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Cohomology of Deligne-Lusztig varieties for

short-length regular elements in exceptional

groups

Olivier Dudas∗†

December 22, 2011

Abstract

We determine the cohomology of Deligne-Lusztig varieties associated to

some short-length regular elements for split groups of type F4 and En. As

a byproduct, we obtain conjectural Brauer trees for the principal Φ14-block

of E7 and the principal Φ24-block of E8.

Introduction

Let G be a finite group and ℓ be a prime number. The ℓ-modular represen-

tation theory of G is somehow controlled by the representation theory of local

subgroups, namely the ℓ-subgroups of G and their normalisers. Broué’s abelian

defect conjecture is one of the major open problems in this framework: it pre-

dicts that an ℓ-block of G with abelian defect group is derived equivalent to its

Brauer correspondent. From the work of Rickard [24], we know that such an

equivalence should be induced by a perfect complex. Unfortunately, there is no

canonical construction in general.

When G = GF is a finite reductive group, Broué’s suggested that the com-

plex representing the cohomology of some Deligne-Lusztig variety should be a

good candidate. Together with Michel in [3], they made precise which specific

Deligne-Lusztig varieties would be associated to principal Φd-blocks when d is

a regular number. They introduced the notion of good d-regular elements w ∈W

and conjectured that

• for i 6= j, the groups Hi
c(X(w),Qℓ) and H

j
c(X(w),Qℓ) have no irreducible con-

stituents in common;
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• the irreducible constituents of H•
c(X(w),Qℓ) are exactly the unipotent char-

acters lying in the principal Φd-block;

• the endomorphism algebra EndGF

(
H•

c(X(w),Qℓ)
)

is a d-cyclotomic Hecke

algebra.

As for now, these statements have been veryfied in very few cases only. Comput-

ing the cohomology of a Deligne-Lusztig variety is a difficult problem, and the

only results in this direction have been obtained by Lusztig in [20] when d is

the Coxeter number (that is when w is a Coxeter element of W), for groups of

rank 2 by Digne, Michel and Rouquier in [11] and for d = n in type An and d = 4

in type D4 by Digne and Michel in [9]. The purpose of this paper is to provide

new examples for exceptional groups and in the spirit of Broué’s conjecture, to

deduce structural properties of the corresponding Φd-block.

We shall adapt Lusztig’s strategy: if a character is non-cuspidal then it

should appear in the cohomology of a certain quotient of the Deligne-Lusztig

variety X(w). In the Coxeter case, Lusztig proved that this quotient can be ex-

pressed in terms of a Deligne-Lusztig variety associated to a "smaller" Coxeter

element, providing an inductive method to compute the cohomology of X(w). The

first step towards our main result is to show an analogous property for the d-

regular elements we are interested in. To this end we will make extensive use

of [14]. Unfortunately, this will not give enough information to deal with non-

principal series. In order to compute the cuspidal part of the cohomology of X(w),

we shall, as in [20], introduce compactifications of X(w). Unlike the Coxeter case,

the cuspidal part of H•
c(X(w),Qℓ) might not be concentrated in degree ℓ(w) since

some of the divisors of X(w) might provide cuspidal characters. However, the re-

sults in [11] are sufficient to determine explicitely in which groups they actually

appear and we obtain the following result:

Theorem. Let w be a good d-regular element. Then the contribution of the prin-

cipal series and the discrete series to the cohomology of the Deligne-Lusztig vari-

ety X(w) is explicitely known in the following cases:

• (G,F) has type F4 and d = 8;

• (G,F) has type E6 and d = 9;

• (G,F) has type E7 and d = 14;

• (G,F) has type E8 and d = 24.

We will also obtain partial results for the other series, as well as predictions on

their contribution, in line with the formula given by Craven in [6].

Using Lusztig’s results in the Coxeter case, Hiss, Lübeck and Malle have

conjectured that the Brauer tree of the principal Φh-block can be read off the

cohomology of the Coxeter variety [19]. Using the existing Brauer trees and

the previous theorem, we propose conjectural planar embedded Brauer trees for

the principal Φ14-block of E7 and for the principal Φ24-block of E8 (see Figure 3

and 4). We believe that a further study of the cohomology of the corresponding
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Deligne-Lusztig varieties as in [12], [13] and [15] should give credit to these

predictions.

1 Methods for determining the cohomology

Let G be a connected reductive group, together with a Frobenius F defining

a Fq-structure on G. If H is any F-stable algebraic subgroup of G, we will denote

by H the finite group of fixed points HF . We fix a Borel subgroup B containing a

maximal torus T of G such that both B and T are F-stable. The associated Weyl

group is W = NG(T)/T and the set of simple reflections will be denoted by S. We

will assume that (G,F) is split, so that F acts trivially on W .

Recall from [7] that to any element w ∈W one can associate a Deligne-Lusztig

variety

X(w) =
{
gB∈G/B | g−1 F g ∈BwB

}
.

It is a quasi-projective variety of pure dimension ℓ(w), on which G acts by left

multiplication. This definition has been subsequently generalized in [3] to ele-

ments of the Artin-Tits monoid B+.

The ℓ-adic cohomology of X(w) carries a lot of information on ordinary and

modular representations of G. Throughout this paper, we will be interested in

the case where w is a good d-regular element, or equivalently when w is a d-

root of π = w2
0 in the Braid group of W . In that case, it is conjectured that the

cohomology of X(w) gives a good model for the unipotent part of the principal

Φd-block (see for example [3] and [2] or the introduction for more details).

1.1 Non-cuspidal characters

To any subset I ⊂ S one can associate a standard parabolic subgroup PI

containing B and a standard Levi subgroup LI containing T. If UI denotes the

unipotent radical of PI , the parabolic subgroup decomposes as PI = LIUI and

both LI and UI are F-stable. By [17, XVII, 6.2.5], the UI-invariant part of the

cohomology of X(w) is isomorphic to the cohomology of UI\X(w). Consequently,

one can detect the presence of non-cuspidal modules in the cohomology of X(w)

by studying the quotient variety UI\X(w) for various subsets I. In some specific

cases, we can express such a quotient (or at least its cohomology) by means of

smaller Deligne-Lusztig varieties.

Let b=w1 · · ·wr ∈ B+ be an element of the Braid monoid, written as a product

of reduced elements (i.e. wi ∈W). Recall from [14] that the decomposition of G/B

into PI-orbits induces a decomposition of X(b) into locally closed PI-subvarieties,

called pieces

X(WI x1,...,WI xr)(b) = X(b)∩
(
PI x1B/B×·· ·×PI xrB/B

)

where each xi runs over the set of I-reduced elements of W . When I and b are

clear from context, we shall simply denote this variety by X(x1,...,xr). Throughout
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this paper, we will make extensive use of a particular case of the main theorem

of [14]. It can be deduced from [14, Remark 3.12] when each set I i is empty and

all the xi ’s are equal to the same element:

Theorem 1.1. Let b=w1 · · ·wr ∈ B+ with wi ∈W , I be a subset of S and x be an

I-reduced element of W . We assume that each wi can be decomposed as wi = γiw
′
i

with γi ∈ S∪ {1} and w′
i
≤ wi be such that

(a) if γi = 1 then vi = xwix
−1 ∈WI ;

(b) if γi ∈ S then xγix
−1 ∉WI , vi = xw′

i
x−1 ∈WI and ℓ(w′

i
)= ℓ(vi).

Let d be the number of wi ’s satisfying condition (b) and e =
∑

dim(Ux
I
∩w′

iU∩U−).

Then we have the following isomorphism of graded L I ×〈F〉-modules:

H•
c(UI\X(x,...,x)) ≃ H•

c

(
(Gm)d ×XLI

(v1 · · ·vr)
)
[−2e](e).

