq is arbitrary close to 0. By (22), hαi j is a non-positive number. So all the support numbers of Fϕpαq
i are

non-positive, hence the d volume of Fϕpαq
i is non-positive, that is impossible. It follows easily that phϕpαqpiqqϕpαq

converges in PpΓ,Rq. �

4.4 Mixed face area and mixed-covolume

Let us recall some basic facts about convex polytopes in Euclidean space (with non empty interior). A convex
polytope of Rd is simple if each vertex is contained in exactly d facets. Each face of a simple convex polytope
is a simple convex polytope. The normal fan of a convex polytope is the decomposition of Rd by convex
cones defined by the outward unit normals to the facets of the polytope (each cone corresponds to one vertex).
Two convex polytopes are strongly isomorphic if they have the same normal fan. The Minkowski sum of two
strongly isomorphic simple polytopes is a simple polytope strongly isomorphic to the previous ones. Moreover
the support vector of the Minkowski sum is the sum of the support vectors.

Let Q be a simple convex polytope in Rd with n facets. The set of convex polytopes of Rd strongly isomor-
phic to Q is a convex open cone in Rn. The Euclidean volume VE is a polynomial of degree d on this set, and its
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polarization VEp�, . . . , �q is the mixed-volume. The coefficients of the volume depend on the combinatorics, it’s
why we have to restrict ourselves to simple strongly isomorphic polytopes. The following result is an equivalent
formulation of the Alexandrov–Fenchel inequality.

Theorem 4.8 ([Alexandrov, 1996, Schneider, 1993]). Let Q,Q3, . . . ,Qd be strongly isomorphic simple convex
polytopes of Rd with n facets and Z P Rn. Then

VEpZ,Q,Q3, . . . ,Qdq � 0 ñ VEpZ,Z,Q3, . . . ,Qdq ¤ 0

and equality holds if and only if Z is the support vector of a point.

We identify a support hyperplane of an element of PpΓ,Rq with the Euclidean space Rd by performing a
translation along the ray from the origin orthogonal to the hyperplane. In this way we consider all facets of
elements of PpΓ,Rq lying in parallel hyperplanes as convex polytopes in the same Euclidean space Rd.

The definition of strong isomorphy and simplicity extend to Γ-convex polyhedra, considering them as poly-
hedral hypersurface in the ambient vector space. Note that the simplest examples of Euclidean convex poly-
topes, the simplices, are simple, but the simplest examples of Γ-convex polyhedra, those defined by only one
orbit, are not simple (if d ¡ 1). Let us formalize the definition of strong isomorphy. The normal cone NpPq of a
convex Γ-polyhedron P is the decomposition of F by convex cones defined by the inward normals to the facets
of P. It is the minimal decomposition of F such that the extended support functions of P is the restriction of a
linear form on each part. If the normal fan NpQq subdivides NpPq, then we write NpQq ¡ NpPq. Note that

NpP � Qq ¡ NpPq.

Two convex Γ-polyhedron P and Q are strongly isomorphic if NpPq � NpQq. If P is simple, we denote by rPs
the subset of PpΓ,Rq made of polyhedra strongly isomorphic to P.

Lemma 4.9. All elements of rPs are simple and rPs is an open convex cone of Rn.

Proof. The fact that all elements of rPs are simple and that rPs is open are classical, see for example [Alexandrov, 1937].
The only difference with the Euclidean convex polytopes case is that, around a vertex, two facets can belong
to the same orbit for the action of Γ, hence when one wants to slightly move a facet adjacent to a vertex, one
actually moves two (or more) facets. But this does not break the simplicity, nor the strong isomorphy class.
Moreover rPs is a convex cone as the sum of two functions piecewise linear on the same decomposition of F
gives a piecewise linear function on the same decomposition. �

Suppose that P is simple, has n facets (in a fundamental domain), and let h1, . . . , hd�1 P rPs (support vectors
of polyhedra strongly isomorphic to P). Let us denote by Fkpiq the ith facet of the polyhedron with support vec-
tor hk, and let hpFkpiqq be its support vector (Fkpiq is seen as a convex polytope in Rd). The entries of hpFkpiqq
have the form (22) so the map hk ÞÑ hpFkpiqq is linear. This map can be defined formally for all Z P Rn using
(22). The mixed face area Aph2, . . . , hd�1q is the vector formed by the entries VEphpF2piqq, . . . , hpFd�1piqqq,
i � 1, . . . , n. Together with (26), this implies that covol is a pd � 1q-homogeneous polynomial, and we call
mixed-covolume its polarization covolp�, . . . , �q. Note that covol is C8 on rPs.
Lemma 4.10. We have the following equalities, for Xi P Rn.

(i) Dd�1
X2

ApX3, . . . , Xd�1q � d!ApX2, . . . , Xd�1q,
(ii) DX1covolpX2q � pd � 1qcovolpX2, X1, . . . , X1q,

(iii) D2
X1

covolpX2, X3q � pd � 1qdcovolpX2, X3, X1, . . . , X1q,
(iv) Dd

X1
covolpX2, . . . , Xd�1q � pd � 1q!covolpX1, . . . , Xd�1q,

(v) covolpX1, . . . , Xd�1q � 1
d�1

@
X1, ApX2, . . . , Xd�1q

D
.

Proof. The proof is analogous to the one of Lemma 3.9. �

Corollary 4.11. For hi P rPs, covolph1, . . . , hd�1q is non-negative.
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Proof. As hi are support vectors of strongly isomorphic simple polyhedra, the entries of Aph2, . . . , hd�1q are
mixed-volume of simple strongly isomorphic Euclidean convex polytopes, hence are non-negative (see Theo-
rem 5.1.6 in [Schneider, 1993]). The result follows from (v) because the entries of h1 are positive. �

Lemma 4.12. For any h1, . . . , hd�1 P rPs, the symmetric bilinear form

covolp�, �, h1, . . . , hd�1q

has trivial kernel.

Proof. The analog of the proof of Lemma 3.13, using Theorem 4.8 instead of Theorem 3.8, gives that in each
support hyperplane, the “support vectors” of Z (formally given by (22)) are the ones of a point of Rd. Let us
denote by Zi the support vector of Z in the hyperplane with normal ηi.

If ε is sufficiently small then h1�εZ is the support vector of a Γ-convex polyhedron Pε1 strongly isomorphic
to P1, the one with support vector h1. Moreover the support numbers of the ith facet Fi of Pε1 are the sum of
the support numbers of the facet F1

i of P1 with the coefficients of εZi. As Zi is the support vector of a point in
Rd, Fi is obtained form F1

i by a translation. It follows that each facet of Pε1 is obtained by a translation of the
corresponding facet of P1, hence Pε1 is a translate of h1 (the translations of each facet have to coincide on each
codimension 2 face). As h1 � εZ is supposed to be a Γ-convex polyhedron for ε sufficiently small, and as the
translation of a Γ-convex polyhedron is not a Γ-convex polyhedron, it follows that Z � 0. �

Theorem 4.13. For any h1, . . . , hd�1 P rPs, the symmetric bilinear form

covolp�, �, h1, . . . , hd�1q

is positive definite.

Proof. The proof is analogous to the one of Theorem 3.11. �

Remark on spherical polyhedra The sets of strongly isomorphic simple Γ-convex polyhedra form convex
cones in vector spaces (Lemma 4.9). The mixed-covolume allow to endow these vector spaces with an in-
ner product. Hence, if we restrict to polyhedra of covolume 1, those sets are isometric to convex spherical
polyhedra. For d � 1 we get simplices named orthoschemes [Fillastre, 2011b]. In d � 2, if we look at the
metric induced on the boundary of the Fuchsian polyhedra, we get spherical metrics on subsets of the spaces
of flat metrics with cone-singularities of negative curvature on the compact surfaces of genus ¡ 1. It could be
interesting to investigate the shape of these subsets.

