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THE NON-LINEAR DYNAMIC RESPONSE OF THE EULER-BERNOULLI BEAM WITH 

AN ARBITRARY NUMBER OF SWITCHING CRACKS 

S. Caddemi, I. Caliò & M. Marletta 

Dipartimento di Ingegneria Civile e Ambientale, University of Catania, 

V.le A. Doria 6; I-95100, Catania, ITALY. 

ABSTRACT

In this study the nonlinear dynamic response of the Euler-Bernoulli beam in presence of multiple 

concentrated switching cracks (i.e. cracks that are either fully open or fully closed) is addressed. 

The overall behaviour of such a beam is non-linear due to the opening and closing of the cracks 

during the dynamic response, however it can be regarded as a sequence of linear phases each of 

them characterised by different number and positions of the cracks in open state. In the paper the 

nonlinear response of the beam with switching cracks is evaluated by determining the exact modal 

properties of the beam in each linear phase and evaluating the corresponding time history linear 

response through modal superposition analysis. Appropriate initial conditions at the instant of 

transition between two successive linear phase have been considered and an energy control has been 

enforced with the aim of establishing the minimum number of linear modes that must be taken into 

account in order to obtain accurate results. Some numerical applications are presented in order to 

illustrate the efficiency of the proposed approach for the evaluation of the nonlinear dynamic 

response of beams with multiple switching cracks. In particular, the behaviour  under different 

boundary conditions both for harmonic loading and free vibrations has been investigated.  

Keywords: Euler-Bernoulli beam; Non-linear dynamic response; Damaged beams; Switching cracks; 

Breathing cracks; Closing cracks; Modal analysis. 

1. INTRODUCTION 

In the last decades several authors devoted considerable interest in developing suitable models able 
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to describe the influence of damage along the span of beam-like structures.. This increased interest 

has led to the improvement of the existing methods as well as to the development of new 

procedures for the analysis of the dynamic response of damaged structures . Particular attention has 

been devoted to the occurrence of cracks, i.e. damages concentrated at cross-sections of the beam. 

There are different approaches for crack modelling in beam structures reported in the literature; a 

great part of the considered approaches can be attributed to one of the following categories: spring 

models or elastic hinges [1-3], local stiffness reduction [4], and finite element models [5-7]. 

Friswell and Penny in [8] compare some different approaches for crack modelling and demonstrate 

that simple models of crack flexibility based on beam elements are adequate. A great diffusion has 

been reached by those models belonging to the category relying on the spring models. According to 

the latter approach, following the examples provided in [9-11], a crack can be macroscopically 

represented as an elastic link connecting the two adjacent beam segments. In particular, a model in 

which an internal hinge endowed with a rotational spring, whose stiffness is dependent on the extent 

of the damage, has been proved to be accurate [2,3,12-15].  

Most of the procedures proposed in the literature are based on the strong assumption that the 

damaged structure behaves linearly since the crack is supposed to remain always open during the 

dynamic response. However theoretical and experimental studies have demonstrated that in many 

cases a state of damage in a structure can cause a nonlinear behaviour in its dynamic response [16] 

due to  the so called ‘closing crack’ phenomenon , i.e. a crack which opens and closes during the 

dynamic response. Within the context of the closing crack phenomenon, two different models can 

be distinguished [17]: i) the ‘switching crack’ model in which the crack is either fully open or fully 

closed showing a bilinear behaviour; ii) the more realistic ‘breathing crack’ model, showing a 

response-dependent behaviour, in which a smooth transition phase between open and closed crack 

occurs.

The presence of damage in a beam structure causes a decrease of the natural frequencies with 

respect to the undamaged beam; both experimental and theoretical investigations show that the 
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frequencies of a beam with switching and breathing cracks are intermediate between the natural 

frequency of the undamaged beam and the model of the beam with open cracks. As a consequence, 

attention should be paid in the adoption of the open crack model when the crack closure occurs. 

Furthermore several studies highlighted that, in presence of switching cracks, there is a significant 

change of the response spectrum that is characterised by the presence of sub-harmonics typical of 

non-linear systems.  

Although the study of the dynamic behaviour of cracked beams has been investigated by several 

authors, the great part of the surveys are relative to open cracks, while recently very few studies 

have been devoted to the non linear behaviour of beams due to the presence of switching and 

breathing cracks. In the studies investigating the non linear behaviour the presence of a single crack 

is usually considered [5,7,17-25], while multiple cracks have been analysed under an harmonic 

excitation only [26] and by means of a finite element approach.  A short comprehensive review of 

these studies can be found in references [19,26].