Remark 1.2. In the particular cases we will be interested in, b will always be

reduced. In that case, it corresponds to an element w ∈ W and we have w =

w1 · · ·wr with ℓ(w) = ℓ(w1)+ ·· ·+ℓ(wr). Note that in general the variety X(b) ⊂

(G/B)r can have much more pieces that X(w)⊂G/B, since

XWI x(w) =
⋃

x2,...,xr

I-reduced

X(WI x,WI x2,...,WI xr)(b).

However, in our specific examples we will observe that the piece X(WI x,WI x2,...,WI xr)

will be empty unless x2 = ·· · = xr = x, so that Xx ≃X(x,x,...,x).

1.2 Cuspidal characters

By definition, cuspidal representations of G have no non-zero element invari-

ant under the action of UI unless I = S. In particular, the cohomology of the quo-

tient variety UI\X(w) contains no information on the cuspidal characters that

can appear in X(w). In this section we shall briefly review some methods devel-

opped in [9] and [11] in order to solve the problem of finding cuspidal characters

in the cohomology of Deligne-Lusztig varieties.

Let b = w1 · · ·wr with wi ∈ W . Recall that the variety X(b) has a nice com-

pactification

X(w1 · · ·wr)=
{
(g0, g1, . . . , gr)∈ (G/B)r+1

∣∣ g−1
i−1

g i ∈BwiB and g−1
r F(g0) ∈B

}

which has the following properties (see [9] and [11]) :

Proposition 1.3. Let w1, . . . ,wr be elements of W ,

(i) X(w1 · · ·wr) is a projective variety of dimension ℓ(w1)+·· ·+ℓ(wr);

(ii) X(w1 · · ·wr) is smooth whenever each variety BwiB is;

(iii) X(w1 · · ·wr) is rationally smooth whenever each variety BwiB is;

(iv) X(w1 · · ·wr) has a filtration by closed subvarieties X(v1 · · ·vr) where the vi ’s

satifisfy vi ≤ wi.
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Remark 1.4. A particular case is when each wi is a simple reflection si. Then

the variety X(w1 · · ·wr) coincides with the smooth compactification introduced by

Deligne and Lusztig in [7].

Let w ∈ W . In order to compute the cuspidal part of the cohomology of X(w)

using the previous compactifications, we will use the following results:

(C1) the cohomology of X(w) over Qℓ is zero outside the degress ℓ(w), . . . ,2ℓ(w)

[11, Corollary 3.3.22];

(C2) the following triangle is distinguished in Db(QℓG-Mod) :

RΓc

(
X(w),Qℓ

)
−→ RΓc

(
X(w),Qℓ

)
−→RΓc

( ⋃
v<w

X(v),Qℓ

)
 

(C3) when X(w) is rationally smooth, its cohomology as a graded G × 〈F〉mon-

module can be explicitely computed using [11, Corollary 3.3.8];

(C4) let ρ be a cuspidal representation of G that appears in the cohomology of

a Deligne-Lusztig variety associated to a Coxeter element of W . If w itself

is not a Coxeter element, any eigenvalue λ of F on Hℓ(w)
c (X(w),Qℓ)ρ satisfy

|λ| < |qℓ(w)/2|. This is a particular case of [11, Proposition 3.3.21].

Note finally that the property of being rationally smooth of X(w) can be read

off the Kazdhan-Lusztig polynomials of W [11, proposition 3.2.5]. If X(w) hap-

pens to be not rationally smooth, we can always decompose w into a product

w = w1 · · ·wr such that each variety BwiB is.

2 Some particular cases

For short-length regular elements, one can observe that only a small number

of pieces Xx are non-empty. In addition, they very often satisfy the assumptions

of Theorem 1.1. For some of these elements, we can therefore compute explicitely

the cohomology of the quotient UI\X(w), and eventually deduce the cohomology

of X(w) using the results discussed in Section 1.2.

To make the computations easier, we shall use the notation introduced in

[9]: the cohomology of the Deligne-Lusztig variety X(w) as a graded G ×〈F〉mon-

module will be represented by a polynomial HX(w)(t
1/2, h) with coefficients in the

semi-group NIrrG. By a theorem of Lusztig, when ρ is a unipotent character,

any eigenvalue of F on the ρ-isotypic part of Hi
c(X(w),Qℓ) can be written λρq j/2,

where λρ is a root of unity independent of w and i. The multiplicity of ρ in

Hi
c(X(w),Qℓ) with eigenvalue λρq j/2 will be encoded by the coefficient of hi t j/2

in the polynomial HX(w)(t
1/2, h). For example, if X(s) is the Drinfeld curve for

G=SL2(Fp) then HX(w) = hSt+h2tId.

Since we are dealing with exceptional Weyl groups, and more specifically

with the combinatorics of distinguished subexpressions, we will use the pack-

age CHEVIE in GAP. We have written a couple of useful functions to determine
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whether a piece of a Deligne-Lusztig variety is non-empty, and to describe it

that case its quotient by a finite unipotent group. These functions can be found

in [22] (or will be soon available) under the name deodhar.g.

2.1 8-regular elements for groups of type F4

Let (G,F) be a split group of type F4. To fix the notation we will consider the

following Dynkin diagram:

t1 t2 t3 t4
>

where t1, t2, t3 and t4 are the simple reflections.

Recall that there exist d-regular elements for d ∈ {1,2,3,4,6,8,12} only (see

for example [25]). Note that the largest integer corresponds to the Coxeter num-

ber. By [3], for any such d one can find a particular d-regular element which is

a d-th root of π in the Braid monoid. By [1, 11.22] and [10, Proposition 5.5], the

cohomology of the corresponding Deligne-Lusztig variety does not depend on the

choice of a root. For our purposes we will take

w = t1t2t3t2t3t4.

2.1.1. Cohomology of UI\X(w). We start by computing the cohomology of

the quotient UI\X(w) where I = {t2, t3}. Using the criterion given in [9, Lemma

8.3] and the package CHEVIE in GAP one can check that there are only three

non-empty pieces Xx, corresponding to the cosets WI x = WIw0, WIw0t1t2 and

WIw0t4t3. Theorem 1.1 does not apply directly to all of these cells, but we

can add an intermediate step. Let J = {t2, t3, t4} and K = {t1, t2, t3}. We have

WJw0 =WJw0t4t3 (resp. WK w0 =WK w0t1t2) whereas XWI w0 t1 t2
=XWJ w0 t1 t2

(resp.

XWJ w0 t4 t3
) is stable by PJ (resp. PK ). Therefore only two pieces appear in the

decompositon of UJ\X(w) (resp. UK\X(w)).

• Let y be the minimal element of WJw0t1t2. Since t1t2 is J-reduced, y =

wJ w0t1t2. Let us decompose w as w = w1w2 with w1 = t1t2t3t2 and w2 =

t3t4 = t3w′
2. We have yw1 = t2t3 ∈ WJ and yw′

2 = t4 and therefore we can

apply Theorem 1.1 to compute the cohomology of the piece of X(w1w2) cor-

responding to (WJ y,WJ y). Furthermore, one can check (using GAP again)

that the pieces corresponding to (WJ y,WJ y′) are empty unless y and y′ lie

in the same coset. In particular, XWJ y(w)≃XWJ y,WJ y(w1w2) and

H•
c(XWJ y,Qℓ)UJ ≃ H•

c(Ga ×Gm ×XLJ
(t2t3t4),Qℓ).