5 General case

5.1 Convexity of the covolume

Hausdorff metric Recall that KpΓq is the set of Γ-convex bodies for a given Γ. For K,K1 we define the
Hausdorff metric by

dpK,K1q � mintλ ¥ 0|K1 � λB � K,K � λB � K1u.
It is not hard to check that this is a distance and that Minkowski sum and multiplication by a positive scalar

are continuous for this distance. If we identify Γ-convex bodies with their support functions, then KpΓq is
isometric to a convex cone in C0pHd{Γq endowed with the maximum norm, i.e.:

dpK,K1q � sup
ηPHd{Γ

|hpηq � h1pηq|.

The proofs is easy and formally the same as in the Euclidean case [Schneider, 1993, 1.8.11].
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Lemma 5.1. The covolume is a continuous function.

Proof. Let K be inKpΓqwith support function h. For a given ε ¡ 0, choose λ ¡ 1 such that pλd�1�1qλd�1covolpKq   ε.
Let ρ   0 such that h ¡ ρ, and let α ¡ 0 be the minimum of h�ρ. Let α � minpα, p1�λqρq ¡ 0. In particular,

ρ ¤ h � α. (34)

Finally, let K with support function h be such that dpK,Kq   α. In particular, h � α   h, that, inserted in (34),
gives that ρ   h. This and the definition of α give

h ¤ h � α ¤ h � p1 � λqρ ¤ h � p1 � λqh,
i.e. λh ¤ h, i.e. λK � K, in particular covolpKq ¤ λd�1covolpKq. In a similar way we get covolpKq ¤ λd�1covolpKq.
This allows to write

covolpKq � covolpKq ¤ pλd�1 � 1qcovolpKq ¤ pλd�1 � 1qλd�1covolpKq   ε

covolpKq � covolpKq ¤ pλd�1 � 1qcovolpKq ¤ pλd�1 � 1qλd�1covolpKq   ε

i.e. |covolpKq � covolpKq|   ε. �

The general results are based on polyhedral approximation.

Lemma 5.2. Let K1, . . . ,Kp P KpΓq. There exists a sequence pP1
k , . . . , P

p
k qk of strongly isomorphic simple

Γ-convex polyhedra converging to pK1, . . . ,Kpq.
Proof. First, any Γ-convex body K is arbitrarily close to a Γ-convex polyhedron Q. Consider a finite number of
points on K and let Q be the polyhedron made by the hyperplanes orthogonal to the orbits of these points, and
passing through these points. We get K � Q. For any ε ¡ 0, if Q � εB is not included in K then add facets to
Q. The process ends by cocompactness.

Let Qi be a Γ-convex polyhedron arbitrary close to Ki, and let P be the Γ-convex polyhedron Q1�� � ��Qp.
Let us suppose that around a vertex x of P, two facets belong to the same orbit for the action of Γ. We perform
a little translation in direction of P of a support hyperplane at x, which is not a support hyperplane of a face
containing x. A new facet appears, the vertex x disappears, and the two facets in the same orbit share one less
vertex. Repeating this operation a finite number of times, we get a polyhedron P1 with NpP1q ¡ NpPq and
such that around each vertex, no facets belong to the same orbit. If P1 is not simple, there exists a vertex x
of P1 such that more than d � 1 facets meet at this vertex. We perform a small little parallel move of one of
this facets. In this case the number of facets meeting at the vertex x1 corresponding to x decreases, and new
vertices can appear, but the number of facets meeting at each of those vertices is strictly less than the number
of facets meeting at x. If the move is sufficiently small, the number of facets meeting at the other vertices is not
greater than it was on P1. Repeating this operation a finite number of times leads to the simple polyhedra P2,
and NpP2q ¡ NpP1q.

