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Cohomology of Deligne-Lusztig varieties for short-length regular elements in exceptional groups

We determine the cohomology of Deligne-Lusztig varieties associated to some short-length regular elements for split groups of type F 4 and E n . As a byproduct, we obtain conjectural Brauer trees for the principal Φ 14 -block of E 7 and the principal Φ 24 -block of E 8 .

Introduction

Let G be a finite group and ℓ be a prime number. The ℓ-modular representation theory of G is somehow controlled by the representation theory of local subgroups, namely the ℓ-subgroups of G and their normalisers. Broué's abelian defect conjecture is one of the major open problems in this framework: it predicts that an ℓ-block of G with abelian defect group is derived equivalent to its Brauer correspondent. From the work of Rickard [START_REF] Rickard | Morita theory for derived categories[END_REF], we know that such an equivalence should be induced by a perfect complex. Unfortunately, there is no canonical construction in general.

When G = G F is a finite reductive group, Broué's suggested that the complex representing the cohomology of some Deligne-Lusztig variety should be a good candidate. Together with Michel in [START_REF] Broué | Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées[END_REF], they made precise which specific Deligne-Lusztig varieties would be associated to principal Φ d -blocks when d is a regular number. They introduced the notion of good d-regular elements w ∈ W and conjectured that • for i = j, the groups H i c (X(w), Q ℓ ) and H j c (X(w), Q ℓ ) have no irreducible constituents in common;

• the irreducible constituents of H • c (X(w), Q ℓ ) are exactly the unipotent characters lying in the principal Φ d -block;

• the endomorphism algebra End G F H • c (X(w), Q ℓ ) is a d-cyclotomic Hecke algebra.

As for now, these statements have been veryfied in very few cases only. Computing the cohomology of a Deligne-Lusztig variety is a difficult problem, and the only results in this direction have been obtained by Lusztig in [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF] when d is the Coxeter number (that is when w is a Coxeter element of W), for groups of rank 2 by Digne, Michel and Rouquier in [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF] and for d = n in type A n and d = 4 in type D 4 by Digne and Michel in [START_REF] Digne | Endomorphisms of Deligne-Lusztig varieties[END_REF]. The purpose of this paper is to provide new examples for exceptional groups and in the spirit of Broué's conjecture, to deduce structural properties of the corresponding Φ d -block.

We shall adapt Lusztig's strategy: if a character is non-cuspidal then it should appear in the cohomology of a certain quotient of the Deligne-Lusztig variety X(w). In the Coxeter case, Lusztig proved that this quotient can be expressed in terms of a Deligne-Lusztig variety associated to a "smaller" Coxeter element, providing an inductive method to compute the cohomology of X(w). The first step towards our main result is to show an analogous property for the dregular elements we are interested in. To this end we will make extensive use of [START_REF] Dudas | Quotient of Deligne-Lusztig varieties[END_REF]. Unfortunately, this will not give enough information to deal with nonprincipal series. In order to compute the cuspidal part of the cohomology of X(w), we shall, as in [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF], introduce compactifications of X(w). Unlike the Coxeter case, the cuspidal part of H • c (X(w), Q ℓ ) might not be concentrated in degree ℓ(w) since some of the divisors of X(w) might provide cuspidal characters. However, the results in [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF] are sufficient to determine explicitely in which groups they actually appear and we obtain the following result:

Theorem. Let w be a good d-regular element. Then the contribution of the principal series and the discrete series to the cohomology of the Deligne-Lusztig variety X(w) is explicitely known in the following cases:

• (G, F) has type F 4 and d = 8;

• (G, F) has type E 6 and d = 9;

• (G, F) has type E 7 and d = 14;

• (G, F) has type E 8 and d = 24.

We will also obtain partial results for the other series, as well as predictions on their contribution, in line with the formula given by Craven in [START_REF] Craven | On the cohomology of Deligne-Lusztig varieties[END_REF]. Using Lusztig's results in the Coxeter case, Hiss, Lübeck and Malle have conjectured that the Brauer tree of the principal Φ h -block can be read off the cohomology of the Coxeter variety [START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of type E 6[END_REF]. Using the existing Brauer trees and the previous theorem, we propose conjectural planar embedded Brauer trees for the principal Φ 14 -block of E 7 and for the principal Φ 24 -block of E 8 (see Figure 3 and4). We believe that a further study of the cohomology of the corresponding Deligne-Lusztig varieties as in [START_REF] Dudas | Coxeter Orbits and Brauer trees I[END_REF], [START_REF] Dudas | Coxeter Orbits and Brauer trees II[END_REF] and [START_REF] Dudas | Coxeter Orbits and Brauer trees III. in preparation[END_REF] should give credit to these predictions.

Methods for determining the cohomology

Let G be a connected reductive group, together with a Frobenius F defining a F q -structure on G. If H is any F-stable algebraic subgroup of G, we will denote by H the finite group of fixed points H F . We fix a Borel subgroup B containing a maximal torus T of G such that both B and T are F-stable. The associated Weyl group is W = N G (T)/T and the set of simple reflections will be denoted by S. We will assume that (G, F) is split, so that F acts trivially on W.

Recall from [START_REF] Deligne | Representations of reductive groups over finite fields[END_REF] that to any element w ∈ W one can associate a Deligne-Lusztig variety

X(w) = gB ∈ G/B | g -1 F g ∈ BwB .
It is a quasi-projective variety of pure dimension ℓ(w), on which G acts by left multiplication. This definition has been subsequently generalized in [START_REF] Broué | Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées[END_REF] to elements of the Artin-Tits monoid B + .

The ℓ-adic cohomology of X(w) carries a lot of information on ordinary and modular representations of G. Throughout this paper, we will be interested in the case where w is a good d-regular element, or equivalently when w is a droot of π = w 2 0 in the Braid group of W. In that case, it is conjectured that the cohomology of X(w) gives a good model for the unipotent part of the principal Φ d -block (see for example [START_REF] Broué | Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées[END_REF] and [START_REF] Broué | Generic blocks of finite reductive groups[END_REF] or the introduction for more details).

Non-cuspidal characters

To any subset I ⊂ S one can associate a standard parabolic subgroup P I containing B and a standard Levi subgroup L I containing T. If U I denotes the unipotent radical of P I , the parabolic subgroup decomposes as P I = L I U I and both L I and U I are F-stable. By [17, XVII, 6.2.5], the U I -invariant part of the cohomology of X(w) is isomorphic to the cohomology of U I \X(w). Consequently, one can detect the presence of non-cuspidal modules in the cohomology of X(w) by studying the quotient variety U I \X(w) for various subsets I. In some specific cases, we can express such a quotient (or at least its cohomology) by means of smaller Deligne-Lusztig varieties.

Let b = w 1 • • • w r ∈ B + be an element of the Braid monoid, written as a product of reduced elements (i.e. w i ∈ W). Recall from [START_REF] Dudas | Quotient of Deligne-Lusztig varieties[END_REF] that the decomposition of G/B into P I -orbits induces a decomposition of X(b) into locally closed P I -subvarieties, called pieces

X (W I x 1 ,...,W I x r ) (b) = X(b) ∩ P I x 1 B/B × • • • × P I x r B/B
where each x i runs over the set of I-reduced elements of W. When I and b are clear from context, we shall simply denote this variety by X (x 1 ,...,x r ) . Throughout this paper, we will make extensive use of a particular case of the main theorem of [START_REF] Dudas | Quotient of Deligne-Lusztig varieties[END_REF]. It can be deduced from [START_REF] Dudas | Quotient of Deligne-Lusztig varieties[END_REF]Remark 3.12] when each set I i is empty and all the x i 's are equal to the same element:

Theorem 1.1. Let b = w 1 • • • w r ∈ B +
with w i ∈ W, I be a subset of S and x be an I-reduced element of W. We assume that each w i can be decomposed as

w i = γ i w ′ i with γ i ∈ S ∪ {1} and w ′ i ≤ w i be such that (a) if γ i = 1 then v i = xw i x -1 ∈ W I ; (b) if γ i ∈ S then xγ i x -1 ∉ W I , v i = xw ′ i x -1 ∈ W I and ℓ(w ′ i ) = ℓ(v i ).
Let d be the number of w i 's satisfying condition (b) and e = dim(U x I ∩ w ′ i U∩U -). Then we have the following isomorphism of graded L I × 〈F〉-modules:

H • c (U I \X (x,...,x) ) ≃ H • c (G m ) d × X L I (v 1 • • • v r ) [-2e](e).
Remark 1.2. In the particular cases we will be interested in, b will always be reduced. In that case, it corresponds to an element w ∈ W and we have

w = w 1 • • • w r with ℓ(w) = ℓ(w 1 ) + • • • + ℓ(w r ).
Note that in general the variety X(b) ⊂ (G/B) r can have much more pieces that X(w) ⊂ G/B, since

X W I x (w) = x 2 ,...,x r I-reduced X (W I x,W I x 2 ,...,W I x r ) (b).
However, in our specific examples we will observe that the piece X (W I x,W I x 2 ,...,W I x r ) will be empty unless

x 2 = • • • = x r = x, so that X x ≃ X (x,x,...,x) .