Now XLJ
(t2t3t4) is a Deligne-Lusztig variety associated to a Coxeter ele-

ment, and therefore the cohomology of its quotient by UI ∩LJ is given by

[20, Corollary 2.10]. We obtain

H•
c(XWI w0 t1 t2

,Qℓ)UI ≃
(
H•

c(Ga ×Gm ×XLJ
(t2t3t4),Qℓ)

)UI∩LJ

≃ H•
c(Ga × (Gm)2 ×XLI

(t2t3),Qℓ).
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• For the piece XWI w0 t4t3
we proceed as above: the minimal element z of

WK w0t4t3 is clearly z = wK w0t4t3 since t4t3 is K -reduced. We can decom-

pose w as w = w1w2w3 where w1 = t1, w2 = t2 = t2w′
2 and w3 = t3t2t3t4.

We observe that zw1 = t1, zw′
2 = 1 and zw3 = t2t3 are elements of WK . In

addition, we can check by explicit computation that a piece of X(w1w2w3)

corresponding to (WK z,WK z′,WK z′′) is empty unless z, z′ and z′′ lie in the

same coset. Consequently, we can apply Theorem 1.1 to relate the cohomol-

ogy of XWK z to the cohomology of XLK
(t1t2t3) and then use [20] to obtain

H•
c(XWI w0t4 t3

,Qℓ)UI ≃
(
H•

c(Ga ×Gm ×XLK
(t1t2t3),Qℓ)

)UI∩LK

≃ H•
c(Ga × (Gm)2 ×XLI

(t2t3),Qℓ).

• For the open piece XWI w0
we can directly apply Theorem 1.1 by decompos-

ing w as w = w1w2 with w1 = t1 (t2t3t2t3) and w2 = t4. We only have to

check that XWI w0
(w) = X(WI w0,WI w0)(w1w2) which can be done using GAP.

We deduce

H•
c(XWI w0

,Qℓ)UI ≃ H•
c((Gm)2 ×XLI

(t2t3t2t3),Qℓ).

Note that the variety XWI w0 t1 t2
∪XWI w0 t4t3

is closed in X(w). Furthermore, the

elements in WIw0t1t2 and WIw0t4t3 are not comparable in the Bruhat order

and therefore both XWI w0 t1 t2
and XWI w0t4 t3

are closed subvarieties of the union.

In particular

H•
c

(
XWI w0 t1t2

∪XWI w0 t4 t3
,Qℓ

)UI
≃

(
H•

c

(
Ga × (Gm)2 ×XLI

(t3t2),Qℓ

))⊕2
.

The Weyl group of LI has type B2. Let us denote by ε the sign representation

of WI , by θ the one-dimensional representation such that θ(t2)= 1 and θ(t3)=−1

and by r the reflection representation. Then the unipotent characters of L I

are {Id,St,ρθ,ρθε,ρr,θ10} where θ10 is the unique unipotent cuspidal character.

Using [11, Theorem 4.3.4] we obtain

HUI\XWI w0
= (h2t+h)2

(
h4St+h5t2(ρθ+ρθε+2θ10)+h8t4Id

)

= h6St+h7
(
2tSt+ t2(ρθ+ρθε+2θ10)

)
+h8

(
t2St+2t3(ρθ+ρθε+2θ10)

)

+h9t4(ρθ+ρθε+2θ10)+h10t4Id+2h11t5Id+h12t6Id

and also

HUI\XWI w0 t1 t2
= h2t(h2t+h)2

(
h2(St+ tθ10)+h3tρr +h4t2Id

)

= h6(tSt+ t2θ10)+h7
(
t2(2St+ρr)+2t3θ10

)

+h8
(
t3(St+2ρr + Id)+ t4θ10

)
+h9t4(ρr +2Id)+h10t5Id.

We observe that the unipotent characters ρθ, ρθε and ρr appear in the coho-

mology of only one of the two varieties. Using the long exact sequence associ-

ated to the decomposition UI\X(w) = UI\XWI w0
∪

(
UI\XWI w0 t1 t2

∪UI\XWI w0 t4 t3

)
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we deduce the isotypic part of these characters in the cohomology of UI\X(w). It

is given by

h7t2(ρθ+ρθε+2ρr)+h8t3(2ρθ+2ρθε+4ρr)+h9t4(ρθ+ρθε+2ρr). (2.1)

The isotypic parts for the unipotent characters St and Id fit into the following

exact sequences:

0−→St −→H6
c

(
UI\X(w)

)
St −→ 2tSt−→ 2tSt−→H7

c

(
UI\X(w)

)
St

−→ 4t2St−→ t2St −→H8
c

(
UI\X(w)

)
St −→ 2t3St −→ 0

0−→H8
c

(
UI\X(w)

)
Id −→ 2t3Id−→ 0

0−→H9
c

(
UI\X(w)

)
Id −→ 4t4Id−→ t4Id−→H10

c

(
UI\X(w)

)
Id

−→ 2t5Id−→ 2t5Id−→H11
c

(
UI\X(w)

)
Id −→ 0

0−→ t6Id−→H12
c

(
UI\X(w)

)
Id −→ 0

Any morphism above is F-equivariant so that we can consider each power of t

separately. On the other hand, the only unipotent character of G whose restric-

tion is StL I
(resp. IdL I

) is StG (resp. IdG). But from [11, Proposition 3.3.14

and 3.3.15] we know exactly where these characters can appear in the cohomol-

ogy of X(w) as well as the corresponding eigenvalue of F. Using 2.1 we deduce

that tSt (resp. t2St) cannot appear in H6
c

(
UI\X(w)

)
or in H7

c

(
UI\X(w)

)
(resp. in

H8
c

(
UI\X(w)

)
) and that t4Id (resp. t5Id) cannot appear in H10

c

(
UI\X(w)

)
(resp. in

H11
c

(
UI\X(w)

)
). With the previous exact sequences, this forces the isotypic part

of St and Id in the cohomology of UI\X(w) to be

h6St+3h7t2St+h8t3(2St+2Id)+3h9t4Id+h12t6Id.

Together with 2.1 we finally obtain

Proposition 2.2. Let w = t1t2t3t2t3t4 and I = {t2, t3}. The characters of the prin-

cipal series in the cohomology of UI\X(w) are given by

h6St+h7t2(3St+ρθ+ρθε+2ρr)+h8t3(2St+2ρθ+2ρθε+4ρr +2Id)

+h9t4(ρθ+ρθε+2ρr +3Id)+h12t6Id.

Remark 2.3. The long exact sequence coming from the decomposition of the

variety UI\X(w) does not give enough information to determine the θ10-isotypic

part:

0−→H6
c

(
UI\X(w)

)
θ10

−→ 2t2θ10 −→ 2t2θ10 −→H7
c

(
UI\X(w)

)
θ10

−→ 4t3θ10

−→ 4t3θ10 −→H8
c

(
UI\X(w)

)
θ10

−→ 2t4θ10 −→ 2t4θ10 −→H9
c

(
UI\X(w)

)
θ10

−→ 0.

One could nonetheless hope that in this particular situation the boundary maps

are isomorphisms, which would imply that θ10 cannot appear in the cohomology

of UI\X(w). This will be the case if and only if the graded endomorphism ring

EndG(H•
c(X(w),Qℓ)) is concentrated in degree 0.
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2.1.2. Cuspidal characters. From [2] we know that the irreducible constituents

of the alternating sum of the comology of X(w) are the unipotent characters in

the principal Φ8-block, namely {IdG ,StG ,φ9,10,φ16,5,φ9,2} for the principal series

and {F4[−1],F4[i],F4[−i]} for the cuspidal characters (with the notation in [5]).

We observe that the restriction of these characters to L I are exactly the one

obtained in the previous proposition. Since the Harish-Chandra restriction pre-

serves the Harish-Chandra series, we can deduce the contribution of the princi-

pal series to the cohomology of X(w). The missing ones are either in the series

associated to θ10 − which we could not determine − or are cuspidal characters.

We shall deduce the contribution of the latter using the results in Section 1.2.

