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Cohomology of Deligne-Lusztig varieties for
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Olivier Dudas∗†

December 22, 2011

Abstract

We study the cohomology of parabolic Deligne-Lusztig varieties associ-

ated to unipotent blocks of GLn(q). We show that the geometric version of

Broué’s conjecture over Qℓ, together with Craven’s formula, holds for any

unipotent block whenever it holds for the principal Φ1-block.

Introduction

Let G be a connected reductive algebraic group over F = Fp with an Fq-

structure associated to a Frobenius endomorphism F. Let ℓ be a prime number

different from p and b be a unipotent ℓ-block of GF = G(Fq). When ℓ is large,

the defect group of b is abelian, and the geometric version of Broué’s conjecture

predicts that the cohomology of some Deligne-Lusztig variety should induce a

derived equivalence between b and its Brauer correspondent [2].

When the centraliser of the defect group of b is a torus, then in [4] Broué

and Michel identified which specific class of Deligne-Lusztig varieties should be

considered. They correspond to good d-regular elements or equivalently to d-

roots of π = w2
0 in the Braid monoid. In a recent work [9], Digne and Michel

introduced the notion of d-periodic element to generalise this to the parabolic

setting. If b is a unipotent Φd-block, then it is to be expected that there exists a

d-periodic element (I,w) such that the corresponding parabolic Deligne-Lusztig

variety X̃(I,wF) is a good candidate for inducing the derived equivalence pre-

dicted by Broué’s conjecture. Furthermore, Chuang and Rouquier conjectured in

[6] that this equivalence is perverse, with a perversity function that has recently

been conjectured by Craven in [7]. Surprisingly, it can be expressed by a function

Cd depending only on the generic degrees of the corresponding characters.
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If we restrict our attention to the characteristic zero then we obtain a con-

jectural explicit description of the unipotent part of the cohomology of X̃(I,wF).

The fundamental property that we derive from Broué’s conjecture is that the

cohomology groups of X(I,wF) are mutually disjoint. More precisely, it can be

formulated as follows:

Conjecture 1. Any d-cuspidal pair is conjugate to a pair (LwF
I

,χ) where (I,w)

is a d-periodic element. Moreover, if Fχ is the corresponding Qℓ-local system on

X(I,wF), then (I,w) can be chosen such that

(i) The QℓGF -modules Hi
(
X(I,wF),Fχ

)
are mutually disjoint.

(ii) If ρ is a irreducible unipotent constituent of Hi
(
X(I,wF),Fχ

)
then ρ lies in

the Φd-block associated to χ and i = Cd(degρ/degχ).

In addition, the endomorphism algebra EndGF

(
H•(X(I,wF),Fχ)

)
should be en-

dowed with a natural structure of d-cyclotomic Hecke algebra. Let us note the

following important consequence of this property: the eigenvalue of any suffi-

ciently divisible power Fm of F on ρ should be qm (aρ+Aρ−aχ−Aχ)/d.

The choice of a specific d-periodic element in this conjecture is not very rele-

vant: it is conjectured that any other d-periodic element (I,w′) can be obtained

from (I,w′) by cyclic shifts, so that the cohomology of the corresponding varieties

are isomorphic. This has already been proven when I=∅ and F acts trivially on

W (see [9, Remark 7.4]).

When d = 1, the unipotent blocks correspond to the usual Harish-Chandra

series. In particular, when (G,F) has type A, there is a unique unipotent block

and it contains all the unipotent characters. The purpose of this paper is to

show that from the cohomology of X(π) one can actually deduce all the other

interesting cases (see Corollary 3.2):

Theorem. For groups of type A, Conjecture 1 holds whenever it holds for d = 1,

that is for X(π).

Let us emphasize that Conjecture 1 is known to be true only in a very small

number of cases, namely when d = h is the Coxeter number by Lusztig [12], for

groups of rank 2 by Digne, Michel and Rouquier [10] and when d = n for An and

d = 4 for D4 by Digne and Michel [8]. Therefore this theorem represents a very

important step towards a proof of the geometric version of Broué’s conjecture.

Even though this result depends on the conjectural description of X(π), one

can give an effective proof of Conjecture 1 for principal Φd-blocks when d >

(n+1)/2. In that case the defect group is cyclic, and the modular representation

theory of the block is fully understood. We will address this problem in a subse-

quent paper, where we will compute the cohomology of Zℓ of the corresponding

Deligne-Lusztig variety.

To give a flavour of the proof of the main theorem, recall that for groups

of type A, we have by [3] a combinatorial description of the Deligne-Lusztig
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induction associated to X̃(I,wF). In terms of partitions, it corresponds to adding

a certain number of d-hooks. By transitivity, one can decompose X̃(I,wF) by

means of simpler varieties X̃n,d , each of which corresponds to adding a single d-

hook to a partition. Now, using the methods developed in [11] one can compute

the cohomology of (some quotient of) X̃n,d in terms of X̃n−1,d and X̃n−1,d−1 (see

Theorem 2.1), providing an inductive argument to tackle Conjecture 1.

Note finally that Theorem 2.1 can be generalised to many other situations

in type B, C and D. However, two main problems arise: firstly, the limit case is

either X(w0) or X(π) and does not contain all the unipotent characters. Secondly,

the methods in [11] work obviously for non-cuspidal unipotent characters only.

We can obtain partial results on the principal series in that situation, which we

believe are too coarse to be mentioned in this paper.

1 Parabolic varieties in type A

Throughout this paper, G will denote any connected reductive algebraic group

of type An over F= Fp. We will consider a Frobenius endomorphism F : G −→ G

defining a standard Fq-structure on G. Since we will be interested in unipo-

tent characters only, we will not make any specific choice for (G,F) in its isogeny

class. If H is any F-stable subgroup of G we will denote by H =HF the associated

finite group.