The bi-linear behaviour of a beam with a single switching crack was recognized by Zastrau in [5] 

with reference to a simple supported beam whose response has been evaluated by means of the 

finite element method. Also Chu and Shen [20] highlighted the bi-linear behaviour of a single 

cracked beam, they used a Galerkin procedure for obtaining a bi-linear equation for each vibration 

mode. Shen and Chu [21] obtained a closed-form solution for a bi-linear oscillator subjected to low 

frequency excitations. Qian et al. [22] observed that the amplitude of the forced vibration response 

of cracked beams with switching cracks is over-estimated if a model with open cracks is considered. 

Ibrahim et al. [1] investigated the effects of crack closure on the frequency changes of cracked 

cantilever beams, both simulations and experimental results lead to the conclusion that, relying on 

the drop in the natural frequency alone may lead to serious underestimation of the crack severity.  

In reference [23] Friswell and Penny analysed the non-linear behaviour of a beam with a switching 

crack under harmonic excitation in a range of frequency near to the first natural frequency of the 

beam, such that it can be considered as a single-degree-of-freedom system with bilinear stiffness. 
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The frequency response functions, obtained through numerical integration, highlighted the presence 

of peaks in the response spectrum at integer multiples of the excitation frequency, a common 

property for non-linear systems. Similar results were obtained by Ruotolo et al. [7] by performing 

numerical integration of the equation of motion and using a finite element model of the beam. 

The non-linear behaviour of beams with a single switching crack has been also highlighted by 

Crespo et al. [24] and by Pugno et al. [25] where the concept of higher order frequency response 

functions has been applied to characterise the non-linearity due to the closing crack phenomenon. 

In reference [27] Ostachowicz and Krawczuk used the harmonic balance method to determine the 

response of a cantilever beam with a single switching crack under harmonic excitation showing the  

reduced calculation time with respect to numerical integration. 

Later, Pugno et al. [26] under the assumption of periodic response and adopting the harmonic 

balance method treated the case of several cracks by introducing a smooth crack closure according 

to [28]. 

An appealing approach for the modal analysis of nonlinear systems, even with strong nonlinearities, 

has been proposed in the literature by means of the definition of the so called ‘non-linear normal 

modes’ [29]. 

In this study the problem of the evaluation of the nonlinear dynamic response of the Euler-Bernoulli 

beam under a generic excitation in presence of multiple concentrated switching cracks is addressed. 

Although the breathing crack model can be considered more realistic, the authors adopted the 

switching crack model since exact closed form expressions of the mode shapes of cracked beams 

can be obtained only for fully open or fully closed cracks, to be adopted also for the case of non-

periodic response, and allow a complete treatment of the case of multiple switching cracks. 

Although the overall behaviour of the beam is highly nonlinear the problem can be treated as a 

multi-linear system each corresponding to a particular state of the cracks in the beam.  

In previous papers the authors [30,31] treated both the stability and the dynamic behaviour of the 

Euler-Bernoulli beam with an arbitrary number of open cracks and presented, in closed form, the 
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correspondent linear eigen-properties. 

As far as the dynamic behaviour is concerned, the overall response of a beam with several 

switching cracks can be regarded as a sequence of linear phases, each of them characterised by 

different number and positions of the cracks in open state. Therefore, in this paper the response of 

the beam with switching cracks, is evaluated by determining the modal properties of the beam in 

each linear phase and calculating the time history responses through modal superposition analysis. 

Appropriate initial conditions at the instant of transition between two successive linear phases have 

been considered and an energy control criteria has been enforced in order to establish the minimum 

number of modes that must be taken into account in order to obtain accurate results. Some 

numerical applications are presented with the aim to illustrate efficiency of the proposed approach 

for beams with multiple switching cracks under different boundary and loading conditions. In order 

to compare the proposed approach with other accurate results reported in the literature, the 

harmonic responses of two-cracked cantilever steel beams reported by Pugno et al. in [26] have 

been considered. Furthermore, the presented procedure has been applied to evaluate several free 

vibration responses. 