Recall that G has 7 cuspidal unipotent characters, namely F4[−1], F4[i],

F4[−i], F4[θ], F4[θ2], FI
4[1] and FII

4 [1] where i (resp. θ) is a primitive 4th root

of unity (resp. a primitive 3rd root of unity). Let ρ be a cuspidal unipotent

character and let v ≤ w. By cuspidality ρ cannot appear in the cohomology of

Deligne-Lusztig varieties associated to elements lying in a proper parabolic sub-

group of W . In particular it cannot appear in the cohomology of X(v) or X(v)

unless v is in the following set

V =
{
w, t1t2t3t2t4, t1t3t2t3t4, t1t2t3t4, t1t3t2t4

}
.

Define Z =X(t1t2t3t2t4)∪X(t1t3t2t3t4) and Z′ = X(t1t2t3t4)∪X(t1t3t2t4). The

property (C2) yields the following exact sequences:

· · · −→ Hi
c

(
X(w)

)
ρ −→Hi

c

(
X(w)

)
ρ −→ Hi

c

(
Z
)
ρ −→ ··· (2.4)

· · · −→ Hi
c

(
X(t1t2t3t2t4)

)
ρ −→Hi

c

(
X(t1t2t3t2t4)

)
ρ −→ Hi

c

(
Z′

)
ρ −→ ··· (2.5)

· · · −→ Hi
c

(
X(t1t3t2t3t4)

)
ρ −→Hi

c

(
X(t1t3t2t3t4)

)
ρ −→ Hi

c

(
Z′

)
ρ −→ ··· (2.6)

Moreover, one can check that each of these compactifications is actually ratio-

nally smooth, and therefore one can use (C3) to compute the cuspidal part of

their cohomology, denoted by HX(t1/2, h). They are given by

HX(w) = h6t3
(
F4[−1]+F4[i]+F4[−i]+2F4[θ]+2F4[θ2]

)
(2.7)

and HX(t1 t2 t3 t2t4) = HX(t1 t3 t2 t3 t4) = (h4t2+h6t3)
(
F4[i]+F4[−i]+F4[θ]+F4[θ2]

)
.

Furthermore, the elements t1t2t3t4 and t1t3t2t4 are minimal in the set V for the

Bruhat order, so that for any unipotent cuspidal character ρ

Hi
c(Z

′)ρ ≃ Hi
c

(
X(t1t2t3t4)

)
ρ ⊕Hi

c

(
X(t1t3t2t4)

)
ρ ≃ Hi

c

(
X(c)

)⊕2

ρ

where c is any Coxeter element of W . Using [20, table 7.3] we deduce that

HZ′ = 2h4t2
(
F4[i]+F4[−i]+F4[θ]+F4[θ2]

)
.

Together with 2.5 and 2.6, and the fact that the cohomology of X(t1t2t3t2t4) and

X(t1t3t2t3t4) vanishes in degree 4, we obtain

HX(t1 t2 t3 t2 t4) = HX(t1 t3t2 t3 t4) = (h5t2 +h6t3)
(
F4[i]+F4[−i]+F4[θ]+F4[θ2]

)
.
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From these results, one can now partially determine the cohomology of Z: for

any unipotent cuspidal character, we use the following exact sequence

· · · −→Hi
c

(
X(t1t2t3t2t4)

)
ρ ⊕Hi

c

(
X(t1t3t2t3t4)

)
ρ −→Hi

c

(
Z
)
ρ −→Hi

c

(
Z′

)
ρ −→ ···

to deduce that there exist integers 0≤ εi ≤ 2 such that

HZ = (h4+h5)t2
(
ε1F4[i]+ε2F4[−i]+ε3F4[θ]+ε4F4[θ2]

)

+2h6t3
(
F4[i]+F4[−i]+F4[θ]+F4[θ2]

)
.

However 2.4 forces each character εiρ to be a component of H5
c

(
X(w)

)
since

H4
c

(
X(w)

)
is zero by 2.7. But the cohomology of X(w) vanishes outside the degrees

6, . . .,12, and hence the εi ’s must be zero. Consequently, the exact sequence 2.4

can be decomposed into

0−→H6
c

(
X(w)

)
F4[−1] −→ t3F4[−1]−→ 0

0−→H6
c

(
X(w)

)
F4[±i] −→ t3F4[±i]−→ 2t3F4[±i]−→H7

c

(
X(w)

)
F4[±i] −→ 0

0−→H6
c

(
X(w)

)
F4[θ j] −→ 2t3F4[θ j]−→ 2t3F4[θ j]−→H7

c

(
X(w)

)
F4[θ j] −→ 0.

We use (C4) to conclude: the characters F4[±i], and F4[θ j] already occur in

the cohomology of the Deligne-Lusztig variety associated to a Coxeter element.

Since w is not F-conjugate to a Coxeter element, they cannot appear in H6
c

(
X(w)

)

with an eigenvalue of absolute value q3, and the previous exact sequences de-

termine the cuspidal part of the cohomology of X(w).

Proposition 2.8. Let w = t1t2t3t2t4. The cuspidal part of the cohomology of X(w)

is given by

h6t3F4[−1]+h7t3
(
F4[i]+F4[−i]).

2.1.3. Cohomology of X(w). The unipotent characters in the principal Φ8-

block b are given by buni =
{
Id,StG ,φ9,10,φ16,5,φ9,2,F4[−1],F4[i],F4[−i]

}
. From

Proposition 2.2 and 2.8 we deduce the contribution to the cohomology of X(w) of

any unipotent character in the block:

Theorem 2.9. Let (G,F) be a split group of type F4 and w be a good 8-regular

element. The contribution to the cohomology of the Deligne-Lusztig X(w) of the

principal series and the cuspidal characters coincides with the contribution of the

principal Φ8-block, and it is given by

i 6 7 8 9 10 11 12

bHi
(
X(w),Qℓ

)
St q2φ9,10 q3φ16,5 q4φ9,2 q6Id

−q3F4[−1]

iq3F4[i]

−iq3F4[−i]
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2.2 9-regular elements for groups of type E6

In this section we assume that (G,F) is a split group of type E6. The largest

regular number (excluding the Coxeter number) being 9, we are interested in

computing the cohomology of X(w) for any 9th root of π, or equivalently for any

good 9-regular element. We will label the simple reflections as follows

t1 t3

t2

t4 t5 t6

As before, we may, and we will, consider a particular root of π, since the

cohomology of the corresponding Deligne-Lusztig variety X(w) does not depend

on this choice. We set

w = t1t3t4t3t2t4t5t6.

2.2.1. Cohomology of UI\X(w). We decompose the quotient of X(w) by UI for

I = {t2, t3, t4, t5}. The situation is similar to the one studied in Section 2.1.1: a

piece Xx is non-empty if and only if WI x is one of the three cosets among WIw0,

WIw0t6t5t4 and WIw0t1t3.

• Let J = Sr {t1}. We have WJw0t1t3 = WJw0 and therefore the piece cor-

responding to WIw0t6t5t4 is stable by the action of PJ . Let y be the

minimal element of WJw0t6t5t4. Since w0(t6t5t4) = t1t3t4 is J-reduced,

y = wJ w0t6t5t4. Let us decompose w as w = w1w2w3 with w1 = t1, w2 =

t3 = t3w′
2 and w3 = t4t3t2t4t5t6. Then yw1 = t6, yw′

2 = 1 and yw3 = t3t5t4t2

are all elements of WJ . In addition, they satisfy the assumptions of Theo-

rem 1.1 (see also Remark 1.2) so that

H•
c(XWJ y,Qℓ)UJ ≃ H•

c(Ga ×Gm ×XLJ
(t6t3t5t4t2),Qℓ).