Now we define Pi � Qi � αP2, with α ¡ 0 sufficiently small such that Pi remains close to Qi and hence
close to Ki. By definition of P, NpPq ¡ NpQiq and finally NpP2q ¡ NpQiq hence NpPiq � NpP2q: all the Pi

are strongly isomorphic to P2, which is simple. �

Theorem 5.3. The covolume is a convex function on the space of Γ-convex bodies: for any K1,K2 P KpΓq,
@t P r0, 1s,

covolpp1 � tqK1 � tK2q ¤ tcovolpK1q � p1 � tqcovolpK2q.
Proof. By Lemma 5.2, there exist strongly isomorphic simple Γ-convex polyhedra P1 and P2 arbitrary close to
respectively K1 and K2. As for simple strongly isomorphic Γ-convex polyhedra, the addition of support vectors
is the same as Minkowski addition, Theorem 4.5 gives that

covolpp1 � tqP1 � tP2q ¤ tcovolpP1q � p1 � tqcovolpP2q
and the theorem follows by continuity of the covolume. �
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5.2 Mixed covolume and standard inequalities

Lemma 5.4. The covolume on KpΓq is a homogeneous polynomial of degree pd � 1q. Its polar form is the
mixed-covolume covolp�, . . . , �q, a continuous non-negative symmetric map on pKpΓqqd�1 such that

covolpK, . . . ,Kq � covolpKq.
Moreover if we restrict to a space of strongly isomorphic simple Γ-convex polyhedra, or to the space of C8

�

Γ-convex bodies, then covolp�, . . . , �q is the same map as the one previously considered.

Proof. Let us define

covolpK1, . . . ,Kd�1q � 1
pd � 1q!

d�1̧

i�1

p�1qd�1�k
¸

i1 ��� id�1

covolpKi1 � � � � � Kid�1q (35)

which is a symmetric map. From the continuity of the covolume and of the Minkowski addition, it is a con-
tinuous map. In the case when Ki are strongly isomorphic simple polyhedra, the right-hand side of (35) to the
mixed-covolumes previously introduced [Schneider, 1993, 5.1.3] (we also could have used another polarization
formula [Hörmander, 2007, (A.5)]). Let us consider a sequence of strongly isomorphic simple Γ-convex poly-
hedra P1pkq, . . . , Pd�1pkq converging to K1, . . . ,Kd�1 (Lemma 5.2). From the definition of the mixed-covolume
we have

covolpλ1P1pkq � � � � � λd�1Pd�1pkqq �
d�1̧

i1,...,id�1�1

λi1 � � � λid�1covolpPpkqi1 , . . . , Ppkqid�1q

and by continuity, passing to the limit,

covolpλ1K1 � � � � � λd�1Kd�1q �
d�1̧

i1,...,id�1�1

λi1 � � � λid�1covolpKi1 , . . . ,Kid�1q

so the covolume is a polynomial, and covolp�, . . . , �q introduced at the beginning of the proof is its polarization.
It is non-negative due to Corollary 4.11.

In the case of C2
� Γ-convex bodies, both notions of mixed-covolume satisfy (35). �

Theorem 5.5. Let Ki P KpΓq and 0   t   1. We have the following inequalities.

Reversed Alexandrov–Fenchel inequality:

covolpK1,K2,K3, . . . ,Kd�1q2 ¤ covolpK1,K1,K3, . . . ,Kd�1qcovolpK2,K2,K3, . . . ,Kd�1q
First reversed Minkowski inequality:

covolpK1,K2, . . . ,K2qd�1 ¤ covolpK2qdcovolpK1q
Second or quadratic reversed Minkowski inequality:

covolpK1,K2, . . . ,K2q2 ¤ covolpK2qcovolpK1,K1,K2, . . . ,K2q
Reversed Brunn–Minkowski inequality:

covolpp1 � tqK1 � tK2q
1

d�1 ¤ p1 � tqcovolpK1q
1

d�1 � tcovolpK2q
1

d�1

Reversed linearized first Minkowski inequality:

pd � 1qcovolpK1,K2, . . . ,K2q ¤ dcovolpK2q � covolpK1q
If all the Ki are C8

� or strongly isomorphic simple polyhedra, then equality holds in reversed Alexandrov–
Fenchel and second reversed Minkowski inequalities if and only if K1 and K2 are homothetic.