Cuspidal characters

By definition, cuspidal representations of G have no non-zero element invariant under the action of U I unless I = S. In particular, the cohomology of the quotient variety U I \X(w) contains no information on the cuspidal characters that can appear in X(w). In this section we shall briefly review some methods developped in [START_REF] Digne | Endomorphisms of Deligne-Lusztig varieties[END_REF] and [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF] in order to solve the problem of finding cuspidal characters in the cohomology of Deligne-Lusztig varieties.

Let b

= w 1 • • • w r with w i ∈ W. Recall that the variety X(b) has a nice com- pactification X(w 1 • • • w r ) = (g 0 , g 1 , . . ., g r ) ∈ (G/B) r+1 g -1
i-1 g i ∈ Bw i B and g -1 r F(g 0 ) ∈ B which has the following properties (see [START_REF] Digne | Endomorphisms of Deligne-Lusztig varieties[END_REF] and [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF]) : Proposition 1.3. Let w 1 , . . ., w r be elements of W,

(i) X(w 1 • • • w r ) is a projective variety of dimension ℓ(w 1 ) + • • • + ℓ(w r ); (ii) X(w 1 • • • w r ) is smooth whenever each variety Bw i B is; (iii) X(w 1 • • • w r ) is rationally smooth whenever each variety Bw i B is; (iv) X(w 1 • • • w r ) has a filtration by closed subvarieties X(v 1 • • • v r ) where the v i 's satifisfy v i ≤ w i .
Remark 1.4. A particular case is when each w i is a simple reflection s i . Then the variety X(w 1 • • • w r ) coincides with the smooth compactification introduced by Deligne and Lusztig in [START_REF] Deligne | Representations of reductive groups over finite fields[END_REF].

Let w ∈ W. In order to compute the cuspidal part of the cohomology of X(w) using the previous compactifications, we will use the following results: (C1) the cohomology of X(w) over Q ℓ is zero outside the degress ℓ(w), . . ., 2ℓ(w) [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF]Corollary 3.3.22]; 

(C2) the following triangle is distinguished in D b (Q ℓ G-Mod) : RΓ c X(w), Q ℓ -→ RΓ c X(w), Q ℓ -→ RΓ c v<w X(v), Q ℓ (C3)
of F on H ℓ(w) c (X(w), Q ℓ ) ρ satisfy |λ| < |q ℓ(w)/2 |
. This is a particular case of [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF]Proposition 3.3.21].

Note finally that the property of being rationally smooth of X(w) can be read off the Kazdhan-Lusztig polynomials of W [11, proposition 3.2.5]. If X(w) happens to be not rationally smooth, we can always decompose w into a product w = w 1 • • • w r such that each variety Bw i B is.

Some particular cases

For short-length regular elements, one can observe that only a small number of pieces X x are non-empty. In addition, they very often satisfy the assumptions of Theorem 1.1. For some of these elements, we can therefore compute explicitely the cohomology of the quotient U I \X(w), and eventually deduce the cohomology of X(w) using the results discussed in Section 1.2.

To make the computations easier, we shall use the notation introduced in [START_REF] Digne | Endomorphisms of Deligne-Lusztig varieties[END_REF]: the cohomology of the Deligne-Lusztig variety X(w) as a graded G × 〈F〉 monmodule will be represented by a polynomial H X(w) (t 1/2 , h) with coefficients in the semi-group N IrrG. By a theorem of Lusztig, when ρ is a unipotent character, any eigenvalue of F on the ρ-isotypic part of H i c (X(w), Q ℓ ) can be written λ ρ q j/2 , where λ ρ is a root of unity independent of w and i. The multiplicity of ρ in H i c (X(w), Q ℓ ) with eigenvalue λ ρ q j/2 will be encoded by the coefficient of h i t j/2 in the polynomial H X(w) (t 1/2 , h). For example, if X(s) is the Drinfeld curve for G = SL 2 (F p ) then H X(w) = hSt + h 2 tId.

Since we are dealing with exceptional Weyl groups, and more specifically with the combinatorics of distinguished subexpressions, we will use the package CHEVIE in GAP. We have written a couple of useful functions to determine whether a piece of a Deligne-Lusztig variety is non-empty, and to describe it that case its quotient by a finite unipotent group. These functions can be found in [START_REF] Michel | Development version of the GAP part of CHEVIE[END_REF] (or will be soon available) under the name deodhar.g.

8-regular elements for groups of type F 4

Let (G, F) be a split group of type F 4 . To fix the notation we will consider the following Dynkin diagram:

t 1 t 2 t 3 t 4 >
where t 1 , t 2 , t 3 and t 4 are the simple reflections.

Recall that there exist d-regular elements for d ∈ {1, 2, 3, 4, 6, 8, 12} only (see for example [START_REF] Springer | Regular elements of finite reflection groups[END_REF]). Note that the largest integer corresponds to the Coxeter number. By [START_REF] Broué | Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées[END_REF], for any such d one can find a particular d-regular element which is a d-th root of π in the Braid monoid. By [1, 11.22] and [10, Proposition 5.5], the cohomology of the corresponding Deligne-Lusztig variety does not depend on the choice of a root. For our purposes we will take

w = t 1 t 2 t 3 t 2 t 3 t 4 .

Cohomology of U I \X(w)

. We start by computing the cohomology of the quotient U I \X(w) where I = {t 2 , t 3 }. Using the criterion given in [START_REF] Digne | Endomorphisms of Deligne-Lusztig varieties[END_REF]Lemma 8.3] and the package CHEVIE in GAP one can check that there are only three non-empty pieces X x , corresponding to the cosets W I x = W I w 0 , W I w 0 t 1 t 2 and W I w 0 t 4 t 3 . Theorem 1.1 does not apply directly to all of these cells, but we can add an intermediate step. Let J = {t 2 , t 3 , t 4 } and K = {t 1 , t 2 , t 3 }. We have W J w 0 = W J w 0 t 4 t 3 (resp. W K w 0 = W K w 0 t 1 t 2 ) whereas X W I w 0 t 1 t 2 = X W J w 0 t 1 t 2 (resp. X W J w 0 t 4 t 3 ) is stable by P J (resp. P K ). Therefore only two pieces appear in the decompositon of U J \X(w) (resp. U K \X(w)).

• Let y be the minimal element of W J w 0 t 1 t 2 . Since t 1 t 2 is J-reduced, y = w J w 0 t 1 t 2 . Let us decompose w as w = w 1 w 2 with w 1 = t 1 t 2 t 3 t 2 and w 2 = t 3 t 4 = t 3 w ′ 2 . We have y w 1 = t 2 t 3 ∈ W J and y w ′ 2 = t 4 and therefore we can apply Theorem 1.1 to compute the cohomology of the piece of X(w 1 w 2 ) corresponding to (W J y,W J y). Furthermore, one can check (using GAP again) that the pieces corresponding to (W J y,W J y ′ ) are empty unless y and y ′ lie in the same coset. In particular, X W J y (w) ≃ X W J y,W J y (w 1 w 2 ) and

H • c (X W J y , Q ℓ ) U J ≃ H • c (G a × G m × X L J (t 2 t 3 t 4 ), Q ℓ ). Now X L J (t 2 t 3 t 4
) is a Deligne-Lusztig variety associated to a Coxeter element, and therefore the cohomology of its quotient by U I ∩ L J is given by [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF]Corollary 2.10]. We obtain