Now XLJ
(t6t3t5t4t2) is a Deligne-Lusztig variety associated to a Coxeter

element, and therefore the cohomology of its quotient by UI ∩LJ is given

by [20]. We obtain

H•
c(XWI w0 t6 t5 t4

,Qℓ)UI ≃
(
H•

c(Ga ×Gm ×XLJ
(t6t3t5t4t2),Qℓ)

)UI∩LJ

≃ H•
c(Ga × (Gm)2×XLI

(t2t5t4t3),Qℓ).

• For the piece XWI w0 t1 t3
, we proceed as above: let K = S r {t6} and z be

the minimal element of WK w0t1t3. It is clearly z = wK w0t1t3 since t6t5

is K -reduced. We can decompose w as w = w1w2 where w1 = t1t3t4t3t2

and w2 = t4(t5t6) = t4w′
2. We have zw1 = t2t4t5 and zw′

2 = t3t1 so that with

Theorem 1.1 and [20] we obtain

H•
c(XWI w0 t1 t3

,Qℓ)UI ≃
(
H•

c(Ga ×Gm ×XLK
(t2t4t5t3t1),Qℓ)

)UI∩LK

≃ H•
c(Ga × (Gm)2 ×XLI

(t5t4t2t3),Qℓ).
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• For the open piece XWI w0
we can directly apply Theorem 1.1 by decompos-

ing w as w = w1w2 with w1 = t1 (t3t4t3t2t4t5) and w2 = t6. We deduce

H•
c(XWI w0

,Qℓ)UI ≃ H•
c((Gm)2 ×XLI

(t5t4t5t2t4t3),Qℓ).

By the properties of the Bruhat order the varieties XWI w0t6 t5 t4
and XWI w0t1 t3

are

both closed subvarieties of X(w). Therefore the cohomology of the union Xf =

UI\XWI w0t6 t5 t4
∪UI\XWI w0 t1 t3

can be deduced from [20, Table 7.3] whereas the

cohomology of Xo =UI\XWI w0
is given by [9, Theorem 12.4]:

HXo
= (h2t+h)2

(
h6St+h7

(
t2(ρ12++ρ12−+ρ212)+2t3D4

)
+2h8t3ρ1.21

+h9t4(ρ2++ρ2−+ρ31)+h12t6Id
)

HX f
= 2h2t(h2t+h)2

(
h4(St+ t2D4)+h5tρ1.13 +h6t2ρ12.2 +h7t3ρ1.3 +h8t4Id

)

where ρλ is the unipotent character (in the principal series) associated to the

character λ of WI and D4 is the unique unipotent cuspidal character of L I .

As before, any character in the principal series which is different from St and

Id cannot appear in the cohomology of both of the varieties, so that the isotypic

part on the cohomology of UI\X(w) is the sum of the isotypic part on H•
c(Xf )

and H•
c(Xo). For the characters St and Id, we proceed exactly as in Section 2.1.1

using [11, Proposition 3.3.14] and [11, Proposition 3.3.15].

Proposition 2.10. Let w = t1t3t4t3t2t4t5t6 and I = {t2, t3, t4, t5}. The contribu-

tion of the characters in the principal series to the cohomology of UI\X(w) is given

by

h8St+h9t2
(
3St+ρ12++ρ12−+ρ212 +2ρ1.13

)

+h10t3
(
2St+2ρ12++2ρ12−+2ρ212 +4ρ1.13 +2ρ1.21+2ρ12.2

)

+h11t4
(
ρ12++ρ12−+ρ212 +2ρ1.13 +4ρ1.21 +4ρ12.2 +ρ2++ρ2−+ρ31 +2ρ1.3

)

+h12t5
(
2ρ1.21+2ρ12.2 +2ρ2++2ρ2−+2ρ31 +4ρ1.3+2Id

)

+h13t6
(
ρ2++ρ2−+ρ31 +2ρ1.3 +3Id

)
+h16t8Id.

Remark 2.11. Unfortunately, this method is not sufficient for determining the

D4-isotypic part (see also Remark 2.3).

2.2.2. Cuspidal characters. The group G has only two cuspidal characters,

denoted by E6[θ] and E6[θ2] where θ is a primitive 3rd root of unity. In order to

determine they contribution to the cohomology of X(w) , we use the compactifica-

tions X(v) for v ≤ w. However, unlike the type F4, they are not always rationally

smooth and we shall rather work with "bigger" compactifications, obtained by

underlining all the simple reflections. For details on the explicit computations

we refer to Section 2.1.2. We start by defining the following closed subvariety of

X(w):

Z=X(t1t4t3t2t4t5t6)∪X(t1t3t3t2t4t5t6)∪X(t1t3t4t2t4t5t6)∪X(t1t3t4t3t2t5t6)
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so that we obtain, for any cuspidal character ρ, a long exact sequence

· · · −→ Hi
c

(
X(w)

)
ρ −→Hi

c

(
X(w)

)
ρ −→ Hi

c

(
Z
)
ρ −→ ··· (2.12)

We determine the cuspidal part of Z as follows: we compute, for any element

v ∈ {t1t4t3t2t4t5t6, t1t3t4t2t4t5t6, t1t3t4t3t2t5t6}

HX(v) = HX(v) = (h7t3+h8t4)
(
E6[θ]+E6[θ2]

)

by means of the following exact sequences

· · · −→ Hi
c

(
X(v)

)
ρ −→Hi

c

(
X(v)

)
ρ −→

(
Hi

c(X(c))ρ
)⊕2

−→ ···

and the precise values

and

H
X(v)

= (h6t3 +h8t4)
(
E6[θ]+E6[θ2]

)

H
X(c)

= h6t3
(
E6[θ]+E6[θ2]

)

that can be found using (C3). Note that we have also used the fact that the

cohomology of X(v) is zero outside the degrees 7, . . . ,14. For the element v =

t1t3t3t2t4t5t6 we use [11, Proposition 3.2.10] and we obtain the same value

again:

HX(v) = (h2t+h)H
X(c)

= (h7t3 +h8t4)
(
E6[θ]+E6[θ2]

)

In particular, the cohomology of Z fits into the following long exact sequence

· · · −→
(
Hi

c(X(v))ρ
)⊕4

−→Hi
c(Z)ρ −→

(
Hi

c(X(c))ρ
)⊕4

−→ ···

We claim that

HZ = 4h8t4
(
E6[θ]+E6[θ2]

)
. (2.13)

Again, the exact sequence itself is not enough to compute this value, but it can

be deduced from the following properties:

• the cohomology of X(w) vanishes in degree 7 by (C1);

• H
X(w)

= 3h8t4
(
E6[θ]+E6[θ2]

)
which forces in particular H6

c(X(w)) to have

no cuspidal constituent.

These properties, together with 2.12, ensure that the coefficient of h6 in HZ is

zero, and we deduce 2.13.

Consequently, the decomposition X(w) = X(w)∪Z yields the following exact

sequence for any cuspidal character ρ:

0−→H8
c(X(w))ρ −→ 3t4ρ −→ 4t4ρ −→H9

c(X(w))ρ −→ 0.