The Weyl group W of G is the symmetric group Sn and its Braid monoid B+

is the usual Artin monoid. It is generated by a set S = {s1, . . . ,sn} corresponding

to simple reflections s1, . . . , sn of W . Following [9], we define for 1≤ d ≤ n+1

vd = s1s2 · · ·sn−⌊ d
2
⌋
snsn−1 · · ·s⌊ d+1

2
⌋

and Jd =
{
si | ⌊

d+1
2

⌋+1≤ i ≤ n−⌊d
2
⌋
}
⊂ S.

We are interested in computing the cohomology of the variety

Xn,d = X(Jd,vdF)

with coefficients in any unipotent local system. Note that for d > 1, the element

vd is reduced so that we can work with the variety X(Jd,vdF). By [9, Lemma

11.7 and 11.8], the pair (Jd,vd) is d-periodic so that it makes sense to study the

cohomology of Xn,d . Recall from [9] that a d-periodic element is any pair (I,b)

with I ⊂ S and b ∈ B+ such that bF(b) · · ·Fd−1(b) = π/πI where π = w2
0

is the

generator of the pure Braid group. It has been shown in [9] that this forces bF

to normalise I. Note that when d ≤ (n+1)/2, vd is not maximal in the sense that

it is not extendable to a dth root of π/πI for a proper subset I of Jd. However, it

can still be used to associate to any unipotent block a "good" parabolic Deligne-

Lusztig variety. Before making any precise statement, we shall briefly recall the

combinatorial objects that we will use.

1.1. Φd-blocks of G. The unipotent characters of G are labeled by the partitions

of n+1. If λ is such a partition, we will denote by χλ the corresponding character,
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with the convention that χ(1,1,...,1) =StG is the Steinberg character of G. We shall

also fix a representation Vλ over Qℓ of character χλ. For 1 ≤ d ≤ n+1, the pair

(LJd
,vdF) represents a d-Levi subgroup of G. From [3], we know how to express

the d-Harish-Chandra induction in terms of combinatorics of partitions. To fix

the notation, let µ be a partition of n+1−d and X = {x1 < x2 < ·· · < xs} be a β-set

associated to µ. We may and we will assume that X is big enough, so that it

contains {0,1, · · · , d−1}. Let X ′ be the subset of X defined by X ′ = {x ∈ X |x+d ∉

X }. It represents the possible d-hooks that can be added to µ. For x ∈ X ′ we will

denote by µ∗ x the partition of n+1 which has (X r {x})∪ {x+d} as a β-set.

We fix an F-stable Tits homomorphism t : B+ −→ NG(T). By [9] the variety

Xn,d has an étale covering X̃n,d = X̃(Jd,vdF) with Galois group L
t(vd)F

Jd
. Since

(LJd
, t(vd)F) is a split group of type An−d , the partition µ defines a unipotent

local system Fµ on Xn,d such that H•
c(Xn,d ,Fµ) and H•

c(X̃n,d ,Qℓ)χµ
are isomorphic.

Then we deduce from [3, Section 3.4] that there exist signs εx =±1 such that the

d-Harish-Chandra induction of χµ is given by

RG
LJd

(χµ) =
∑

(−1)iHi
c(Xn,d,Fµ) =

∑

x∈X ′

εxχµ∗x.

In particular, the d-Harish-Chandra restriction of χλ ∈ IrrG is non-zero until we

reach the d-core ν of λ, which corresponds to a d-cuspidal character χν. The

unipotent characters in the Φd-block of G containing χλ are all the characters

that can be obtained by successive d-inductions from χν. They correspond to

partitions of n+1 that have ν as a d-core.

1.2. A parabolic variety associated to a Φd-block. The cohomology of the

variety Xn,d induces to a minimal d-induction since there is no d-split Levi be-

tween (LJd
, t(vd)F) and (G,F). By transitivity, one can form a Deligne-Lusztig

variety X(I,w) associated to the d-cuspidal character χν. Let n + 1 − ad be

the size of ν and consider for i = 1, . . . ,a the pairs (J
(i)
d

,v
(i)
d

) where (J
(0)
d

,v
(0)
d

) =

(Jd,vd) and (J
(i+1)
d

,v
(i+1)
d

) is the analogue of the pair (Jd,vd) for the split group

(L
J

(i)
d

, t(v(i)
d
· · ·v(1)

d
)F) of type An−id . Then one can readily check that the pair

(I,w)= (J(a)
d

,v(a)
d

· · ·v(1)
d

) is d-periodic.

By [9, Proposition 8.26] the associated Deligne-Lusztig variety X̃(I,wF) is

isomorphic to the following almalgamated product

X̃(J(1)
d

,v(1)
d

F)×
L

t(v
(1)
d

)F

J
(1)
d

· · ·×
L

t(v
(a−1)
d

···v
(1)
d

)F

J
(a−1)
d

X̃L
J

(a−1)
d

(J(a)
d

,v(a)
d

t(v(a−1)
d

· · ·v(1)
d

)F).

Now each variety in this decomposition corresponds to a variety X̃n−id,d for some

i = 0, . . . ,a−1. Since the cohomology of the latter with coefficients in a unipotent

local system depends only on the isogeny class of the group (here, the split type

An−id) we obtain

RΓc

(
X(I,wF

)
,Fν) ≃ RΓc(X̃n,d,Qℓ)⊗An−d

· · ·⊗An−(a−1)d
RΓc(Xn−(a−1)d,d ,Fν). (1.1)
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Consequently, if we believe that the vanishing property in Conjecture 1 holds

for the cohomology of X(I,w), then for any partition µ of n+1− d, the graded

G-module H•
c(Xn,d,Fµ) should be multiplicity-free.