H • c (X W I w 0 t 1 t 2 , Q ℓ ) U I ≃ H • c (G a × G m × X L J (t 2 t 3 t 4 ), Q ℓ ) U I ∩L J ≃ H • c (G a × (G m ) 2 × X L I (t 2 t 3 ), Q ℓ ).
• For the piece X W I w 0 t 4 t 3 we proceed as above: the minimal element z of W K w 0 t 4 t 3 is clearly z = w K w 0 t 4 t 3 since t 4 t 3 is K -reduced. We can decompose w as w = w 1 w 2 w 3 where w 1 = t 1 , w 2 = t 2 = t 2 w ′ 2 and w 3 = t 3 t 2 t 3 t 4 . We observe that z w 1 = t 1 , z w ′ 2 = 1 and z w 3 = t 2 t 3 are elements of W K . In addition, we can check by explicit computation that a piece of X(w 1 w 2 w 3 ) corresponding to (W K z,W K z ′ ,W K z ′′ ) is empty unless z, z ′ and z ′′ lie in the same coset. Consequently, we can apply Theorem 1.1 to relate the cohomology of X W K z to the cohomology of X L K (t 1 t 2 t 3 ) and then use [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF] to obtain

H • c (X W I w 0 t 4 t 3 , Q ℓ ) U I ≃ H • c (G a × G m × X L K (t 1 t 2 t 3 ), Q ℓ ) U I ∩L K ≃ H • c (G a × (G m ) 2 × X L I (t 2 t 3 ), Q ℓ ).
• For the open piece X W I w 0 we can directly apply Theorem 1.1 by decomposing w as w = w 1 w 2 with w 1 = t 1 (t 2 t 3 t 2 t 3 ) and w 2 = t 4 . We only have to check that X W I w 0 (w) = X (W I w 0 ,W I w 0 ) (w 1 w 2 ) which can be done using GAP.

We deduce

H • c (X W I w 0 , Q ℓ ) U I ≃ H • c ((G m ) 2 × X L I (t 2 t 3 t 2 t 3 ), Q ℓ ).
Note that the variety X W I w 0 t 1 t 2 ∪ X W I w 0 t 4 t 3 is closed in X(w). Furthermore, the elements in W I w 0 t 1 t 2 and W I w 0 t 4 t 3 are not comparable in the Bruhat order and therefore both X W I w 0 t 1 t 2 and X W I w 0 t 4 t 3 are closed subvarieties of the union.

In particular

H • c X W I w 0 t 1 t 2 ∪ X W I w 0 t 4 t 3 , Q ℓ U I ≃ H • c G a × (G m ) 2 × X L I (t 3 t 2 ), Q ℓ ⊕2 .
The Weyl group of L I has type B 2 . Let us denote by ε the sign representation of W I , by θ the one-dimensional representation such that θ(t 2 ) = 1 and θ(t 3 ) = -1 and by r the reflection representation. Then the unipotent characters of L I are {Id, St, ρ θ , ρ θε , ρ r , θ 10 } where θ 10 is the unique unipotent cuspidal character. Using [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF]Theorem 4.3.4] we obtain

H U I \X W I w 0 = (h 2 t + h) 2 h 4 St + h 5 t 2 (ρ θ + ρ θε + 2θ 10 ) + h 8 t 4 Id = h 6 St + h 7 2tSt + t 2 (ρ θ + ρ θε + 2θ 10 ) + h 8 t 2 St + 2t 3 (ρ θ + ρ θε + 2θ 10 ) + h 9 t 4 (ρ θ + ρ θε + 2θ 10 ) + h 10 t 4 Id + 2h 11 t 5 Id + h 12 t 6 Id
and also

H U I \X W I w 0 t 1 t 2 = h 2 t(h 2 t + h) 2 h 2 (St + tθ 10 ) + h 3 tρ r + h 4 t 2 Id = h 6 (tSt + t 2 θ 10 ) + h 7 t 2 (2St + ρ r ) + 2t 3 θ 10 + h 8 t 3 (St + 2ρ r + Id) + t 4 θ 10 + h 9 t 4 (ρ r + 2Id) + h 10 t 5 Id.
We observe that the unipotent characters ρ θ , ρ θε and ρ r appear in the cohomology of only one of the two varieties. Using the long exact sequence associated to the decomposition

U I \X(w) = U I \X W I w 0 ∪ U I \X W I w 0 t 1 t 2 ∪ U I \X W I w 0 t 4 t 3
we deduce the isotypic part of these characters in the cohomology of U I \X(w). It is given by

h 7 t 2 (ρ θ + ρ θε + 2ρ r ) + h 8 t 3 (2ρ θ + 2ρ θε + 4ρ r ) + h 9 t 4 (ρ θ + ρ θε + 2ρ r ).
(2.1)

The isotypic parts for the unipotent characters St and Id fit into the following exact sequences: 

0 -→ St -→ H 6 c U I \X(w) St -→ 2tSt -→ 2tSt -→ H 7 c U I \X(w) St -→ 4t 2 St -→ t 2 St -→ H 8 c U I \X(w) St -→ 2t 3 St -→ 0 0 -→ H 8 c U I \X(w) Id -→ 2t 3 Id -→ 0 0 -→ H 9 c U I \X(w) Id -→ 4t 4 Id -→ t 4 Id -→ H 10 c U I \X(w) Id -→ 2t 5 Id -→ 2t 5 Id -→ H 11 c U I \X(w) Id -→ 0 0 -→ t 6 Id -→ H 12 c U I \X(w) Id -→ 0
h 6 St + h 7 t 2 (3St + ρ θ + ρ θε + 2ρ r ) + h 8 t 3 (2St + 2ρ θ + 2ρ θε + 4ρ r + 2Id) + h 9 t 4 (ρ θ + ρ θε + 2ρ r + 3Id) + h 12 t 6 Id.
Remark 2.3. The long exact sequence coming from the decomposition of the variety U I \X(w) does not give enough information to determine the θ 10 -isotypic part:

0 -→ H 6 c U I \X(w) θ 10 -→ 2t 2 θ 10 -→ 2t 2 θ 10 -→ H 7 c U I \X(w) θ 10 -→ 4t 3 θ 10 -→ 4t 3 θ 10 -→ H 8 c U I \X(w) θ 10 -→ 2t 4 θ 10 -→ 2t 4 θ 10 -→ H 9 c U I \X(w) θ 10 -→ 0.
One could nonetheless hope that in this particular situation the boundary maps are isomorphisms, which would imply that θ 10 cannot appear in the cohomology of U I \X(w). This will be the case if and only if the graded endomorphism ring End G (H • c (X(w), Q ℓ )) is concentrated in degree 0.

Cuspidal characters.

From [START_REF] Broué | Generic blocks of finite reductive groups[END_REF] we know that the irreducible constituents of the alternating sum of the comology of X(w) are the unipotent characters in the principal Φ 8 -block, namely {Id G , St G , φ 9,10 , φ 16,5 , φ 9,2 } for the principal series and {F 4 [-1], F 4 [i], F 4 [-i]} for the cuspidal characters (with the notation in [START_REF] Carter | Finite groups of Lie type[END_REF]). We observe that the restriction of these characters to L I are exactly the one obtained in the previous proposition. Since the Harish-Chandra restriction preserves the Harish-Chandra series, we can deduce the contribution of the principal series to the cohomology of X(w). The missing ones are either in the series associated to θ 10 -which we could not determineor are cuspidal characters. We shall deduce the contribution of the latter using the results in Section 1.2.

Recall that G has 7 cuspidal unipotent characters, namely

F 4 [-1], F 4 [i], F 4 [-i], F 4 [θ], F 4 [θ 2 ], F I
4 [START_REF] Bessis | Finite complex reflection arrangements are k(π, 1)[END_REF] and F II 4 [START_REF] Bessis | Finite complex reflection arrangements are k(π, 1)[END_REF] where i (resp. θ) is a primitive 4th root of unity (resp. a primitive 3rd root of unity). Let ρ be a cuspidal unipotent character and let v ≤ w. By cuspidality ρ cannot appear in the cohomology of Deligne-Lusztig varieties associated to elements lying in a proper parabolic subgroup of W. In particular it cannot appear in the cohomology of X(v) or X(v) unless v is in the following set

V = w, t 1 t 2 t 3 t 2 t 4 , t 1 t 3 t 2 t 3 t 4 , t 1 t 2 t 3 t 4 , t 1 t 3 t 2 t 4 . Define Z = X(t 1 t 2 t 3 t 2 t 4 ) ∪ X(t 1 t 3 t 2 t 3 t 4 ) and Z ′ = X(t 1 t 2 t 3 t 4 ) ∪ X(t 1 t 3 t 2 t 4 )
. The property (C2) yields the following exact sequences:

• • • -→ H i c X(w) ρ -→ H i c X(w) ρ -→ H i c Z ρ -→ • • • (2.4) • • • -→ H i c X(t 1 t 2 t 3 t 2 t 4 ) ρ -→ H i c X(t 1 t 2 t 3 t 2 t 4 ) ρ -→ H i c Z ′ ρ -→ • • • (2.5) • • • -→ H i c X(t 1 t 3 t 2 t 3 t 4 ) ρ -→ H i c X(t 1 t 3 t 2 t 3 t 4 ) ρ -→ H i c Z ′ ρ -→ • • • (2.6)
Moreover, one can check that each of these compactifications is actually rationally smooth, and therefore one can use (C3) to compute the cuspidal part of their cohomology, denoted by H X (t 1/2 , h). They are given by

H X(w) = h 6 t 3 F 4 [-1] + F 4 [i] + F 4 [-i] + 2F 4 [θ] + 2F 4 [θ 2 ] (2.7) and H X(t 1 t 2 t 3 t 2 t 4 ) = H X(t 1 t 3 t 2 t 3 t 4 ) = (h 4 t 2 + h 6 t 3 ) F 4 [i] + F 4 [-i] + F 4 [θ] + F 4 [θ 2 ] .
Furthermore, the elements t 1 t 2 t 3 t 4 and t 1 t 3 t 2 t 4 are minimal in the set V for the Bruhat order, so that for any unipotent cuspidal character ρ

H i c (Z ′ ) ρ ≃ H i c X(t 1 t 2 t 3 t 4 ) ρ ⊕ H i c X(t 1 t 3 t 2 t 4 ) ρ ≃ H i c X(c) ⊕2 ρ
where c is any Coxeter element of W. Using [20, table 7.3] we deduce that

H Z ′ = 2h 4 t 2 F 4 [i] + F 4 [-i] + F 4 [θ] + F 4 [θ 2 ] .
Together with 2.5 and 2.6, and the fact that the cohomology of X(t 1 t 2 t 3 t 2 t 4 ) and X(t 1 t 3 t 2 t 3 t 4 ) vanishes in degree 4, we obtain

H X(t 1 t 2 t 3 t 2 t 4 ) = H X(t 1 t 3 t 2 t 3 t 4 ) = (h 5 t 2 + h 6 t 3 ) F 4 [i] + F 4 [-i] + F 4 [θ] + F 4 [θ 2 ] .
From these results, one can now partially determine the cohomology of Z: for any unipotent cuspidal character, we use the following exact sequence

• • • -→ H i c X(t 1 t 2 t 3 t 2 t 4 ) ρ ⊕ H i c X(t 1 t 3 t 2 t 3 t 4 ) ρ -→ H i c Z ρ -→ H i c Z ′ ρ -→ • • • to deduce that there exist integers 0 ≤ ε i ≤ 2 such that H Z = (h 4 + h 5 )t 2 ε 1 F 4 [i] + ε 2 F 4 [-i] + ε 3 F 4 [θ] + ε 4 F 4 [θ 2 ] + 2h 6 t 3 F 4 [i] + F 4 [-i] + F 4 [θ] + F 4 [θ 2 ] .
However 2.4 forces each character ε i ρ to be a component of H 5 c X(w) since H 4 c X(w) is zero by 2.7. But the cohomology of X(w) vanishes outside the degrees 6, . . ., 12, and hence the ε i 's must be zero. Consequently, the exact sequence 2.4 can be decomposed into

0 -→ H 6 c X(w) F 4 [-1] -→ t 3 F 4 [-1] -→ 0 0 -→ H 6 c X(w) F 4 [±i] -→ t 3 F 4 [±i] -→ 2t 3 F 4 [±i] -→ H 7 c X(w) F 4 [±i] -→ 0 0 -→ H 6 c X(w) F 4 [θ j ] -→ 2t 3 F 4 [θ j ] -→ 2t 3 F 4 [θ j ] -→ H 7 c X(w) F 4 [θ j ] -→ 0.
We use (C4) to conclude: the characters F 4 [±i], and F 4 [θ j ] already occur in the cohomology of the Deligne-Lusztig variety associated to a Coxeter element. Since w is not F-conjugate to a Coxeter element, they cannot appear in H 6 c X(w) with an eigenvalue of absolute value q 3 , and the previous exact sequences determine the cuspidal part of the cohomology of X(w). Proposition 2.8. Let w = t 1 t 2 t 3 t 2 t 4 . The cuspidal part of the cohomology of X(w) is given by bH i X(w), Q ℓ St q 2 φ 9,10 q 3 φ 16,5 q 4 φ 9,2

h 6 t 3 F 4 [-1] + h 7 t 3 F 4 [i] + F 4 [-i]).

Cohomology of X(w). The unipotent characters in the principal

q 6 Id -q 3 F 4 [-1] iq 3 F 4 [i] -iq 3 F 4 [-i]
2.2 9-regular elements for groups of type E 6

In this section we assume that (G, F) is a split group of type E 6 . The largest regular number (excluding the Coxeter number) being 9, we are interested in computing the cohomology of X(w) for any 9th root of π, or equivalently for any good 9-regular element. We will label the simple reflections as follows

t 1 t 3 t 2 t 4 t 5 t 6
As before, we may, and we will, consider a particular root of π, since the cohomology of the corresponding Deligne-Lusztig variety X(w) does not depend on this choice. We set w = t 1 t 3 t 4 t 3 t 2 t 4 t 5 t 6 .

Cohomology of U I \X(w)

. We decompose the quotient of X(w) by U I for I = {t 2 , t 3 , t 4 , t 5 }. The situation is similar to the one studied in Section 2.1.1: a piece X x is non-empty if and only if W I x is one of the three cosets among W I w 0 , W I w 0 t 6 t 5 t 4 and W I w 0 t 1 t 3 .

• Let J = S {t 1 }. We have W J w 0 t 1 t 3 = W J w 0 and therefore the piece corresponding to W I w 0 t 6 t 5 t 4 is stable by the action of P J . Let y be the minimal element of W J w 0 t 6 t 5 t 4 . Since w 0 (t 6 t 5 t 4 ) = t 1 t 3 t 4 is J-reduced, y = w J w 0 t 6 t 5 t 4 . Let us decompose w as w = w 1 w 2 w 3 with w 1 = t 1 , w 2 = t 3 = t 3 w ′ 2 and w 3 = t 4 t 3 t 2 t 4 t 5 t 6 . Then y w 1 = t 6 , y w ′ 2 = 1 and y w 3 = t 3 t 5 t 4 t 2 are all elements of W J . In addition, they satisfy the assumptions of Theorem 1.1 (see also Remark 1.2) so that

H • c (X W J y , Q ℓ ) U J ≃ H • c (G a × G m × X L J (t 6 t 3 t 5 t 4 t 2 ), Q ℓ ).
Now X L J (t 6 t 3 t 5 t 4 t 2 ) is a Deligne-Lusztig variety associated to a Coxeter element, and therefore the cohomology of its quotient by U I ∩ L J is given by [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF]. We obtain

H • c (X W I w 0 t 6 t 5 t 4 , Q ℓ ) U I ≃ H • c (G a × G m × X L J (t 6 t 3 t 5 t 4 t 2 ), Q ℓ ) U I ∩L J ≃ H • c (G a × (G m ) 2 × X L I (t 2 t 5 t 4 t 3 ), Q ℓ ).
• For the piece X W I w 0 t 1 t 3 , we proceed as above: let K = S {t 6 } and z be the minimal element of W K w 0 t 1 t 3 . It is clearly z = w K w 0 t 1 t 3 since t 6 t 5 is K -reduced. We can decompose w as w = w 1 w 2 where w 1 = t 1 t 3 t 4 t 3 t 2 and w 2 = t 4 (t 5 t 6 ) = t 4 w ′ 2 . We have z w 1 = t 2 t 4 t 5 and z w ′ 2 = t 3 t 1 so that with Theorem 1.1 and [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF] we obtain

H • c (X W I w 0 t 1 t 3 , Q ℓ ) U I ≃ H • c (G a × G m × X L K (t 2 t 4 t 5 t 3 t 1 ), Q ℓ ) U I ∩L K ≃ H • c (G a × (G m ) 2 × X L I (t 5 t 4 t 2 t 3 ), Q ℓ ).
• For the open piece X W I w 0 we can directly apply Theorem 1.1 by decomposing w as w = w 1 w 2 with w 1 = t 1 (t 3 t 4 t 3 t 2 t 4 t 5 ) and w 2 = t 6 . We deduce

H • c (X W I w 0 , Q ℓ ) U I ≃ H • c ((G m ) 2 × X L I (t 5 t 4 t 5 t 2 t 4 t 3 ), Q ℓ ).
By the properties of the Bruhat order the varieties X W I w 0 t 6 t 5 t 4 and X W I w 0 t 1 t 3 are both closed subvarieties of X(w). Therefore the cohomology of the union X f = U I \X W I w 0 t 6 t 5 t 4 ∪ U I \X W I w 0 t 1 t 3 can be deduced from [20, Table 7.3] whereas the cohomology of X o = U I \X W I w 0 is given by [9, Theorem 12.4]:

H X o = (h 2 t + h) 2 h 6 St + h 7 t 2 (ρ 1 2 + + ρ 1 2 -+ ρ 21 2 ) + 2t 3 D 4 + 2h 8 t 3 ρ 1.21 + h 9 t 4 (ρ 2+ + ρ 2-+ ρ 31 ) + h 12 t 6 Id H X f = 2h 2 t(h 2 t + h) 2 h 4 (St + t 2 D 4 ) + h 5 tρ 1.1 3 + h 6 t 2 ρ 1 2 .2 + h 7 t 3 ρ 1.3 + h 8 t 4 Id
where ρ λ is the unipotent character (in the principal series) associated to the character λ of W I and D 4 is the unique unipotent cuspidal character of L I .