Finally, by (C4) the group H8
c(X(w)) cannot contain any unipotent cuspidal char-

acter with an eigenvalue of absolute value q4 and we obtain:

Proposition 2.14. Let w = t1t3t4t3t2t4t5t6. The contribution of the cuspidal

characters of G to the cohomology of X(w) is given by

h9t4
(
E6[θ]+E6[θ2]

)
.
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2.2.3. Cohomology of X(w). By [4], the irreductible constituents of the virtual

character associated to the cohomology of X(w) are exactly the unipotent charac-

ters in the principal Φ9-block, namely buni =
{
IdG ,StG ,φ20,20,φ64,13,φ90,8,φ64,4,

φ20,2,E6[θ],E6[θ2]
}
. By looking at the Harish-Chandra restriction of these char-

acters, we can deduce from Proposition 2.10 and 2.14 the following theorem:

Theorem 2.15. Let (G,F) be a split group of type E6 and w be a good 9-regular

element of W . The contribution to the cohomology of the Deligne-Lusztig X(w) of

the principal series and the cuspidal characters coincides with the contribution

of the principal Φ9-block, and it is given by

i 8 9 10 11 12 13 14 15 16

bHi(X(w),Qℓ) St q2φ20,20 q3φ64,13 q4φ90,8 q5φ64,4 q6φ20,2 q8Id

θq4E6[θ]

θ2q4E6[θ2]

Conjecturally, for good regular elements, there should be no cancelation in

the virtual character
∑

(−1)iHi
c(X(w),Qℓ) ∈ K0(G-mod) [3, Conjecture 5.7]. In

particular, the series associated to the cuspidal character of D4 should not ap-

pear in the cohomology of X(w):

Assumption 2.16. For good 9-regular elements in E6, the cohomology of X(w)

has no constituent in the Harish-Chandra series associated to the cuspidal rep-

resentation of D4.

This assumption will be essential to study the contribution of the D4-series

for groups of type E7 and E8 (see Theorem 2.20 and 2.26).

2.3 14-regular elements for groups of type E7

We now assume that (G,F) is a split group of type E7 and we are interested

in computing the cohomology of Deligne-Lusztig varieties associated to good 14-

regular elements. We will label the simple reflections according to the following

Dynkin diagram

t1 t3

t2

t4 t5 t6 t7

and consider a specific 9th root of π:

w = t7t6t5t4t5t2t4t3t1.

2.3.1. Cohomology of UI\X(w). Let I = Sr {t7}. The group LI has type E6 and

we can use the results in the previous section to compute the cohomology of the
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quotient of X(w) by UI. In the decomposition of X(w) by PI -cosets in G/B, only

two pieces are non-empty, with associated cosets WIw0 and WIw0t7t6t5. We can

apply Theorem 1.1 in these two cases:

• when y = wI w0t7t6t5 we decompose w as w = w1w2 with w1 = t7t6t5t4t5t2

and w2 = t4 (t3t1)= t4w′
2. We have yw1 = t1t3t4t2 and yw′

2 = t5t6 so that

H•
c(XWI y,Qℓ)UI ≃ H•

c(Ga ×Gm ×XLI
(t1t3t4t2t5t6),Qℓ).

• for x = wIw0 we observe that w = t7 (t6t5t4t5t2t4t3t1) = t7w′ with xw′ ∈WJ

and deduce that

H•
c(XWI w0

,Qℓ)UI ≃ H•
c(Gm ×XLI

(t1t3t4t3t2t4t5t6),Qℓ).

The cohomology of these varieties is known by Theorem 2.15 and [20, Table 7.3].

Recall that for any Coxeter element cI of WI , the cohomology of the correspond-

ing variety is given by

HXLI
(cI ) = h6

(
St+ t2D4,ε+ t3E6[θ]+ t3E6[θ2]

)
+h7

(
tφ6,25+ t3D4,r

)

+h8
(
t2φ15,17+ t4D4,Id

)
+h9t3φ20,10+h10t4φ15,5+h11t5φ6,1 +h12t6Id.

If we exclude St and Id, none of the characters in the principal series that appear

here can appear in the cohomology of UI\XWI w0
. From that observation one

can readily deduce the contribution of the principal series to the cohomology of

UI\X(w). Note that in the case of St and Id we can proceed as in Section 2.1.1.

Proposition 2.17. Let w = t7t6t5t4t5t2t4t3t1 and I =∆r {t7}. The contribution

of the principal series to the cohomology of UI\X(w) is given by

h9St+h10t2
(
St+φ6,25 +φ20,20

)
+h11t3

(
φ6,25 +φ20,20 +φ15,17+φ64,13

)

+h12t4
(
φ15,17 +φ64,13+φ20,10 +φ90,8

)
+h13t5

(
φ20,10+φ90,8 +φ15,5 +φ64,4

)

+h14t6
(
φ15,5 +φ64,4 +φ6,1 +φ20,2

)
+h15t7

(
φ6,1 +φ20,2 + Id

)
+h18t9Id.

The case of the Harish-Chandra series associated to the cuspidal character of

D4 remains undetermined unless we know the contribution of this series to the

cohomology of the open part. However, in our situtation, none of these characters

should appear, and the isotypic part on the cohomology of the union UI\X(w)

should come from the Coxeter variety only.

Proposition 2.18. Assume that 2.16 holds, and let w = t7t6t5t4t5t2t4t3t1 and

I =∆r{t7}. Then the contribution of the Harish-Chandra series associated to the

cuspidal character of D4 to the cohomology of UI\X(w) is given by

h9t3D4,ε+h10t4
(
D4,ε+D4,r

)
+h11t5

(
D4,r +D4,Id

)
+h12t6D4,Id.

Finally, for the cuspidal characters E6[θ] and E6[θ2], we have a long exact

sequence

0−→H9
c

(
UI\X(w)

)
E6[θ] −→ t4E6[θ]−→ t4E6[θ]−→H10

c

(
UI\X(w)

)
E6[θ]

−→ t5E6[θ]−→ t5E6[θ]−→H11
c

(
UI\X(w)

)
E6[θ] −→ 0.
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This is not enough to determine their contribution and we can only hope that

they actually do not appear in the cohomology of UI\X(w).

2.3.2. Cuspidal characters. The group G has only two cuspidal unipotent

characters, namely E7[i] and E7[−i], where i is a primitive 4th root of unity. The

method to determine their contribution to the cohomology is strictly identical to

the case of E6 and yields

Proposition 2.19. Let w = t7t6t5t4t5t2t4t3t1. The cuspidal part of the cohomol-

ogy of X(w) is given by

h10t9/2
(
E7[i]+E7[−i]

)
.

2.3.3. Cohomology of X(w). By combining Proposition 2.17 and 2.18, we

obtain the Harish-Chandra restriction to E6 of the cohomology of the variety

X(w). If we compare these to the restriction of the characters in the principal

Φ14-block buni = {StG ,IdG ,φ27,37,φ105,26,φ189,17,φ189,10,φ105,5,φ27,2,D4,13.,D4,12.1,

D4,1.2,D4,.3,E7[i],E7[−i]} (and the fact that these actually occur as constituents

of the cohomology) we deduce their exact contribution. Adding the cuspidal char-

acters obtained in 2.19, we get

Theorem 2.20. Let (G,F) be a split group of type E7 and w be a good 14-regular

element of W . The contribution to the cohomology of the Deligne-Lusztig X(w) of

the principal series, the D4-series and the cuspidal characters coincides with the

contribution of the principal Φ14-block, and it is given by

i 9 10 11 12 13

bHi(X(w),Qℓ) St q2φ27,37 q3φ105,26 q4φ189,17 q5φ189,10

−q3D4,13. −q4D4,12.1 −q5D4,1.2 −q6D4,.3

iq9/2E7[i]

−iq9/2E7[−i]

i 14 15 16 17 18

bHi(X(w),Qℓ) q6φ105,5 q7φ27,2 q9Id

where the D4-series is given under Assumption 2.16.

In our situation, the non-cancellation for the corresponding Deligne-Lusztig

virtual character is equivalent to the following:

Assumption 2.21. The characters lying in the Harish-Chandra series associ-

ated to the cuspidal characters E6[θ] and E6[θ2] do not appear in the cohomology

of X(w).
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2.4 24-regular elements for groups of type E8

We close this section by studying the cohomology of Deligne-Lusztig varieties

associated to good 24-regular elements in E8. We will label the simple reflections

as follows

t1 t3

t2

t4 t5 t6 t7 t8

and choose the following 24th root of π:

w = t8t7t6t5t4t5t2t4t3t1.