1.3. Craven’s formula in type A. Conjecturally, the unipotent character χλ is

a constituent of only one cohomology group of RΓ
(
X(I,wF

)
,Fν). Craven proposed

in [7] a formula which gives the degree of this cohomology group in terms of d

and the generic degree of χλ and χµ. More precisely, he considers a function Cd

on some set of enhanced cyclotomic polynomials and conjectured that

〈
χλ ; Hi(X(I,w),Fν)

〉
G
6= 0 ⇐⇒ i = Cd(deg χλ)−Cd(degχν). (1.2)

Let us recall the definition of Cd: assume that P ⊂ Q[x] is a polynomial such

that the non-zero roots z1, . . . , zm (written with multiplicity) of P are all roots of

unity. Let us denote by d◦(P) the degree of P and by v(P) its valuation, that is

the degree of xd◦(P)P(x−1). Then Craven’s function Cd is defined by

Cd(P)=
1

d

(
d◦(P)+v(P)

)
+#

{
i = 1, . . . , m |Arg zi < 2π/d

}
−

1

2
#
{
i = 1, . . . , m | zi = 1

}
.

Here, the argument Arg z of a non-zero complex number z is taken in [0;2π).

More generally, if ζ= exp(2iπk/d) is a primitive d-root of unity, one can define a

function Cζ by replacing d by d/k and 1.2 should hold for dth roots of (π/πI)
k.

Note also that Craven’s function is additive: it satisfies Cζ(PQ)= Cζ(P)+Cζ(Q).

For groups of type A, the degree deg χλ of the unipotent character χλ is ex-

plicitely known (see for example [5, Section 13]). It is a polynomial in q of degree

Aλ and valuation aλ and no factors of the form (q−1) can appear. In particular,

Craven’s function can be written

Cζ(deg χλ)=
2π

Argζ

(
aλ+ Aλ

)
+#

{
i = 1, . . . , m |Arg zi <Argζ

}

where z1, . . . , zm are the roots with multiplicity of the polynomial deg χλ. Note

that with this description it is already not obvious that the rational number on

the right-hand side of 1.2 is actually an integer.

Since Cd is additive, formula 1.2 together with the quasi-isomorphism 1.1

suggests that the partition ν should not be necessarily a d-core. In the case

of an elementary d-induction (when a = 1) we can write everything explicitely

using [7, Proposition 9.1]; the second equality follows from an easy calculation:

Lemma 1.3. Let µ be a partition with corresponding β-set X that we assume to

be large enough. For x ∈ X ′, we have

Cd(deg χµ∗x)−Cd(deg χµ) = 2
(
n+1−d−x+#{y∈ X | y< x}

)
+#{y ∈ X |x < y< x+d}

and aµ∗x + Aµ∗x −aµ− Aµ = d(n−d+ s− x).

These integers give conjecturally the degree of the cohomology group of Xn,d

in which χµ∗x will appear, as well as the corresponding eigenvalue of the Frobe-

nius. Since we will work with the cohomology with compact support, we shall

rather work with the integers
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πd(X , x) = 2
(
n+ x−#{y ∈ X | y< x}

)
−#{y ∈ X |x < y< x+d}

and γd(X , x) = n+1+ x− s.

They are readily deduced from the previous ones by taking into account the

dimension of Xn,d (which is equal to ℓ(vd)= 2n+1−d). Now Conjecture 1 can be

deduced from the following:

Conjecture 1.4. Let n ≥ 1 be a positive integer and 1 ≤ d ≤ n+1. Let µ be a

partition of n−d+1 and X be its β-set, assumed to be large enough. Then

RΓc

(
Xn,d,Fµ

)
≃

⊕

x∈X ′

Vµ∗x [−πd(X , x)
]
⊗Qℓ

(
γd(X , x)

)

as a complex of G×〈F〉-modules.

The purpose of this paper is to prove that this conjecture holds for any d

whenever it holds for d = 1. As a byproduct, we shall deduce the cohomology of

parabolic Deligne-Lusztig varieties associated to any unipotent block from the

knowledge of the cohomology of X(w2
0
).

2 Decomposition of the quotient

The group (LJd
, v̇dF) is split of type An−d , therefore the unipotent represen-

tations of the corresponding finite group are labelled by partitions µ of n−d+1.

To such a partition one can associate a unipotent Qℓ-local system Fµ on Xn,d .

From [3] we know that the irreducible constituents of the virtual character∑
(−1)iHi

c(Xn,d,Fµ) correspond to the partitions of n+ 1 obtained by adding a

d-hook to µ. The restriction to Sn of the corresponding irreducible representa-

tion corresponds to a partition obtained by

• either restricting the hook (usually in two different ways),

• or restricting µ.

The main result of this section gives a geometric interpretation of this phe-

nomenon.

Theorem 2.1. Assume that d ≥ 2. Let I = {s j |1 ≤ j ≤ n−1}. Let µ be a partition

of n− d +1 and {µ( j)} be the set of partitions of n− d obtained by restricting µ.

Then there is a distinguished triangle in Db(QℓL I ×〈F〉-mod)

RΓc(Gm×Xn−1,d−1,Qℓ⊗Fµ)−→RΓc(Xn,d,Fµ)UI −→RΓc

(
Xn−1,d ,

⊕
Fµ( j)

)
[−2](1) 

Remark 2.2. From [1, Proposition 1.1] we can deduce that the cohomology of

a Deligne-Lusztig variety with coefficients in a unipotent local system depends

only on the type of (G,F). Therefore there is no ambiguity in the statement of

the theorem.
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We will use the results in [11] to compute the quotient of X̃(Jd, v̇dF) by the

finite group UI. Recall that Xn,d = X(Jd,vdF) can be decomposed into locally

closed PI-subvarieties Xx, where x is a I-reduced-Jd element of W . In our situa-

tion, at most two pieces will appear:

Lemma 2.3. Assume that 2≤ d ≤ n. The variety Xx is non-empty if and only if x

is one of the two following elements:

(1) x0 = snsn−1 · · · s1

(2) x1 = snsn−1 · · · sn−⌊ d
2 ⌋+1

.