In the classical case of Euclidean convex bodies, the linearized first Minkowski inequality is valid only on
particular subsets of the space of convex bodies, see [Schneider, 1993, (6.7.11)].
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Proof. Let P1pkq, . . . , Pd�1pkq be a sequence of simple strongly isomorphic Γ-convex polyhedra converging to
K1, . . . ,Kd�1 (Lemma 5.2). Applying Cauchy–Schwarz inequality to the inner product covolp�, �, P3pkq, . . . , Pd�1pkqq
(Theorem 4.13) at pP1pkq, P2pkqq and passing to the limit gives reversed Alexandrov–Fenchel inequality. Equal-
ities cases follow from Theorem 3.11 and 4.13. The second reversed Minkowski inequality and its equality case
follows from Alexandrov–Fenchel inequality.

As the covolume is convex (Theorem 5.3), for K1 and K2 of unit covolume, for t P r0, 1s we get

covolpp1 � tqK1 � tK2q ¤ 1.

Taking Ki � Ki{covolpKiq
1

d�1 and

t � tcovolpK2q
1

d�1

p1 � tqcovolpK1q
1

d�1 � tcovolpK2q
1

d�1

leads to the reversed Brunn–Minkowski inequality.
As covolp�q is convex, the map

f pλq � covolpp1 � λqK1 � λK2q � p1 � λqcovolpK1q � λcovolpK2q, 0 ¤ λ ¤ 1,

is convex. As f p0q � f p1q � 0, we have f 1p0q ¤ 0, that is the reversed linearized first Minkowski inequality.
(Remember that

covolpp1 � λqK1 � λK2q � p1 � λqd�1covolpK1q � pd � 1qp1 � λqdλcovolpK1, . . . ,K1,K2q � λ2r. . .s.q

Reversed Brunn–Minkowski says that the map covolp�q 1
d�1 is convex. Doing the same as above with the

convex map

gpλq � covolpp1 � λqK1 � λK2q
1

d�1 � p1 � λqcovolpK1q
1

d�1 � λcovolpK2q
1

d�1 , 0 ¤ λ ¤ 1,

leads to the first reversed Minkowski inequality. �

The (Minkowski) area S pKq of a Γ-convex body K is pd�1qcovolpB,K, . . . ,Kq. Note that it can be defined
from the covolume:

S pKq � lim
εÑ0�

covolpK � εBq � covolpKq
ε

.

The following inequality says that, among Γ-convex bodies of area 1, B has smaller covolume, or equiva-
lently that among Γ-convex bodies of covolume 1, B has larger area.

Corollary 5.6 (Isoperimetric inequality). Let K be a Γ-convex body. Then

�
S pKq
S pBq


d�1

¤
�

covolpKq
covolpBq


d

.

Proof. It follows from the first reversed Minkowski with K1 � B, K2 � K, divided by S pBqd�1, with
pd � 1qcovolpBq � S pBq. �

Lemma 5.7. If K is a C8
� Γ-convex body, then S pKq is the volume of the Riemannian manifold BK{Γ.

If K is a Γ-convex polyhedron, then S pKq is the total face area of K (the sum of the area of the facets of K
in a fundamental domain).