2. FORMULATION OF THE PROBLEM 

The considered model is represented by an Euler-Bernoulli vibrating beam, of length L and uniform 

mass per unit length m, in presence of multiple concentrated closing cracks, with general boundary 

restraint conditions subjected to a generic load function p. A reference system is chosen with the 

origin at the first end of the beam, therefore each cross-section can be identified by the value of the 

normalised abscissa: 

, with 0 1x
L

� �� � � (1)

The basic concept adopted in this study is that the concentrated cracks may be open or closed; when 

the generic crack is open, it affects locally the flexural stiffness of the beam and its influence can be 
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modelled by means of generalised functions. The adoption of generalised functions to treat 

singularities in the flexural stiffness both in the context of static, stability and dynamic analyses has 

been previously considered by the authors in [30�34]. According to the latter model, if a finite 

number of open cracks Nc are considered along the span of the beam at abscissas ,o i� , i=1, 2, ... , 

Nc, punctual reductions of the stiffness are introduced, so that the following expression of uniform 

flexural stiffness with Dirac’s delta singularities is adopted to treat the concentrated open cracks: 

� ��
	



�
�



���� �

�

cN

i
i,oioo IE)(EI

1
1 ����� (2)

where o oE I  is the flexural stiffness of the undamaged beam, i�  is a dimensionless damage intensity 

parameter and � ���  is the Dirac’s delta function. 

The exact explicit expressions of the vibration modes and the corresponding frequencies of a multi-

cracked beam with open cracks has been presented in [31]. Here, the above mentioned solution is 

employed for analysing, through modal analysis, the nonlinear dynamic response of beams with 

switching cracks. In this context, a switching crack is intended as a crack that is fully open for a 

given sign of the curvature of the beam in the current position and is fully closed otherwise. In such 

a system the variability of the stiffness of each crack, associated to its state (closed or open), can be 

conveniently described by the following flexural stiffness model 

� ��
	



�
�



����� �

�

cN

i
i,oiioo bIE),(EI

1
1 ����� b (3)

where the i-th component bi of the state vector b is assumed equal to 1, if the i-th crack is open, or 

zero, if the integrity of the cross-section is assumed as the fracture surfaces are in a full contact 

state.

According to the flexural stiffness model represented by Eq. (3), the dynamic differential equation 

of the Euler-Bernoulli beam with an arbitrary number of switching cracks subjected to a general 

transversal load distribution � �,p t�  can be written as 
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� � � � � � � �
4 4

,
1

1 , , ,
cN

i i o i
i o o o o

mL Lb u t u t p t
E I E I

� � � � � � �
�

��� �
 
� ���� � � �� �� �
� �� 	� �

� �� (4)

where the apex indicates differentiation with respect to the normalised abscissa � , and the dot 

indicates differentiation with respect to time t.

In order to obtain the time-history response of equation (4) through the modal analysis, the eigen-

properties of the beam in a generic state, identified by the Boolean vector b, must be evaluated. 

2.1 EIGEN-PROPERTIES OF THE BEAM IN A GENERIC CRACK CONFIGURATION 

The classical mode shapes and the corresponding frequencies of the beam subjected to a generic 

cracked configuration must be evaluated by considering the following dynamic differential equation 

that governs the free vibration of the beam 

� � � � � �
4

,
1

1 , , 0
cN

i i o i
i o o

mLb u t u t
E I

� � � � � �
�

��� �
 
� ���� � � �� �� �
� �� 	� �

� �� (5)

The solution of equation (5) with the use of separation of variables can be written as: 

� � � � � ���� tyt,u � (6)

Substitution of equation (6) into equation (5) yields to the following differential equation for the 

modal displacements that, after some simple algebraic manipulation, can be written in the form: 

� � � � � �4
,

1
1 0

cN

i i o i
i

b � � � � � � � � �
�

�
� �
 
� ���� � � � � �� �� �
� �� 	� �

� (7)

where the frequency parameter 4 2 4 /( )o omL E I� ��  has been introduced. 

Equation (7), by performing double differentiation with respect to �  of the first term containing the 

Dirac’s delta distribution, and after simple algebra, may be given the following form: 

� � � � � �4 B � � � � � �� � � (8)

where the function � �B �  collects all the terms with the Dirac’s deltas and their derivatives as 

follows: 
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The general solution of equation (8) has been presented in [31] by making use of the theory of the 

generalised functions and may be written, for the case under study, in closed form as follows: 
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(10)

where ( )oiU � �� is the unit step (Heaviside) function, which is the distributional derivative of the 

Dirac’s delta distribution, and the terms , , ,i i i i"  $ %  are given by the following expressions.
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The dimensionless parameters i!  appearing in equations (10),(11) are related to i�  as follows: 

� �
, 1, ,

1
i

i c
i

i N
A
�!
�

� �
�

� (12)

and will be considered in the sequel as “damage parameters” and will be adopted in the 

applications in order to represent the intensity of concentrated damages. In equation (12) A is a 

constant which does not influence the damage modelling since the damage intensity can be 

correlated directly to the damage parameters i!  as discussed in reference [30]. 