As before, any character in the principal series which is different from St and Id cannot appear in the cohomology of both of the varieties, so that the isotypic part on the cohomology of U I \X(w) is the sum of the isotypic part on H 

Cuspidal characters.

The group G has only two cuspidal characters, denoted by E 6 [θ] and E 6 [θ 2 ] where θ is a primitive 3rd root of unity. In order to determine they contribution to the cohomology of X(w) , we use the compactifications X(v) for v ≤ w. However, unlike the type F 4 , they are not always rationally smooth and we shall rather work with "bigger" compactifications, obtained by underlining all the simple reflections. For details on the explicit computations we refer to Section 2.1.2. We start by defining the following closed subvariety of X(w): Z = X(t 1 t 4 t 3 t 2 t 4 t 5 t 6 ) ∪ X(t 1 t 3 t 3 t 2 t 4 t 5 t 6 ) ∪ X(t 1 t 3 t 4 t 2 t 4 t 5 t 6 ) ∪ X(t 1 t 3 t 4 t 3 t 2 t 5 t 6 ) so that we obtain, for any cuspidal character ρ, a long exact sequence

• • • -→ H i c X(w) ρ -→ H i c X(w) ρ -→ H i c Z ρ -→ • • • (2.12)
We determine the cuspidal part of Z as follows: we compute, for any element v 

X(v) = H X(v) = (h 7 t 3 + h 8 t 4 ) E 6 [θ] + E 6 [θ 2 ]
by means of the following exact sequences

• • • -→ H i c X(v) ρ -→ H i c X(v) ρ -→ H i c (X(c)) ρ ⊕2 -→ • • •
and the precise values and

H X(v) = (h 6 t 3 + h 8 t 4 ) E 6 [θ] + E 6 [θ 2 ] H X(c) = h 6 t 3 E 6 [θ] + E 6 [θ 2 ]
that can be found using (C3). Note that we have also used the fact that the cohomology of X(v) is zero outside the degrees 7, . . ., 14. For the element v = t 1 t 3 t 3 t 2 t 4 t 5 t 6 we use [11, Proposition 3.2.10] and we obtain the same value again:

H X(v) = (h 2 t + h) H X(c) = (h 7 t 3 + h 8 t 4 ) E 6 [θ] + E 6 [θ 2 ]
In particular, the cohomology of Z fits into the following long exact sequence

• • • -→ H i c (X(v)) ρ ⊕4 -→ H i c (Z) ρ -→ H i c (X(c)) ρ ⊕4 -→ • • • We claim that H Z = 4h 8 t 4 E 6 [θ] + E 6 [θ 2 ] . (2.13)
Again, the exact sequence itself is not enough to compute this value, but it can be deduced from the following properties:

• the cohomology of X(w) vanishes in degree 7 by (C1);

• H X(w) = 3h 8 t 4 E 6 [θ] + E 6 [θ 2 ] which forces in particular H 6 c (X(w)) to have no cuspidal constituent. These properties, together with 2.12, ensure that the coefficient of h 6 in H Z is zero, and we deduce 2.13.

Consequently, the decomposition X(w) = X(w) ∪ Z yields the following exact sequence for any cuspidal character ρ:

0 -→ H 8 c (X(w)) ρ -→ 3t 4 ρ -→ 4t 4 ρ -→ H 9 c (X(w)) ρ -→ 0.
Finally, by (C4) the group H 8 c (X(w)) cannot contain any unipotent cuspidal character with an eigenvalue of absolute value q 4 and we obtain: Proposition 2.14. Let w = t 1 t 3 t 4 t 3 t 2 t 4 t 5 t 6 . The contribution of the cuspidal characters of G to the cohomology of X(w) is given by

h 9 t 4 E 6 [θ] + E 6 [θ 2 ] .

Cohomology of X(w)

. By [START_REF] Broué | Blocs et séries de Lusztig dans un groupe réductif fini[END_REF], the irreductible constituents of the virtual character associated to the cohomology of X(w) are exactly the unipotent characters in the principal Φ 9 -block, namely b uni = Id G , St G , φ 20,20 , φ 64,13 , φ 90,8 , φ 64,4 ,

φ 20,2 , E 6 [θ], E 6 [θ 2 ]
. By looking at the Harish-Chandra restriction of these characters, we can deduce from Proposition 2.10 and 2.14 the following theorem: Theorem 2.15. Let (G, F) be a split group of type E 6 and w be a good 9-regular element of W. The contribution to the cohomology of the Deligne-Lusztig X(w) of the principal series and the cuspidal characters coincides with the contribution of the principal Φ 9 -block, and it is given by i 8 9 10 11 12 13 14 15 16

bH i (X(w), Q ℓ ) St q 2 φ 20,20 q 3 φ 64,13 q 4 φ 90,8 q 5 φ 64,4 q 6 φ 20,2 q 8 Id

θq 4 E 6 [θ] θ 2 q 4 E 6 [θ 2 ]
Conjecturally, for good regular elements, there should be no cancelation in the virtual character (-

1) i H i c (X(w), Q ℓ ) ∈ K 0 (G-mod) [3, Conjecture 5.7].
In particular, the series associated to the cuspidal character of D 4 should not appear in the cohomology of X(w): Assumption 2.16. For good 9-regular elements in E 6 , the cohomology of X(w) has no constituent in the Harish-Chandra series associated to the cuspidal representation of D 4 .

This assumption will be essential to study the contribution of the D 4 -series for groups of type E 7 and E 8 (see Theorem 2.20 and 2.26).

14-regular elements for groups of type E 7

We now assume that (G, F) is a split group of type E 7 and we are interested in computing the cohomology of Deligne-Lusztig varieties associated to good 14regular elements. We will label the simple reflections according to the following Dynkin diagram

t 1 t 3 t 2 t 4 t 5 t 6 t 7
and consider a specific 9th root of π: w = t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 .

Cohomology of U I \X(w)

. Let I = S {t 7 }. The group L I has type E 6 and we can use the results in the previous section to compute the cohomology of the quotient of X(w) by U I . In the decomposition of X(w) by P I -cosets in G/B, only two pieces are non-empty, with associated cosets W I w 0 and W I w 0 t 7 t 6 t 5 . We can apply Theorem 1.1 in these two cases:

• when y = w I w 0 t 7 t 6 t 5 we decompose w as w = w 1 w 2 with w 1 = t 7 t 6 t 5 t 4 t 5 t 2 and w 2 = t 4 (t 3 t 1 ) = t 4 w ′ 2 . We have y w 1 = t 1 t 3 t 4 t 2 and y w ′ 2 = t 5 t 6 so that

H • c (X W I y , Q ℓ ) U I ≃ H • c (G a × G m × X L I (t 1 t 3 t 4 t 2 t 5 t 6 ), Q ℓ ).
• for x = w I w 0 we observe that w = t 7 (t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 ) = t 7 w ′ with x w ′ ∈ W J and deduce that

H • c (X W I w 0 , Q ℓ ) U I ≃ H • c (G m × X L I (t 1 t 3 t 4 t 3 t 2 t 4 t 5 t 6 ), Q ℓ ).
The cohomology of these varieties is known by Theorem 2.15 and [20, Table 7.3].