Proof. For simplicity, we shall denote a = ⌊d+1
2

⌋ and b = n−⌊d
2
⌋ so that w = vd =

s1 · · · sbsn · · · sa and J = Jd = {a+ 1, . . ., b}. If x is a I-reduced-J element, then

x = snsn−1 · · · si with b + 1 ≤ i ≤ n + 1 or 1 ≤ i ≤ a. Recall from [11] that the

variety Xx is non-empty if and only if there exists y = y1 · · · yr ∈ WJ and an x-

distinguished subexpression γ of yw such that the products of the elements of γ

lies in (WI)
x. We first observe that for i ∉ {1, n+1} we have

(WI)
x = 〈s1, . . . , si−2, sisi−1si, si+1, . . . , sn〉.

Now, since x is reduced-J, the subexpression γ is the concatenation of (y1, . . . , yr)

and an xy-distinguished subexpression γ̃ of w. If i > b+1 or 2≤ i ≤ a, the group

WJ is included in (WI)
x. Therefore the product of the elements of γ̃ must lie in

(WI)
x. We shall distinguish two cases:

Case (1). We assume that i > b+1. In that case x commutes with any element

of WJ , so that γ̃ is an yx-distinguished subexpression of w. Then

• if x is trivial (that is if i = n+1), then any y-distinguished subexpression of

w contains necessarily sn and hence cannot produce any element of (WI)
x =

WI ;

• if x is non-trivial then i ≤ n, and a subexpression of w lies in (WI)
x if and

only if it does not contain si or si−1. However, such a subexpression will

never be yx-distinguished since for all v in WI we have vxsi−1 > vx.

We deduce that the variety Xx is empty in this case.

Case (2). We assume that 2 ≤ i ≤ a. The subexpression γ̃ is x yx-distinguished.

Since i ≤ a, we have xWJ = Wa,...,b−1. For j < i−1, we have xs j = s jx; moreover,

xsi−1 is I-reduced, so that γ̃ should start with (s1, . . . , si−1). In that case, the

product of the elements of γ̃ cannot belong to (WI)
x. Indeed, a subexpression of

si−1si · · · sbsn · · · sa starting with si−1 will never give an element of (WI)
x, the only

non-trivial situation being the case a= i:

• with the notation in [10, Section 2.1.2] we have sa−1sa+1 · · · sbsn · · · sa = sa+1

· · · sbsn · · · sa+1sa−1sa and neither sa−1 nor sa−1sa belongs to (WI)
x;

• sa−1sasa+1 · · · sbsn · · · sa = (sa−1sasa−1) sa−1sa+1 · · · sbsn · · · sa and we are back

to the previous case.

This forces the variety Xx to be empty.
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Proof of the Theorem. From the previous lemma we deduce that X̃(Jd,vdF) de-

composes as a disjoint union X̃(Jd,vdF) = X̃x0
∪ X̃x1

with X̃x0
being open. Using

[11] we shall now determine the cohomology of the quotient of each of these

varieties by UI . Throughout the proof, we will denote Ĩ = {s2, . . . , sn} ⊂ S the

conjugate of I by w0.

When x= x0 = wI w0 and d > 2 we are in the situation of [11, Proposition 3.4].

Indeed, vd = s1w′ with w′ ∈W2,...,n and s1 commutes with WJd
⊂W3,...,n−1 so that

we obtain

RΓc

(
UI\X̃x0

/N,Qℓ

)
≃ RΓc

(
Gm × X̃LI

(Kx0
, v̇F) / ẋ0 N ′,Qℓ

)

with v = x0w′ and Kx0
= I ∩ x0ΦJd

= x0 Jd. For simplicity, we shall rather consider

the conjugate by x0 of the right-hand side

Recall that N and N ′ are normal subgroup of LJd
and are both contained in

T. In particular, any unipotent character of LwF
Jd

(resp. of Lw′F
Jd

) is trivial on N

(resp. N ′). Consequently, for any unipotent character χ of LwF
Jd

we obtain the

following quasi-isomorphism of complexes of L I ×〈F〉-modules:

RΓc

(
UI\X̃x0

,Qℓ

)
χ ≃ RΓc

(
Gm × X̃LI

(x0 Jd, v̇F),Qℓ

)
ẋ0χ.

Finally, we observe that the varieties XLI
(x0 Jd, v̇F) and Xn−1,d−1 have the same

cohomology with coefficients in any unipotent local system. Indeed, if we denote

(s1, . . . , sn−1) by (t1, . . . , tn−1) if d is odd or by (tn−1, . . . , t1) if d is even, then we

have

v = t1t2 · · · tn−1−⌊ d−1
2 ⌋

tn−1 ṫn−2 · · · t⌊ d
2 ⌋

which corresponds to the element vd−1 in the Weyl group WI = 〈t1, . . . , tn−1〉 of

type An−1.

When x = x0 and d = 2, we can write v2 = ww′ with w = snsn−1 · · · s2 and

w′ = s1s2 · · · sn = s1w′′ so that Xn,2 ≃ X
(
{s2, . . . ,sn−1},ww′F

)
. Moreover, via this

isomorphism we have

Xx0
≃

⋃
y∈W

X(x0,y).

We claim that X(x0,y) is empty unless y ∈WIw0WJ′
2

where J ′
2
= Jw

2
= {s3, s4, . . . , sn}.