In particular S pBq is the volume of the compact hyperbolic manifold Hd{Γ.
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Proof. The C2
� case follows from the formulas in Section 3, because B is a C2

� convex body.
Let K be polyhedral. Let pPkqk be a sequence of polyhedra converging to B and such that all the support

numbers of Pk are equal to 1 (i.e. all facets are tangent to Hd). Up to add facets, we can construct Pk such
that NpPkq ¡ NpKq and Pk is simple. Let α be a small positive number. The polyhedron K � αPk is strongly
isomorphic to Pk. It follows from formulas of Section 4 than pd�1qcovolpPk,K�αPk, . . . ,K�αPkq is equal to
the total face area of K �αPk. By continuity of the mixed-covolume, pd� 1qcovolpPk,K �αPk, . . . ,K �αPkq
converges to pd � 1qcovolpPk,K, . . . ,Kq when α goes to 0.

We associate to K a support vector hpKq whose entries are support numbers of facets of K, but also to
support hyperplanes of K parallel to facets of Pk. We also consider “false faces” of larger codimension, such
that the resulting normal fan is the same as the one of Pk. This is possible as the normal fan of Pk is finer than
the one of K. The support numbers of the false faces can be computed using (21) and (22) (i.e. K is seen as
an element of the closure of rPks). In particular hpK � αPkq � hpKq � αhpPkq and as the map s giving the
support numbers of a facet in terms of the support numbers of the polyhedron is linear, the area of this facet is
VEpsphpKqq � αsphpPkqqq. By continuity of the Euclidean volume, when α goes to 0 this area goes to the area
of the facet of K (it is 0 if the facet was a “false facet” of K). Hence pd � 1qcovolpPk,K, . . . ,Kq is equal to the
total face area of K, and on the other hand it goes to S pKq when k goes to infinity. �

Let us end with an example. Let K be a polyhedral Γ-convex body with support numbers equal to 1. In this
case S pKq � pd � 1qcovolpKq, and as S pBq � pd � 1qcovolpBq, the isoperimetric inequality becomes

S pKq
S pBq ¤ 1.

Let d � 2 and Γ be the Fuchsian group which has a regular octagon as a fundamental domain in the Klein
model of H2. Then by the Gauss–Bonnet theorem S pBq � 4π. The total face area of K is the area of
only one facet, which is eight times the area of a Euclidean triangle of height h1 � coshϕ�1

sinhϕ and with edge

length two times h1 1�cos π{4
sin π{4 (see (21) and (22)). ϕ is the distance between a point of H2 and its image by a

generator of Γ, and coshϕ � 2 � 2
?

2 (compare Example C p. 95 in [Katok, 1992] with Lemma 12.1.2 in
[Maclachlan and Reid, 2003]). By a direct computation the isoperimetric inequality becomes

0, 27 � 13 � 9
?

2 ¤ π

2
� 1, 57.

Remarks on equality cases and general Minkowski theorem Brunn–Minkowski inequality for non-degenerated
(convex) bodies in the Euclidean space comes with a description of the equality case. Namely, the equality
occurs for a t if and only if the bodies are homothetic (the part “if” is trivial). At a first sigh it is not pos-
sible to adapt the standard proof of the equality case to the Fuchsian case, as it heavily lies on translations
[Bonnesen and Fenchel, 1987, Schneider, 1993, Alexandrov, 2005].

If such a result was known, it should imply, in a way formally equivalent to the classical one, the charac-
terization of the equality case in the reversed first Minkowski inequality, as well as the uniqueness part in the
Minkowski theorem and the equality case in the isoperimetric equality (see below).

The Minkowski problem in the classical case is to find a convex body having a prescribed measure as
“area measure” (see notes of Section 5.1 in [Schneider, 1993]). It can be solved by approximation (by C2

�

or polyhedral convex bodies), see [Schneider, 1993], or by a variational argument using the volume, see
[Alexandrov, 1996]. Both methods require a compactness result, which is known as the Blaschke selection The-
orem. Another classical question about Minkowski problem in the C2

� case, is to know the regularity of the hy-
persurface with respect to the regularity of the curvature function, see the survey [Trudinger and Wang, 2008].
All those questions can be transposed in the setting of Fuchsian convex bodies.
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