Recall that for any Coxeter element c I of W I , the cohomology of the corresponding variety is given by The case of the Harish-Chandra series associated to the cuspidal character of D 4 remains undetermined unless we know the contribution of this series to the cohomology of the open part. However, in our situtation, none of these characters should appear, and the isotypic part on the cohomology of the union U I \X(w) should come from the Coxeter variety only. Proposition 2.18. Assume that 2.16 holds, and let w = t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 and I = ∆ {t 7 }. Then the contribution of the Harish-Chandra series associated to the cuspidal character of D 4 to the cohomology of U I \X(w) is given by

H X L I (c I ) = h 6 St + t 2 D 4,ε + t 3 E 6 [θ] + t 3 E
h 9 t 3 D 4,ε + h 10 t 4 D 4,ε + D 4,r + h 11 t 5 D 4,r + D 4,Id + h 12 t 6 D 4,Id .
Finally, for the cuspidal characters E 6 [θ] and E 6 [θ 2 ], we have a long exact sequence

0 -→ H 9 c U I \X(w) E 6 [θ] -→ t 4 E 6 [θ] -→ t 4 E 6 [θ] -→ H 10 c U I \X(w) E 6 [θ] -→ t 5 E 6 [θ] -→ t 5 E 6 [θ] -→ H 11 c U I \X(w) E 6 [θ] -→ 0.
This is not enough to determine their contribution and we can only hope that they actually do not appear in the cohomology of U I \X(w).

Cuspidal characters.

The group G has only two cuspidal unipotent characters, namely E 7 [i] and E 7 [-i], where i is a primitive 4th root of unity. The method to determine their contribution to the cohomology is strictly identical to the case of E 6 and yields bH i (X(w), Q ℓ ) St q 2 φ 27,37 q 3 φ 105,26 q 4 φ 189,17 q 5 φ 189,10

-q 3 D 4,1 3 . -q 4 D 4,1 2 .1 -q 5 D 4,1.2 -q 6 D 4,.3 iq 9/2 E 7 [i] -iq 9/2 E 7 [-i] i 14 15 16 17 18 bH i (X(w), Q ℓ ) q 6 φ 105,5 q 7 φ 27,2 q 9 Id
where the D 4 -series is given under Assumption 2.16.

In our situation, the non-cancellation for the corresponding Deligne-Lusztig virtual character is equivalent to the following: Assumption 2.21. The characters lying in the Harish-Chandra series associated to the cuspidal characters E 6 [θ] and E 6 [θ 2 ] do not appear in the cohomology of X(w).

24-regular elements for groups of type E 8

We close this section by studying the cohomology of Deligne-Lusztig varieties associated to good 24-regular elements in E 8 . We will label the simple reflections as follows 

t

Cohomology of U I \X(w).

The situation is very similar to the case of E 7 so we will omit the details. When I = S {t 8 }, the pieces corresponding to W I w 0 and W I w 0 t 8 t 7 t 6 t 5 are the only non-empty pieces, and the cohomology of their quotient by U I is given by ], E I 8 [START_REF] Bessis | Finite complex reflection arrangements are k(π, 1)[END_REF], E II 8 [START_REF] Bessis | Finite complex reflection arrangements are k(π, 1)[END_REF] and E 8 [ζ j ] where ζ is a primitive 5th root of unity and j = 1, 2, 3, 4. We proceed as in the previous cases to determine they contribution to the cohomology of X(w). However, due to the large number of cuspidal characters, the calculations are a bit more tedious.

H • c (U I \X W I w 0 t 8 t 7 t 6 t 5 , Q ℓ ) ≃ H • c G a × G m × X L I (t 7 t 6 t 5 t 4 t 2 t 3 t 1 ), Q ℓ and H • c (U I \X W I w 0 , Q ℓ ) ≃ H • c G m × X L I (
We start by considering the closed subvariety Z of X(w) consiting of the union of the varieties X(v) where v runs over the set The cohomology of this variety fits in the following long exact sequence, for any cuspidal character ρ

t
• • • -→ H i c X(w) ρ -→ H i c X(w) ρ -→ H i c Z ρ -→ • • • (2.24)
The elements of the Braid monoid obtained by un-underlying the elements v will be denoted by v 1 , v 2 , v 3 et v 4 . Note that only v 4 is not the canonical lift of an element of W. For j = 1, 2, 3, the cuspidal part of the cohomology of X(v j ) ≃ X(v j ) can be deduced from the following exact sequence

• • • -→ H i c X(v j ) ρ -→ H i c X(v j ) ρ -→ H i c (X(c)) ρ ⊕2 -→ • • •
together with the following properties

• the cuspidal part of H • c (X(v j )) can be explicitely computed using (C3):

H X(v j ) = (h 8 t 4 + h 10 t 5 ) E 8 [-θ] + E 8 [-θ 2 ] + E 8 [ζ] + E 8 [ζ 2 ] + E 8 [ζ 3 ] + E 8 [ζ 4 ]
• the cuspidal part of a variety associated to a Coxeter element is given by [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF] (or equivalently can be computed using (C3)):

H X(c) = h 8 t 4 E 8 [-θ] + E 8 [-θ 2 ] + E 8 [ζ] + E 8 [ζ 2 ] + E 8 [ζ 3 ] + E 8 [ζ 4 ]
• the cohomology of X(v j ) vanishes in degree 8.

We obtain, for j = 1, 2, 3:

H X(v j ) = (h 9 t 4 + h 10 t 5 ) E 8 [-θ] + E 8 [-θ 2 ] + E 8 [ζ] + E 8 [ζ 2 ] + E 8 [ζ 3 ] + E 8 [ζ 4 ] .
Using [11, Proposition 3.2.10], one can check that it is also the cuspidal part of the cohomology of X(v 4 ).

We claim that we can derive the cohomology of Z: for any cuspidal character ρ, we have an exact sequence

• • • -→ 4 j=1 H i c X(v j ) ρ -→ H i c Z ρ -→ H i c (X(c)) ρ ⊕4 -→ • • •
Furthermore, the cohomology of X(w) vanishes in degree 9 and the cuspidal part of H • c (X(w)) is concentrated in degree 10, given by

h 10 t 5 E 8 [i] + E 8 [-i] + 3(E 8 [-θ] + E 8 [-θ 2 ]) + 4(E 8 [ζ] + E 8 [ζ 2 ] + E 8 [ζ 3 ] + E 8 [ζ 4 ])
Consequently, the cuspidal part of H 8 c (Z) is zero by 2.24 and we obtain

H Z = 4h 10 t 5 E 8 [-θ] + E 8 [-θ 2 ] + E 8 [ζ] + E 8 [ζ 2 ] + E 8 [ζ 3 ] + E 8 [ζ 4 ] .
In particular, we can unpack the exact sequence 2.24 according to the different cuspidal characters as follows

0 -→ H 10 c X(w) E 8 [±i] -→ t 5 E 8 [±i] -→ 0 0 -→ H 10 c X(w) E 8 [-θ i ] -→ 3t 5 E 8 [-θ i ] -→ 4t 5 E 8 [-θ i ] -→ H 11 c X(w) E 8 [-θ i ] -→ 0 0 -→ H 10 c X(w) E 8 [ζ j ] -→ 4t 5 E 8 [ζ j ] -→ 4t 5 E 8 [ζ j ] -→ H 11 c X(w) E 8 [ζ j ] -→ 0
To conclude, we observe that the unipotent characters E 8 [-θ i ] and E 8 [ζ j ] already appear in the Coxeter variety, and for that reason they cannot be constituents of H 10 c (X(w)) with an eigenvalue of absolute value q 5 (see (C4)). ,

E 6 [θ] φ ′ 1,3 , E 6 [θ] φ 2,2 , E 6 [θ] φ ′′ 1,3 , E 6 [θ 2 ] φ ′ 1,3 , E 6 [θ 2 ] φ 2,2 , E 6 [θ 2 ] φ ′′ 1,3 , E 8 [i], E 8 [-i], E 8 [-θ], E 8 [-θ 2 ]
By comparing the restriction to E 7 of these characters and Proposition 2.22, 2.23 and 2.25 we obtain a good approximation of the cohomology of X(w).