2.4.1. Cohomology of UI\X(w). The situation is very similar to the case of E7

so we will omit the details. When I = Sr {t8}, the pieces corresponding to WIw0

and WIw0t8t7t6t5 are the only non-empty pieces, and the cohomology of their

quotient by UI is given by

H•
c(UI\XWI w0 t8t7 t6 t5

,Qℓ) ≃ H•
c

(
Ga ×Gm ×XLI

(t7t6t5t4t2t3t1),Qℓ

)

and H•
c(UI\XWI w0

,Qℓ) ≃ H•
c

(
Gm ×XLI

(t7t6t5t4t5t2t4t3t1),Qℓ

)
.

The latter has been computed in the previous section, whereas the cohomology

of a Deligne-Lusztig variety associated to any Coxeter element cI of WI can be

deduced from [20, Table 7.3]:

HXLI
(cI ) = h7

(
St+ t2D4,ε+ t3(E6[θ]ε+E6[θ2]ε)+ t7/2(E7[i]+E7[−i])

)

+h8
(
tφ7,46+ t3D4,1.12 + t4(E6[θ]Id+E6[θ2]Id)

)

+h9
(
t2φ21,33 + t4D4,2.1

)
+h10

(
t3φ35,22+ t5D4,Id

)

+h11t4φ35,13 +h12t5φ21,6 +h13t6φ7,1 +h14t7Id.

Together with Theorem 2.20, this is enough to determine the contribution of the

principal series:

Proposition 2.22. Let w = t8t7t6t5t4t5t2t4t3t1 and I =∆r{t8}. The contribution

of the principal series to the cohomology of UI\X(w) is given by

h10St+h11t2
(
St+φ7,46 +φ27,37

)
+h12t3

(
φ7,46 +φ27,37 +φ21,33+φ105,26

)

+h13t4
(
φ21,33+φ105,26+φ35,22 +φ189,17

)
+h14t5

(
φ35,22+φ189,17 +φ35,13+φ189,10

)

+h15t6
(
φ35,13+φ189,10+φ21,6 +φ105,5

)
+h16t7

(
φ21,6+φ105,5 +φ7,1 +φ27,2

)

+h17t8
(
φ7,1 +φ27,2 + Id

)
+h20t10Id.

The results for the intermediate series depend whether the assumptions 2.16

and 2.21 are satisfied. If they hold, we can easily obtain:

Proposition 2.23. Let w = t8t7t6t5t4t5t2t4t3t1 and I =∆r {t8}.
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(i) Under Assumption 2.16, the contribution of the D4-series to the cohomology

of UI\X(w) is given by

h10t3
(
D4,ε+D4,13.

)
+h11t4

(
D4,ε+D4,13.+D4,1.12 +D4,12.1

)

+h12t5
(
D4,1.12 +D4,12.1 +D4,2.1 +D4,1.2

)

+h13t6
(
D4,2.1 +D4,1.2 +D4,Id +D4,.3

)
+h14t7

(
D4,Id +D4,.3

)
.

(ii) Under Assumption 2.21, the contribution of the E6-series to the cohomology

of UI\X(w) is given by

h10t4E6[θ]ε+h11t5
(
E6[θ]ε+E6[θ]Id

)
+h12t6E6[θ]Id

and h10t4E6[θ2]ε+h11t5
(
E6[θ2]ε+E6[θ2]Id

)
+h12t6E6[θ2]Id.

2.4.2. Cuspidal characters. The group G has several cuspidal unipotent char-

acters, denoted in [5] by E8[±i],E8[±θ],E8[±θ2],EI
8[1],EII

8 [1] and E8[ζ j] where ζ

is a primitive 5th root of unity and j = 1,2,3,4. We proceed as in the previous

cases to determine they contribution to the cohomology of X(w). However, due to

the large number of cuspidal characters, the calculations are a bit more tedious.

We start by considering the closed subvariety Z of X(w) consiting of the union

of the varieties X(v) where v runs over the set
{
t8t7t6t4t5t2t4t3t1, t8t7t6t5t4t2t4t3t1, t8t7t6t5t4t5t2t3t1, t8t7t6t5t5t2t4t3t1

}
.

The cohomology of this variety fits in the following long exact sequence, for any

cuspidal character ρ

· · · −→ Hi
c

(
X(w)

)
ρ −→Hi

c

(
X(w)

)
ρ −→ Hi

c

(
Z
)
ρ −→ ··· (2.24)

The elements of the Braid monoid obtained by un-underlying the elements v

will be denoted by v1,v2,v3 et v4. Note that only v4 is not the canonical lift of an

element of W . For j = 1,2,3, the cuspidal part of the cohomology of X(v j) ≃X(v j)

can be deduced from the following exact sequence

· · · −→ Hi
c

(
X(v j)

)
ρ −→Hi

c

(
X(v j)

)
ρ −→

(
Hi

c(X(c))ρ
)⊕2

−→ ···

together with the following properties

• the cuspidal part of H•
c(X(v j)) can be explicitely computed using (C3):

H
X(v j)

= (h8t4 +h10t5)
(
E8[−θ]+E8[−θ2]+E8[ζ]+E8[ζ2]+E8[ζ3]+E8[ζ4]

)

• the cuspidal part of a variety associated to a Coxeter element is given by

[20] (or equivalently can be computed using (C3)):

H
X(c)

= h8t4
(
E8[−θ]+E8[−θ2]+E8[ζ]+E8[ζ2]+E8[ζ3]+E8[ζ4]

)

• the cohomology of X(v j) vanishes in degree 8.
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We obtain, for j = 1,2,3:

HX(v j)
= (h9t4 +h10t5)

(
E8[−θ]+E8[−θ2]+E8[ζ]+E8[ζ2]+E8[ζ3]+E8[ζ4]

)
.

Using [11, Proposition 3.2.10], one can check that it is also the cuspidal part of

the cohomology of X(v4).

We claim that we can derive the cohomology of Z: for any cuspidal character

ρ, we have an exact sequence

· · · −→

4⊕

j=1

Hi
c

(
X(v j)

)
ρ −→Hi

c

(
Z
)
ρ −→

(
Hi

c(X(c))ρ
)⊕4

−→ ···

Furthermore, the cohomology of X(w) vanishes in degree 9 and the cuspidal part

of H•
c(X(w)) is concentrated in degree 10, given by

h10t5
(
E8[i]+E8[−i]+3(E8[−θ]+E8[−θ2])+4(E8[ζ]+E8[ζ2]+E8[ζ3]+E8[ζ4])

)

Consequently, the cuspidal part of H8
c(Z) is zero by 2.24 and we obtain

HZ = 4h10t5
(
E8[−θ]+E8[−θ2]+E8[ζ]+E8[ζ2]+E8[ζ3]+E8[ζ4]

)
.

In particular, we can unpack the exact sequence 2.24 according to the different

cuspidal characters as follows

0−→H10
c

(
X(w)

)
E8[±i] −→ t5E8[±i] −→ 0

0−→H10
c

(
X(w)

)
E8[−θi ] −→ 3t5E8[−θ i]−→ 4t5E8[−θ i]−→H11

c

(
X(w)

)
E8[−θi ] −→ 0

0−→ H10
c

(
X(w)

)
E8[ζ j] −→ 4t5E8[ζ j] −→ 4t5E8[ζ j] −→ H11

c

(
X(w)

)
E8[ζ j] −→ 0

To conclude, we observe that the unipotent characters E8[−θ i] and E8[ζ j] already

appear in the Coxeter variety, and for that reason they cannot be constituents of

H10
c (X(w)) with an eigenvalue of absolute value q5 (see (C4)).

Proposition 2.25. Let w = t8t7t6t5t4t5t2t4t3t1. The cuspidal part of the coho-

mology of X(w) is given by

h10t5
(
E8[i]+E8[−i]

)
+h11t5

(
E8[−θ]+E8[−θ2]

)
.