The integration constants 1 2 3 4, , ,C C C C , appearing in equation (10), can be easily evaluated in 

explicit form by imposing the boundary conditions of the eigen-mode and its derivatives.  
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2.2 EVALUATION OF THE TIME-HISTORY RESPONSE THROUGH MODAL ANALYSIS IN 

A GENERIC CRACK CONFIGURATION 

The adopted model for the closing crack, in which the generic crack may be either fully open or 

fully closed, implies that the nonlinear response of the system can be considered as a sequence of 

linear states each of them can be evaluated  through a classical modal analysis. Therefore, by 

considering a time interval in which the system maintains the same crack configuration, i.e. the state 

vector b does not change, the corresponding displacement time-history response can be expressed 

exactly by an infinite series through modal superposition as follows: 

1
( , ) ( , ) ( )n n

n
u t y t� � �

&

�

� �� b (13)

where ( , )n� �b is the n-th mode shape corresponding to the state vector b and )t(yn  is the n-th

normal coordinate. By substituting expression (13) in the governing equation of motion (4) the 

following expression is obtained: 
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+ ,� 	
� � �b b �� (14)

Multiplying each of equation (14) term by � �,m� �b  and integrating along the length of the beam 

yield to: 
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It has to be remarked that the following orthogonality properties of the mode shapes with respect to 

the mass and to the stiffness hold: 
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where nM  and nK  are the generalised modal mass and stiffness of the n-th mode, respectively.  

By accounting for the relationship 2
n n nK M�� , involving the generalised modal mass and stiffness, 

the following modal equation is obtained: 

4 ( )( ) ( ) n
n n n

n

P ty t y t
M

�� ��� (18)

where

� �
1

0

( ) , ( , )n nP t p t d� � � �� - b (19)

If classical modal damping [35] is assumed, the damping can be considered by simply assigning a 

modal damping ratio n$  to each considered mode. In this case the modal equation (18) can be 

rewritten as follows: 

2 4 ( )( ) 2 ( ) ( ) n
n n n n n n

n

P ty t y t y t
M

$ � �� � ��� � (20)

Equation (20) coincides formally with the equation of motion of a single-degree-of-freedom system 

and, if solved, yields to the normalised coordinate ( )ny t  relative to the n-th mode. In each linear 

phase, the response of the beam in terms of displacement ( , )u t�  can therefore be estimated by 

choosing a finite number of modes N, by solving the N independent equations of the normalised 

coordinates (18) and superposing the modal responses by means of equation (13), where N terms 

are accounted for in the summation, as follows: 

1
( , ) ( , ) ( )

N

n n
n

u t y t� � �
�

/ � b (21)

Once the modal truncation has been performed, the correspondent residual displacement function 

( , )u t�0  is evaluated as follows: 

1
( , ) ( , ) ( , ) ( )

N

n n
n

u t u t y t� � � �
�

0 � �� b (22)

It is important to consider a sufficient number of vibration modes in order to maintain the error due 

to the modal truncation within an acceptable tolerance. In the following paragraph this aspect will 
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be further discussed. 

The response in terms of velocity can be easily obtained by means of differentiation with respect to 

time: as follows: 

1
( , ) ( , ) ( )

N

n n
n

v t y t� � �
�

/ � b � (23)

3. THE NON-LINEAR DYNAMIC RESPONSE OF THE BEAM WITH SWITCHING 

CRACKS

Let us now consider a beam with cN  switching cracks. The initial configuration, open or closed, of 

each crack is known and therefore the initial state vector b can be assigned. For this initial condition 

the first N natural frequency parameters and the corresponding modes of vibration can be derived 

by means of equation (10), and its derivatives, by enforcing the boundary condition, once the zeros 

of the corresponding frequency equations have been evaluated. The response of the system during 

each linear phase, i.e. a phase characterised by the same state vector b, is obtained by using modal 

superposition as outlined in the previous paragraph. When one or more cracks open or close the 

system is subjected to a state change. In this case, the definition of the phase transition conditions is 

necessary in order to characterise the initial conditions for the new linear phase to be solved with a 

new set of modal coordinates. 