Theorem 2.26. Let (G, F) be a split group of type E 8 and w be a good 24-regular element of W. The contribution to the cohomology of the Deligne-Lusztig X(w) of the principal series, the D 4 -series, the E 6 -series and the cuspidal characters coincides with the contribution of the principal Φ 24 -block, and it is given by i 10 11 12 13

bH i (X(w), Q ℓ ) St q 2 φ 35,74 q 3 φ 160,55 q 4 φ 350,38

-q 3 D 4,φ ′′ 2,16 -q 4 D 4,φ ′′ 8,9 -q 5 D 4,φ 12,4 -q 6 D 4,φ ′ 8,3 θq 4 E 6 [θ] φ ′ 1,3 θq 5 E 6 [θ] φ 2,2 θq 6 E 6 [θ] φ ′′ 1,3 θ 2 q 4 E 6 [θ 2 ] φ ′ 1,3 θ 2 q 5 E 6 [θ 2 ] φ 2,2 θ 2 q 6 E 6 [θ 2 ] φ ′′ 1,3 iq 5 E 8 [i] -iq 5 E 8 [-i] -θq 5 E 8 [-θ] -θ 2 q 5 E 8 [-θ 2 ] i 14 15 16 17 18 19 20 
bH i (X(w), Q ℓ ) q 5 φ 448,25 q 6 φ 350,14 q 7 φ 160,7 q 8 φ 35,2

q 10 Id -q 7 D 4,φ ′ 2,4
where the D 4 -series is given under Assumption 2. [START_REF] Geck | Brauer trees of Hecke algebras[END_REF] and the E 6 -series under Assumption 2.21.

Conjectures on associated Brauer trees

Having computed the cohomology of some Deligne-Lusztig varieties for exceptionals groups, we would like to propose conjectures on Brauer trees for the corresponding principal Φ d -blocks.

Recall from [START_REF] Broué | Generic blocks of finite reductive groups[END_REF] that if d is a regular number, and w is a d-regular element, the irreducible constituent of the virtual character R

G T w (1) = (-1) i H c (X(w), Q ℓ ) are exactly the unipotent characters in the principal Φ d -block. If moreover C W (wF) ≃ N G (T w )/C G (T w ) is cyclic, then the Φ d -block is generically of cyclic defect: if ℓ divides Φ d (q) but
does not divide |W|, then any Sylow subgroup of G is cyclic. In that case, the representation theory of the block (i.e. the module category over the block) can be decribed by its Brauer tree. More precisely, in this situation:

• any ℓ-character θ of T w is in general position and the associated irreducible character χ θ = (-1) ℓ(w) R G T w (θ) is cuspidal by [START_REF] Lusztig | Representations of finite Chevalley groups[END_REF]Proposition 2.18]. Moreover, using [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Proposition 12.2] it can be shown that its restriction to the set of ℓ-regular elements is independent from θ. Any character of this form is said to be a exceptional;

• there are e = |C W (w)| unipotent characters {χ 0 , . . ., χ e-1 } in the block, which will be refered as the non-exceptional characters;

Now if we consider the sum χ exc of all distinct unipotent characters, any projective indecomposable F ℓ G-module lifts uniquely, up to isomorphism, to a Z ℓmodule P whose character is [P] = χ + χ ′ for χ, χ ′ two distinct characters in V = {χ exc , χ 0 , . . ., χ e-1 }. We define the Brauer tree Γ of the block to be the graph with vertices labelled by V and egdes χχ ′ whenever there exists a projective indecomposable module with character χ+χ ′ . This graph is a tree and its planar embbeding determines the module category over the block up to Morita equivalence.

When d = h is a the Coxeter number, Hiss, Lübeck and Malle have formulated in [START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of type E 6[END_REF] a conjecture relating the cohomology of the Deligne-Lusztig variety associated to a Coxeter element (together with the action of F) and the planar embedded Brauer tree of the principal Φ h -block. Using the explicit results on the cohomology of Deligne-Lusztig varieties that we have obtained, and the Brauer trees that we already already know from [START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of types F 4 and 2 E 6[END_REF] and [START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of type E 6[END_REF], we shall propose two conjectural Brauer trees for groups of type E 7 and E 8 .

Observations

Let (G, F) be a split group of type F 4 and w be a good 8-regular element. When ℓ divides Φ 8 (q) and does not divide the order of W, we can observe that the classes in F ℓ of the eigenvalues of F on bH • c (X(w), Q ℓ ) form the group of 8th roots of unity, generated by the class of q. Therefore to any non-exceptional character χ one can associate an integer j χ such that the class of the corresponding eigenvalue of F coincides with the class of q j χ . By [START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of types F 4 and 2 E 6[END_REF], the Brauer tree of the block, together with the integers j χ is given by Now assume that (G, F) is a split group of type E 6 . The Brauer tree of the principal Φ 9 -block of G has been determined in [START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of type E 6[END_REF]. It corresponds to the following picture: Remark 3.1. Unlike the Coxeter case (see [START_REF] Dudas | Coxeter Orbits and Brauer trees I[END_REF] and [START_REF] Dudas | Coxeter Orbits and Brauer trees II[END_REF]), the cohomology of the Deligne-Lusztig variety X(w) with coefficients in Z ℓ is not torsion-free. Indeed, it is impossible to represent the generalized (q 2 )-eigenspace of F on X(w) with a complex of projective modules 0 -→ P f -→ Q -→ 0 where the cokernel of f is torsion-free. Note that even the cohomology of the complex constructed by Rickard in [START_REF] Rickard | Derived categories and stable equivalence[END_REF]Section 4] will also have a non-trivial torsion part (one can show nevertheless that the torsion is always cuspidal).

Conjectures

From the results obtained in Theorem 2.20 and 2.26, it is not difficult to extrapolate the previous trees to the case of E 7 and E 8 . We conjecture that the Brauer trees of the principal Φ 14 -block in E 7 and the principal Φ 24 -block in E 8 are given by Figure 3 and4. Note that • the lines represented by each Harish-Chandra series, as well as the real steam, are known from [START_REF] Geck | Brauer trees of Hecke algebras[END_REF];

• the simple modules corresponding to edges connecting two different series are necessarily cuspidal. 

Theorem 2 . 9 .

 29 Φ 8block b are given by b uni = Id, St G , φ 9,10 , φ 16,5 , φ 9,2 , F 4 [-1], F 4 [i], F 4 [-i] . From Proposition 2.2 and 2.8 we deduce the contribution to the cohomology of X(w) of any unipotent character in the block: Let (G, F) be a split group of type F 4 and w be a good 8-regular element. The contribution to the cohomology of the Deligne-Lusztig X(w) of the principal series and the cuspidal characters coincides with the contribution of the principal Φ 8 -block, and it is given by i

F 4 1 F 4 [-i] 5 Figure 1 :

 41451 Figure 1: Brauer tree of the principal Φ 8 -block of F 4

7 Figure 2 :

 72 Figure 2: Brauer tree of the principal Φ 9 -block of E 6

Figure 3 :

 3 Figure 3: Brauer tree of the principal Φ 14 -block of E 7

Proposition 2.2. Let

  Any morphism above is F-equivariant so that we can consider each power of t separately. On the other hand, the only unipotent character of G whose restriction is St L I (resp.Id L I ) is St G (resp. Id G ). But from[START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF] Proposition 3.3.14 and 3.3.15] we know exactly where these characters can appear in the cohomology of X(w) as well as the corresponding eigenvalue of F. Using 2.1 we deduce that tSt (resp. t 2 St) cannot appear in H6 With the previous exact sequences, this forces the isotypic part of St and Id in the cohomology of U I \X(w) to be h6 St + 3h 7 t 2 St + h 8 t 3 (2St + 2Id) + 3h 9 t 4 Id + h 12 t 6 Id. w = t 1 t 2 t 3 t 2 t 3 t 4 and I = {t 2 , t 3 }. The characters of the principal series in the cohomology of U I \X(w) are given by

	Together with 2.1 we finally obtain

c U I \X(w) or in H 7 c U I \X(w) (resp. in H 8 c U I \X(w) ) and that t 4 Id (resp. t 5 Id) cannot appear in H 10 c U I \X(w) (resp. in H 11 c U I \X(w) ).

  Let w = t 1 t 3 t 4 t 3 t 2 t 4 t 5 t 6 and I = {t 2 , t 3 , t 4 , t 5 }. The contribution of the characters in the principal series to the cohomology of U I \X(w) is given by h 8 St + h 9 t 2 3St + ρ 1 2 + + ρ 1 2 -+ ρ 21 2 + 2ρ 1.1 3 + h 10 t 3 2St + 2ρ 1 2 + + 2ρ 1 2 -+ 2ρ 21 2 + 4ρ 1.1 3 + 2ρ 1.21 + 2ρ 1 2 .2 + h 11 t 4 ρ 1 2 + + ρ 1 2 -+ ρ 21 2 + 2ρ 1.1 3 + 4ρ 1.21 + 4ρ 1 2 .2 + ρ 2+ + ρ 2-+ ρ 31 + 2ρ 1.3 + h 12 t 5 2ρ 1.21 + 2ρ 1 2 .2 + 2ρ 2+ + 2ρ 2-+ 2ρ 31 + 4ρ 1.3 + 2Id + h 13 t 6 ρ 2+ + ρ 2-+ ρ 31 + 2ρ 1.3 + 3Id + h 16 t 8 Id.