The piece X(x0,y) consists of pairs (px0PJ2
, p′yPJ′

2
) with p, p′ ∈PI such that p−1 p′ ∈

x0PJ2
wPJ′

2
y−1 and p′−1 F p ∈ yPJ′

2
w′PJ2

x−1
0 . In particular, if X(x0,y) is non-empty

then the double coset PI yPJ′
2

has a non-trivial intersection with x0Bw. But

x0 = wIw0 is reduced-Ĩ so that ℓ(x0w) = ℓ(x0)+ℓ(w) and x0Bw ⊂ PI w0PJ′
2
. This

forces y to lie in WIw0WJ′
2
. Note that w0(J ′

2
) ⊂ I so that the minimal element in

this coset is x0 and we have Xx0
≃X(x0,x0).

Now s1 commutes with J ′
2

and we can apply [11, Proposition 3.4] to obtain,

after conjugation by x0:

RΓc

(
UI\X̃x0

/N,Qℓ

)
≃ RΓc

(
Gm × X̃LI

(Kx0
,vv′F) / ẋ0 N ′,Qℓ

)
.
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with Kx0
= x0 J2, v = x0w and v′ = x0w′′. If we denote (s1, . . . , sn−1) by (tn−1, . . . , t1)

we obtain x0 J2 = {t2, . . . , tn−1} and vv′ = t1 · · ·tn−1tn−1 · · ·t1 so that the pair (Kx0
,vv′)

corresponds to (J1,v1) in the Weyl group WI of type An−1. As before, N and N ′

do not play any role if we consider the unipotent part of the previous quasi-

isomorphism.

When x= x1 we use [11, Proposition 3.2]: the conjugate of vd by x1 is

v = x1vd x−1
1

= s1s2 · · · sn−1−⌊ d
2
⌋
sn−1sn−2 · · · s⌊ d+1

2
⌋

which corresponds exactly to the element vd in WI. We can therefore identify

the cohomology of the varieties XLI
(Kx1

,vF) and Xn−1,d with coefficients in any

unipotent local system (see Remark 2.2). The group PI ∩
x1LJd

is a v̇F-stable

parabolic subgroup of x1LJd
and LKx1

= LI ∩
x1LJd

is a stable Levi complement.

Therefore it makes sense to consider the Harish-Chandra restriction ∗RJ
K
χ of

any unipotent character χ of L
v̇dF

Jd
≃ (x1LJd

)v̇F to Lv̇F
Kx1

. From [11, Proposition

3.2] (see also [11, Remark 3.12]) we deduce the following quasi-isomorphism

RΓc

(
UI\X̃x1

,Qℓ

)
χ[2](−1) ≃ RΓc

(
X̃LI

(Kx1
, v̇F),Qℓ

)
∗RJ

K
χ.

Let µ be a partition of n− d + 1. The cohomology of the variety Xn,d with

coefficients in the local system Fµ is given by

RΓc(Xn,d ,Fµ) ≃ RΓc

(
X̃(Jd,vdF),Qℓ

)
χµ

where χµ is the unipotent character of L
v̇dF

Jd
corresponding to the partition µ.

Since (LKx1
, v̇F) is a split group of type An−d−1, the Harish-Chandra restriction

of χµ from LẇF
Jd

≃ (x1LJd
)v̇F to Lv̇F

Kx1
is the sum of the χµi

’s where the µi ’s are the

partitions of n− d obtained by restricting µ. With with description, we get the

following isomorphisms in Db(QℓL I ×〈F〉-mod)

RΓc

(
UI\X̃x0

,Qℓ

)
χµ

≃ RΓc

(
Gm ×Xn−1,d−1,Qℓ⊗Fµ

)

and RΓc

(
UI\X̃x1

,Qℓ

)
χµ

≃ RΓc

(
Xn−1,d ,

⊕
Fµi

)
[−2](1).

We conclude using the distinguished triangle associated to the decomposition

X̃n,d = X̃x0
∪ X̃x1

in which X̃x0
is open.

3 Cohomology over Qℓ

We have just seen how to relate the Harish-Chandra restriction of the coho-

mology of Xn,d to the cohomology of smaller parabolic Deligne-Lusztig varieties.

We shall now explain how this strategy provides an inductive method for a thor-

ough determination of the cohomology of Xn,d with coefficients in any unipotent

local system. The main result in this section gives an inductive strategy towards

a proof of Conjecture 1:
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Theorem 3.1. Let n ≥ 1 and 2 ≤ d ≤ n. If Conjecture 1.4 holds for (n, d + 1),

(n−1, d−1) and (n−1, d) then it holds for (n, d).

Note that we already know from [12] that Conjecture 1.4 holds in the Coxeter

case, corresponding to (n, n+ 1). Therefore d = 1 is the only limit case. But

π = w2
0 is a maximal 1-periodic element in the sense of [9] and in that specific

case, a general conjecture for the cohomology has been already formulated in [4]:

a unipotent character χλ can appear in Hi
c(X(π)) for i = 4νG −2Aλ only, where

νG is the number of positive roots. An important consequence of Theorem 3.1 is

that knowing the cohomology of X(π) is sufficient for determining all the other

interesting cases:

Corollary 3.2. For groups of type A, Conjecture 1 holds for any d ≥ 1 as soon as

it holds for d = 1.

Proof. Assume that Conjecture 1 holds for d = 1, that is for the variety X(π). Let

I = J1 = {s2, . . . , sn} and b= v1 = s1 · · ·snsn · · ·s1. By [9, Proposition 8.26] we have

RΓc

(
X(π),Qℓ

)
≃RΓc

(
X̃(I,bF),Qℓ

)
⊗
QℓLt(b)F

I

RΓc

(
X(πI),Qℓ

)
.