2.4.3. Cohomology of X(w). We summarize the results obtained in this section.

The unipotent characters in the principal Φ24-bloc b are given by

buni =
{
IdG ,StG ,φ35,74,φ160,55,φ350,38,φ448,25,φ350,14,φ160,16,φ35,2,D4,φ′′

2,16
,

D4,φ′′
8,9

,D4,φ12,4
,D4,φ′

8,3
,D4,φ′

2,4
,E6[θ]φ′

1,3
,E6[θ]φ2,2

,E6[θ]φ′′
1,3

,E6[θ2]φ′
1,3

,

E6[θ2]φ2,2
,E6[θ2]φ′′

1,3
,E8[i],E8[−i],E8[−θ],E8[−θ2]

}

By comparing the restriction to E7 of these characters and Proposition 2.22, 2.23

and 2.25 we obtain a good approximation of the cohomology of X(w).
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Theorem 2.26. Let (G,F) be a split group of type E8 and w be a good 24-regular

element of W . The contribution to the cohomology of the Deligne-Lusztig X(w)

of the principal series, the D4-series, the E6-series and the cuspidal characters

coincides with the contribution of the principal Φ24-block, and it is given by

i 10 11 12 13

bHi(X(w),Qℓ) St q2φ35,74 q3φ160,55 q4φ350,38

−q3D4,φ′′
2,16

−q4D4,φ′′
8,9

−q5D4,φ12,4
−q6D4,φ′

8,3

θq4E6[θ]φ′
1,3

θq5E6[θ]φ2,2
θq6E6[θ]φ′′

1,3

θ2q4E6[θ2]φ′
1,3

θ2q5E6[θ2]φ2,2
θ2q6E6[θ2]φ′′

1,3

iq5E8[i]

−iq5E8[−i]

−θq5E8[−θ]

−θ2q5E8[−θ2]

i 14 15 16 17 18 19 20

bHi(X(w),Qℓ) q5φ448,25 q6φ350,14 q7φ160,7 q8φ35,2 q10Id

−q7D4,φ′
2,4

where the D4-series is given under Assumption 2.16 and the E6-series under As-

sumption 2.21.

3 Conjectures on associated Brauer trees

Having computed the cohomology of some Deligne-Lusztig varieties for ex-

ceptionals groups, we would like to propose conjectures on Brauer trees for the

corresponding principal Φd-blocks.

Recall from [2] that if d is a regular number, and w is a d-regular element,

the irreducible constituent of the virtual character RG
Tw

(1) =
∑

(−1)iHc(X(w),Qℓ)

are exactly the unipotent characters in the principal Φd-block. If moreover

CW (wF) ≃ NG(Tw)/CG(Tw) is cyclic, then the Φd-block is generically of cyclic

defect: if ℓ divides Φd(q) but does not divide |W |, then any Sylow subgroup of

G is cyclic. In that case, the representation theory of the block (i.e. the module

category over the block) can be decribed by its Brauer tree. More precisely, in

this situation:

• any ℓ-character θ of Tw is in general position and the associated irre-

ducible character χθ = (−1)ℓ(w)RG
Tw

(θ) is cuspidal by [21, Proposition 2.18].

Moreover, using [8, Proposition 12.2] it can be shown that its restriction to

the set of ℓ-regular elements is independent from θ. Any character of this

form is said to be a exceptional;
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• there are e = |CW (w)| unipotent characters {χ0, . . . ,χe−1} in the block, which

will be refered as the non-exceptional characters;

Now if we consider the sum χexc of all distinct unipotent characters, any pro-

jective indecomposable FℓG-module lifts uniquely, up to isomorphism, to a Zℓ-

module P whose character is [P] = χ+ χ′ for χ,χ′ two distinct characters in

V = {χexc,χ0, . . . ,χe−1}. We define the Brauer tree Γ of the block to be the graph

with vertices labelled by V and egdes χ—χ′ whenever there exists a projective

indecomposable module with character χ+χ′. This graph is a tree and its planar

embbeding determines the module category over the block up to Morita equiva-

lence.

When d = h is a the Coxeter number, Hiss, Lübeck and Malle have formu-

lated in [19] a conjecture relating the cohomology of the Deligne-Lusztig variety

associated to a Coxeter element (together with the action of F) and the planar

embedded Brauer tree of the principal Φh-block. Using the explicit results on the

cohomology of Deligne-Lusztig varieties that we have obtained, and the Brauer

trees that we already already know from [18] and [19], we shall propose two

conjectural Brauer trees for groups of type E7 and E8.

3.1 Observations

Let (G,F) be a split group of type F4 and w be a good 8-regular element.

When ℓ divides Φ8(q) and does not divide the order of W , we can observe that

the classes in Fℓ of the eigenvalues of F on bH•
c(X(w),Qℓ) form the group of 8th

roots of unity, generated by the class of q. Therefore to any non-exceptional char-

acter χ one can associate an integer jχ such that the class of the corresponding

eigenvalue of F coincides with the class of q jχ . By [18], the Brauer tree of the

block, together with the integers jχ is given by

F4[−1]

7

St

0

φ9,10

2

φ16,5

3

φ9,2

4

Id

6

F4[i]

1

F4[−i]

5

Figure 1: Brauer tree of the principal Φ8-block of F4

Now assume that (G,F) is a split group of type E6. The Brauer tree of the

principal Φ9-block of G has been determined in [19]. It corresponds to the fol-

lowing picture:
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St

0

φ20,20

2

φ64,13

3

φ90,8

4

φ64,4

5

φ20,2

6

Id

8

E6[θ]

1

E6[θ2]

7

Figure 2: Brauer tree of the principal Φ9-block of E6

Remark 3.1. Unlike the Coxeter case (see [12] and [13]), the cohomology of

the Deligne-Lusztig variety X̃(w) with coefficients in Zℓ is not torsion-free. In-

deed, it is impossible to represent the generalized (q2)-eigenspace of F on X̃(w)

with a complex of projective modules 0 −→ P
f

−→Q −→ 0 where the cokernel of

f is torsion-free. Note that even the cohomology of the complex constructed by

Rickard in [23, Section 4] will also have a non-trivial torsion part (one can show

nevertheless that the torsion is always cuspidal).

3.2 Conjectures

From the results obtained in Theorem 2.20 and 2.26, it is not difficult to

extrapolate the previous trees to the case of E7 and E8. We conjecture that the

Brauer trees of the principal Φ14-block in E7 and the principal Φ24-block in E8

are given by Figure 3 and 4. Note that

• the lines represented by each Harish-Chandra series, as well as the real

steam, are known from [16];

• the simple modules corresponding to edges connecting two different series

are necessarily cuspidal.
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St

0

φ27,37

2

φ105,26

3

φ189,17

4

φ189,10

5

φ105,5

6

φ27,2

7

E7[i]

1

E7[−i]

8

Id

9

D4,ε1

13

D4,rε1

12

D4,rε2

11

D4,ε2

10

Figure 3: Brauer tree of the principal Φ14-block of E7
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St

0

φ35,74

2

φ160,55

3

φ350,38

4

φ448,25

5

φ350,14

6

φ160,7

7

E8[−θ]

1

E8[−θ2]

9

φ35,2

8

D4,φ′
8,3

18

D4,φ12,4

17

D4,φ′′
8,9

16

D4,φ′′
2,16

15

D4,φ′
2,4

19

Id

10

E8[i]

E8[−i]

E6[θ]φ′
1,3

12
11

E6[θ2]φ′
1,3

20
23

E6[θ2]φ2,2

21

E6[θ]φ2,2

13

E6[θ2]φ′′
1,3

22

E6[θ]φ′′
1,3

14

Figure 4: Brauer tree of the principal Φ24-block of E8
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