	Remark 2.11. Unfortunately, this method is not sufficient for determining the
	D 4 -isotypic part (see also Remark 2.3).

• c (X f ) and H • c (X o ). For the characters St and Id, we proceed exactly as in Section 2.1.1 using [11, Proposition 3.3.14] and [11, Proposition 3.3.15]. Proposition 2.10.

  {t 1 t 4 t 3 t 2 t 4 t 5 t 6 , t 1 t 3 t 4 t 2 t 4 t 5 t 6 , t 1 t 3 t 4 t 3 t 2 t 5 t 6 } H

  6 [θ 2 ] + h 7 tφ 6,25 + t 3 D 4,r + h 8 t 2 φ 15,17 + t 4 D 4,Id + h 9 t 3 φ 20,10 + h 10 t 4 φ 15,5 + h 11 t 5 φ 6,1 + h 12 t 6 Id. If we exclude St and Id, none of the characters in the principal series that appear here can appear in the cohomology of U I \X W I w 0 . From that observation one can readily deduce the contribution of the principal series to the cohomology of U I \X(w). Note that in the case of St and Id we can proceed as in Section 2.1.1. Let w = t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 and I = ∆ {t 7 }. The contribution of the principal series to the cohomology of U I \X(w) is given by h 9 St + h 10 t 2 St + φ 6,25 + φ 20,20 + h 11 t 3 φ 6,25 + φ 20,20 + φ 15,17 + φ 64,13 + h 12 t 4 φ 15,17 + φ 64,13 + φ 20,10 + φ 90,8 + h 13 t 5 φ 20,10 + φ 90,8 + φ 15,5 + φ 64,4 + h 14 t 6 φ 15,5 + φ 64,4 + φ 6,1 + φ 20,2 + h 15 t 7 φ 6,1 + φ 20,2 + Id + h 18 t 9 Id.

	Proposition 2.17.

  Proposition 2.19. Let w = t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 . The cuspidal part of the cohomology of X(w) is given by h 10 t 9/2 E 7 [i] + E 7 [-i] . 2.3.3. Cohomology of X(w). By combining Proposition 2.17 and 2.18, we obtain the Harish-Chandra restriction to E 6 of the cohomology of the variety X(w). If we compare these to the restriction of the characters in the principal Φ 14 -block b uni = {St G , Id G , φ 27,37 , φ 105,26 , φ 189,17 , φ 189,10 , φ 105,5 , φ 27,2 , D 4,1 3 . , D 4,1 2 .1 , D 4,1.2 , D 4,.3 , E 7 [i], E 7 [-i]} (and the fact that these actually occur as constituents of the cohomology) we deduce their exact contribution. Adding the cuspidal characters obtained in 2.19, we get

	i	9	10	11	12	13

Theorem 2.20. Let (G, F) be a split group of type E 7 and w be a good 14-regular element of W. The contribution to the cohomology of the Deligne-Lusztig X(w) of the principal series, the D 4 -series and the cuspidal characters coincides with the contribution of the principal Φ 14 -block, and it is given by

  = t 8 t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 .

			t 2				
	1	t 3	t 4	t 5	t 6	t 7	t 8
	and choose the following 24th root of π:			

w

  t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 ), Q ℓ . The latter has been computed in the previous section, whereas the cohomology of a Deligne-Lusztig variety associated to any Coxeter element c I of W I can be deduced from [20, Table7.3]:H X L I (c I ) = h 7 St + t 2 D 4,ε + t 3 (E 6 [θ] ε + E 6 [θ 2 ] ε ) + t 7/2 (E 7 [i] + E 7 [-i]) + h 8 tφ 7,46 + t 3 D 4,1.1 2 + t 4 (E 6 [θ] Id + E 6 [θ 2 ] Id ) + h 9 t 2 φ 21,33 + t 4 D 4,2.1 + h 10 t 3 φ 35,22 + t 5 D 4,Id + h 11 t 4 φ 35,13 + h 12 t 5 φ 21,6 + h 13 t 6 φ 7,1 + h 14 t 7 Id. Let w = t 8 t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 and I = ∆ {t 8 }. The contribution of the principal series to the cohomology of U I \X(w) is given by h 10 St + h 11 t 2 St + φ 7,46 + φ 27,37 + h 12 t 3 φ 7,46 + φ 27,37 + φ 21,33 + φ 105,26 + h 13 t 4 φ 21,33 + φ 105,26 + φ 35,22 + φ 189,17 + h 14 t 5 φ 35,22 + φ 189,17 + φ 35,13 + φ 189,10 + h 15 t 6 φ 35,13 + φ 189,10 + φ 21,6 + φ 105,5 + h 16 t 7 φ 21,6 + φ 105,5 + φ 7,1 + φ 27,2 + h 17 t 8 φ 7,1 + φ 27,2 + Id + h 20 t 10 Id. The results for the intermediate series depend whether the assumptions 2.16 and 2.21 are satisfied. If they hold, we can easily obtain: Let w = t 8 t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 and I = ∆ {t 8 }. (i) Under Assumption 2.16, the contribution of the D 4 -series to the cohomology of U I \X(w) is given by h 10 t 3 D 4,ε + D 4,1 3 . + h 11 t 4 D 4,ε + D 4,1 3 . + D 4,1.1 2 + D 4,1 2 .1 + h 12 t 5 D 4,1.1 2 + D 4,1 2 .1 + D 4,2.1 + D 4,1.2 + h 13 t 6 D 4,2.1 + D 4,1.2 + D 4,Id + D 4,.3 + h 14 t 7 D 4,Id + D 4,.3 . (ii) Under Assumption 2.21, the contribution of the E 6 -series to the cohomology of U I \X(w) is given by h 10 t 4 E 6 [θ] ε + h 11 t 5 E 6 [θ] ε + E 6 [θ] Id + h 12 t 6 E 6 [θ] Id and h 10 t 4 E 6 [θ 2 ] ε + h 11 t 5 E 6 [θ 2 ] ε + E 6 [θ 2 ] Id + h 12 t 6 E 6 [θ 2 ] Id .

	Together with Theorem 2.20, this is enough to determine the contribution of the principal series: Proposition 2.22. Proposition 2.23. 2.4.2. Cuspidal characters. The group G has several cuspidal unipotent char-acters, denoted in [5] by E 8 [±i], E 8 [±θ], E 8 [±θ 2

  8 t 7 t 6 t 4 t 5 t 2 t 4 t 3 t 1 , t 8 t 7 t 6 t 5 t 4 t 2 t 4 t 3 t 1 , t 8 t 7 t 6 t 5 t 4 t 5 t 2 t 3 t 1 , t 8 t 7 t 6 t 5 t 5 t 2 t 4 t 3 t 1 .

Proposition 2.25. Let

  w = t 8 t 7 t 6 t 5 t 4 t 5 t 2 t 4 t 3 t 1 . The cuspidal part of the cohomology of X(w) is given byh 10 t 5 E 8 [i] + E 8 [-i] + h 11 t 5 E 8 [-θ] + E 8 [-θ 2 ]. We summarize the results obtained in this section. The unipotent characters in the principal Φ 24 -bloc b are given byb uni = Id G , St G ,φ 35,74 , φ 160,55 , φ 350,38 , φ 448,25 , φ 350,14 , φ 160,16 , φ 35,2 , D 4,φ ′′

			2,16	,
	D 4,φ ′′ 8,9	, D 4,φ 12,4 , D 4,φ ′ 8,3	, D 4,φ ′ 2,4

2.4.3. Cohomology of X(w).

  Brauer tree of the principal Φ 24 -block of E 8

				E 6 [θ] φ ′′ 1,3				
			14						
					E 6 [θ] φ 2,2			
				13					
	D 4,φ ′ 2,4	D 4,φ ′ 8,3	D 4,φ 12,4	D 4,φ ′′ 8,9	D 4,φ ′′ 2,16 E 6 [θ] φ ′ 1,3 12 11	E 8 [i]	E 8 [-θ 2 ] 9	φ 35,2	Id
	19	18	17	16	15					8	10
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			22		E 6 [θ 2 ] φ 2,2			
				E 6 [θ 2 ] φ ′′ 1,3				
						Figure 4:		
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