Since the cohomology of X(πI) contains all the unipotent characters of L
t(b)F
I

,

we deduce that for any partition µ of n, the groups Hi
c(Xn,1,Fµ) are submodules

of the cohomology groups of X(π). Consequently, they are disjoint as soon as

Conjecture 1 holds for X(π). Since we have assumed that it holds also for X(πI )

we have actually

Hi
c

(
X(π),Qℓ

)
≃

⊕
µ−n

H
i−4νLI

+2Aµ

c

(
Xn,1,Fµ

)
(2νLI

−aµ− Aµ) (3.3)

as a G × 〈F〉-module. Now, the alternating sum of the cohomology groups of

Xn,1 represents the Deligne-Lusztig induction from L
t(b)F
I

≃ L I to G. Therefore

a character χλ appear in H•
c(Xn,1,Fµ) if and only if µ is the restriction of λ, or

equivalently, if λ is obtained from µ by adding a 1-hook. This, together with 3.3

and Lemma 1.3 proves that Conjecture 1.4 holds for Xn,1, and therefore for any

variety Xn,d by 3.1. We use 1.1 to conclude.

Proof of the Theorem. Let X be a β-set associated the partition µ of n−d+1. We

can always assume that it contains {0,1, . . ., d−1}. The partitions µ( j)’s of n−d

which are obtained by restricting µ can be associated to the following β-set:

X ( j) = {x
( j)

1
< ·· · < x

( j)
s } with x

( j)

i
=

{
x j −1 if i = j;

xi otherwise.

Let I = {s1, . . . , sn−1}. By Theorem 2.1, the Harish-Chandra restriction of the

cohomology of Xn,d can be fitted into the following distinguished triangle:

RΓc(Gm×Xn−1,d−1,Qℓ⊗Fµ)−→RΓc(Xn,d,Fµ)UI −→RΓc

(
Xn−1,d ,

⊕
Fµ( j)

)
[−2](1) 

Now, if we assume that Conjecture 1.4 holds for both (n−1, d−1) and (n−1, d),

the complexes on the left and right-hand side are completely determined. Let us

examine the different eigenvalues of F that can appear:
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(a) on C = RΓc(Gm ×Xn−1,d−1,Qℓ⊗Fµ), the eigenvalues of F are qn+x−s and

qn+1+x−s with x ∈ X such that x+ d −1 ∉ X . The character of the corre-

sponding eigenspace is χλ where λ is the partition of n obtained by adding

to µ a (d−1)-hook represented by x;

(b) on D ( j) =RΓc(Xn−1,d ,Fµ( j))[−2](1), the eigenvalues of F are qn+1+x−s where

x ∈ X ( j) is such that x+d ∉ X ( j). The character of the corresponding eigen-

space is χλ where λ is the partition of n obtained by adding to µ( j) a d-hook

represented by x.

We shall now determine H•
c(Xn,d ,Fµ)UI by studying each eigenspace of F sep-

arately. For x a positive integer, we can separate the following cases:

Case (1). Assume first that x ∈ X and x+ d ∉ X . Let λ = µ∗ x be the partition

of n+1 obtained by adding to µ a d-hook from x. We want to prove that the

qn+1−s+x-eigenspace of F on H•
c(Xn,d ,Fµ)UI is non-zero in degree πd(X , x) only

and that its character is the Harish-Chandra restriction of χλ.

By (a), the qn+1+x−s-eigenspace of F on C will produce non-zero representa-

tions in the following two cases:

• if x+ d −1 ∉ X , then one obtains a character associated to the β-set (X r

{x})∪ {x+d−1} and it is concentrated in degree

2+πd−1(X , x) = 2+2
(
n−1+ x−#{y∈ X | y< x}

)
−#{y∈ X |x< y< x+d−1}

= 2
(
n+ x−#{y ∈ X | y< x}

)
−#{y ∈ X |x < y< x+d−1}

= πd(X , x).

• if x+1 ∈ X , then the corresponding β-set is (X r {x+1})∪ {x+ d} and the

associated character appears in degree 1+πd−1(X , x+1) only. But we have

πd−1(X , x+1) = 2
(
n+ x−#{y ∈ X | y< x+1}

)
−#{y ∈ X |x+1 < y< x+d}

= 2
(
n+ x−1−#{y ∈ X | y< x}

)
−

(
#{y∈ X |x< y< x+d}−1

)

= πd(X , x)−1.

On the other hand, the qn+1+x−s-eigenspace of F on D ( j) is non-zero if and

only if x ∈ X ( j) and x+ d ∉ X ( j). This happens if and only if x and x+ d +1 are

different from x j. In that case, the β-set corresponding to the character of the

eigenspace will be (X ( j)
r {x})∪ {x+ d}. Furthermore, the degree in which this

character will appear is 2+πd(X ( j), x), which is clearly equal to πd(X , x) in that

case.

Now, the β-set Y = (X r {x})∪ {x+ d} is associated to the partition λ = µ∗ x.

As mentioned in the beginning of Section 2, the restriction of λ is obtained by

restricting the hook (usually in two different ways) or by restricting µ. In the

framework of β-sets, it corresponds to decreasing specific elements of Y :

• if x+ d −1 ∉ X , one can replace x+ d by x+ d −1 in Y and we obtain the

β-set (X r {x})∪ {x+d−1};
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• if x+1 ∈ X , one can replace x+1 by x in Y and we obtain the β-set (X r

{x+1})∪ {x+d};

• if x j ∈ X is different from x or from x+d+1, and if x j −1 ∉ X , then one can

replace x j by x j −1 in Y to obtain the β-set (X ( j)
r {x})∪ {x+d}.

This shows that the character of the qn+1+x−s-eigenspace of F on H•
c(Xn,d,Fµ)UI

is the Harish-Chandra restriction of χµ∗x.

Lemma 3.4. Let λ be a partition of n+1, with n ≥ 3 and let χ be a (non-necessarily

irreducible) unipotent character of G. Then the Harish-Chandra restriction of χ

and χλ are equal if and only if χ= χλ.

Proof of the Lemma. Assume that there exists a partition ν = {ν1 ≤ ν2 ≤ ·· · ≤

νr} of n+ 1 with ν1 6= 0 such that the difference between the Harish-Chandra

restriction of χλ and χν is still a unipotent character. This means that in the

Young diagram of ν, any box that can be removed can be replaced to form the

Young diagram of λ. If ν 6=λ, this is possible only if ν1 = ν2 = ·· · = νr.

Let χ be a unipotent character of G which has the same Harish-Chandra

restriction as χλ. If χ 6= χλ, we deduce from the previous argument that all the

irreducible constituents of χ are of the form χν with ν = (a,a, . . . ,a). This can

happen if and only if n = 2 and λ= (1,2).

When n ≥ 3, we deduce that the qn+1+x−s-eigenspace of F on H•
c(Xn,d ,Fµ) is

actually χµ∗x. If n = 2, then the only ambiguity concerns χµ∗x when µ∗ x = (1,2).

In that case, the qn+1+x−s-eigenspace can be either χµ∗x or 1G +StG . But by [9,

Corollary 8.28], the trivial character and the Steinberg character cannot occur

in the same cohomology group of Xn,d as soon as the dimension of this variety is

non-zero.

Case (2). Assume now that x ∉ X . The qn+1+x−s-eigenspace of F on D ( j) is non-

zero if and only if x ∈ X ( j) and x+d ∉ X ( j). Since x ∉ X , this forces x= x
( j)

j
= x j −1

and x j + d −1 ∉ X . In that case, its character corresponds to a partition with

β-set (X r {x+1})∪ {x+ d} and it appears in degree 2+πd(X ( j), x) only. On the

other hand, the qn+1+x−s-eigenspace of F on C is non-zero if and only if x+1 ∈ X

and x+1+d−1= x+d ∉ X . By (a), the character of this eigenspace corresponds

to a partition with β-set (X r {x+1})∪ {x+d}. Furthermore, it appears in degree

1+πd−1(X , x+1) only. Note that in that case we have

πd−1(X , x+1) = 2
(
n+ x−#{y ∈ X | y< x+1}

)
−#{y∈ X |x+1< y< x+d}

= 2
(
n+ x−#{y ∈ X | y< x}

)
−

(
#{y∈ X |x< y< x+d}−1

)

= πd(X , x)+1

and πd(X ( j), x) = 2
(
n−1+ x−#{y ∈ X ( j) | y< x}

)
−#{y ∈ X ( j) |x < y< x+d}

= 2
(
n−1+ x−#{y ∈ X | y< x}

)
−

(
#{y ∈ X |x < y< x+d}−1

)

= πd(X , x)−1.
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We deduce that the qn+1+x−s-eigenspace of F on H•
c(Xn,d ,Fµ)UI is isotypic

and concentrated in two consecutive degrees. However, there are only a few

unipotent characters that can have an isotypic Harish-Chandra restriction: they

correspond to partitions of the form (a,a, . . . ,a). Among them we can find the

Steinberg character StG (with a= 1) and the trivial character 1G (with a= n+1).

But by [9, Corollary 8.28] they have respective eigenvalues 1 and q2n+1−d. Let

us write the β-set of µ as X = {0,1, . . ., k−1,µ1 + k,µ2 + k+1, . . .,µr + s−1} with

k ≥ d. Since x ∉ X , one must have k−1< x <µr + s−1 and hence

d−1≤ n+k− s< n+1+ x− s< n+1+µr −1≤ 2n+1−d. (3.5)

We deduce that the qn+1+x−s-eigenspace of F on H•
c(Xn,d ,Fµ) is either zero, or

consists of two copies of the character χλ in two consecutive degrees, where λ=

(a,a, . . .,a) with 1 < a < n+1. We shall actually prove that it is always zero, but

before that we need to study the last case.

Remark 3.6. The Harish-Chandra restriction of χλ corresponds to the partition

(a−1,a, . . .,a). Therefore if the associated character appears in the cohomology

of C then the β-set (X r {x+1})∪ {x+ d} must correspond to the partition (a−

1,a, . . .,a). This gives a rather strong condition on X : we will have either

X = {0,1, . . ., k−1, x+1, b, b+2, b+3, . . ., �x+d, . . . , b+ r}

with b+2≤ x+d ≤ b+ r, or

X = {0,1, . . ., k−1, x+1, x+d+2, x+d+3, . . ., x+d+ r}.

Case (3). Finally, assume that x ∈ X and x+ d ∈ X . The qn+1+x−s-eigenspace

of F on D ( j) is non-zero if and only if x ∈ X ( j) and x+ d ∉ X ( j). Since x+ d ∈ X ,

this forces x+ d = x j (and therefore x j −1 ∉ X ). In that case, the character of

the eigenspace corresponds to a partition with β-set (X ( j)
r {x})∪ {x+ d} = (X r

{x})∪ {x+d−1}. On C , the Frobenius has a non-zero qn+1+x−s-eigenspace if and

only if x+d−1 ∉ X and its character is again associated to the β-set (X r {x})∪

{x+ d −1}. This ensures that the qn+1+x−s-eigenspace of F on H•
c(Xn,d ,Fµ)UI is

isotypic. Using x+d−1 instead of x in the inequalities 3.5 yields 0< n+1+x−s<

2n+2−2d and therefore the previous argument applies. We deduce that the

qn+1+x−s-eigenspace of F on H•
c(Xn,d ,Fµ) is again either zero or consists of two

copies of the character χλ in two consecutive degrees, namely πd(X , x)−1 and

πd(X , x), where λ= (a,a, . . . ,a) and 1< a< n+1.

To conclude, we need to prove that the qn+1+x−s-eigenspaces of F are actually

zero whenever x ∉ X or x+d ∈ X . Let us first summarize what we have proven

so far:

(1) if x ∈ X and x+d ∉ X then the qn+1+x−s-eigenspace of F on H•
c(Xn,d,Fµ) is

χµ∗x and it appears in degree πd(X , x) only;

(2) if x ∉ X , the qn+1+x−s-eigenspace of F is zero unless x+1 ∈ X and x+d ∉ X .

In that case, it may consist of two copies of χλ, one in degree πd(X , x)+1

and one in degree πd(X , x)+ 2, where λ = (a,a, . . . ,a) with 1 < a < n+ 1.
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Moreover, the β-set (X r {x+1})∪ {x+d} must correspond to the partition

(a−1,a, . . . ,a) (see Remark 3.6);

(3) if x ∈ X and x+ d ∈ X , the qn+1+x−s-eigenspace of F is zero unless x+ d −

1 ∉ X . In that case, it can only be χλ-isotypic with λ = (a,a, . . . ,a) and

1 < a < n+1. Moreover, it is non-zero in degrees πd(X , x)−1 and πd(X , x)

only, and (Xr{x})∪{x+d−1} must be a β-set of the partition (a−1,a, . . .,a).

Now, if we assume that Conjecture 1.4 holds for the variety Xn,d+1, then we can

use the distinguished triangle

RΓc(Gm×Xn,d ,Qℓ⊗Fµ)−→RΓc(Xn+1,d+1,Fµ)UI −→RΓc

(
Xn,d+1,

⊕
Fµ( j)

)
[−2](1) 

from Theorem 2.1 to prove that the eigenspaces of F on H•
c(Xn,d ,Fµ) in cases (2)

and (3) are indeed zero.

Assume that x ∉ X and that there exists 1< a< n+1 such that the character

χλ = χ(a,a,...,a) appears twice in the qn+1+x−s-eigenspace of F on the cohomology

of Xn,d − that is in degrees πd(X , x)+1 and πd(X , x)+2. Then,

• if x−1 ∉ X , the qn+1+x−s-eigenspace of F on H•
c(Gm ×Xn,d ,Qℓ⊗Fµ) is χλ-

isotypic by (2) (we have x−1+1 ∉ X ). Moreover, the qn+1+x−s-eigenspace

of F on H•
c

(
Xn,d+1,

⊕
Fµ( j)

)
[−2](1) is zero since Conjecture 1.4 holds for the

variety Xn,d+1. We deduce that the eigenspace on H•
c(Xn+1,d+1,Fµ)UI is χλ-

isotypic, which is impossible since no unipotent character can have χλ as a

Harish-Chandra restriction when 1< a< n+1.

• if x−1 ∈ X , then since x−1+ d +1 ∉ X , the qn+1+x−s-eigenspace of F on

H•
c(Gm ×Xn,d ,Qℓ ⊗Fµ) and H•

c

(
Xn,d+1,

⊕
Fµ( j)

)
[−2](1) can be determined

as in case (1). It corresponds to the Harish-Chandra restriction of the

partition µ∗ (x− 1) obtained from µ by adding a (d + 1)-hook from x− 1.

Furthermore, they will appear in degree πd+1(X , x−1) only, which is equal

to

πd+1(X , x−1) = 2
(
n+ x−#{y ∈ X | y< x−1}

)
−#{y∈ X |x−1< y< x+d}

= 2
(
n+ x+1−#{y∈ X | y< x}

)
−#{y∈ X |x< y< x+d}

= πd(X , x)+2.

To these characters we have to add the contribution of χλ and possibly of

an other character χλ′ corresponding to λ = (a′,a′, . . . ,a′) (when the case

(3) applies to x− 1). Now, we claim that neither χλ nor χ′
λ

can appear

in the qn+1+x−s-eigenspace of F on H•
c

(
Xn,d+1,

⊕
Fµ( j)

)
[−2](1). Indeed the

assumptions on x force X (see Remark 3.6) to be either

X = {0,1, . . ., k−1, k+1, b, b+2, b+3, . . ., �k+d, . . . , b+ r}

with b+2≤ k+d ≤ b+ r, or

X = {0,1, . . ., k−1, k+1, k+d+2, k+d+3, . . ., k+d+ r}.

Therefore a β-set corresponding to the partition µ∗ (x−1) of n+2 is either
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{0,1, . . ., k−2, k+1, b, b+2, b+3, . . ., b+ r}

with b+2≤ k+d ≤ b+ r, or

{0,1, . . ., k−2, k+1, k+d, k+d+2, k+d+3, . . ., k+d+ r}.

We deduce that the restriction of µ∗(x−1) will never produce λ or λ′ unless

r = 2, b = k+2 and d = 4 in the first case, or r = 2 and d = 2 in the second

case. In these very specific cases, we have either X = {0, . . . , k−1, k+1, k+2},

which corresponds to the partition µ= (1,1) or X = {0, . . . , k−1, k+1, k+4},

which corresponds to µ = (1,3). In this situation, we get λ = (3,3) and

µ∗(x−1) = (2,2,3). But (3,3) cannot be obtain by restricting µ∗(x−1). This

proves that the qn+1+x−s-eigenspace of F on H
πd(X ,x)+2
c (Xn+1,d+1,Fµ)UI is

just χλ (plus possibly χλ′), which is impossible by the properties of the

Harish-Chandra restriction.

The same argument can be adapted to deal with the case (3), if we rather

look at the qn+2+x−s-eigenspace and distinguish whether x+1+d is an element

of X or not. The details are left to the reader.
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