3.1 PHASE TRANSITION CONDITIONS

Without loss of generality it is assumed that a generic closed crack opens when the curvature at the 

crack position ,o i�  reaches the positive sign (upward concavity), while an open crack closes when 

the curvature at the crack position ,o j�  attains the negative sign (downward concavity). A generic 

configuration of a simply supported beam with some cracks closed and others open is qualitatively 

represented in Fig.1. The incipient opening condition for a closed crack is characterised by the 

transition of the curvature from a negative toward a positive value, therefore this condition can be 
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written as follows: 

( , ) 0u t ��� � ; ( , ) 0du t
dt

�
��

1 (24)

Viceversa, the incipient closing conditions for an open crack may be expressed as follows: 

( , ) 0u t ��� � ; ( , ) 0du t
dt

�
��

2 (25)

Let us suppose that the opening/closing conditions (24)/(25) are satisfied for the i-th crack at the 

time instant ot . At ot a change in the i-th component of the state vector b occurs. Therefore a new 

set of N natural frequency parameters 1 2, ,..., N� � �� � �  and the corresponding mode shapes 

1 2( , ), ( , ), ( , )N� � � � � �� � �b b b�  must be evaluated for this new linear phase that, for simplicity, can 

be identified by the vector �b . Beyond the time instant ot , the response of the beam must be 

evaluated in terms of the normalised coordinates ( )ny t�  relative to the new mode shapes. Obviously 

this new solution is valid until a new event, associated to opening or closing of one or more cracks, 

occurs.

In the simplifying hypothesis that no dissipation energy is associated to the opening or closing of a 

crack, the initial conditions that must be enforced at the beginning of each linear phase must be 

determined by imposing the continuity of the displacement and velocity flexural response at time 

ot . These conditions can be expressed as follows: 

1 1
( , ) ( , ) ( , ) ( ) ( , ) ( )

N N

o o n n o n n o
n n

u t u t y t y t� � � � � �� � � � � �

� �

� 3 �� �b b (26)

1 1
( , ) ( , ) ( , ) ( ) ( , ) ( )

N N

o o n n o n n o
n n

u t u t y t y t� � � � � �� � � � � �

� �

� 3 �� �b b� � � � (27)

where ( )n oy t�  and ( )n oy t��  are unknowns to be evaluated by taking advantage of the orthogonality 

condition (15), pre-multiplying both members of expressions (26) and (27) by ( , )m� ��b  and 

integrating along the span of the beam, as follows:  
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1
0

0
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o m
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u t d
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� � � �
� � � �

� �

� � � � �
�

�
� � 3 �

-
-

b
b

�
� � � (29)

It must be noticed that, in view of the adopted modal truncation (a finite number of modes 

considered), the transition from one finite set of mode shapes, at the �b  state, to another, at the �b

state, to represent the same displacement and velocity configuration of the beam, introduces an 

additional error associated to the change of the mode shapes basis. As a consequence, the continuity 

conditions reported in equations (26) and (27), strictly speaking, are satisfied in an approximated 

way. An energy balance at the transition instant ot  can be adopted, as shown in what follows, to 

provide an estimate of the error due to the change of mode shape basis. To this purpose it can be 

observed that the strain energy ( )SE t

� � � �
1

2
,3

10

1( ) 1 ,
2

cN
o o

S i i o i
i

E IE t b u t d
L

� � � � � �
�


 

��� � � � � �
 
� � � 	

� 	
�- (30)

and the kinetic energy ( )kE t

� �
1

2

0

1( ) ,
2kE t mL u t d� �� �
 
� 	- � (31)

at the transition instant ot  must be conserved since no loss of energy has been associated to the 

opening/closing of the switching crack. 

The above mentioned error due to the change of the mode shape basis, occurring at every transition 

phase, can be estimated by expressing both the strain and  the kinetic energy at the instants ot
�  and 

ot
� , considering the different sets of modal coordinate corresponding to the states �b  and �b , and 

verifying that the energy loss associated to the variation of the modal basis is within a certain 

tolerance 4 .

The latter condition can be expressed as follows: 
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(32)

4. NUMERICAL APPLICATIONS 

The numerical applications presented in this section are relative to beams with multiple closing 

cracks subject to different boundary and loading conditions. The frequency equation for a multi-

cracked beam, in a fixed configuration, can be derived by means of the closed form solution 

reported in equation (10) by simply enforcing the standard boundary conditions, including the 

general case of rotational and translational spring supports. In particular, in this section the closed 

form solution given by equation (10) for a general state of open/closed cracks is adopted to treat the 

cases of cantilever, and simply supported. Euler Bernoulli beams. The damage parameter ! has

been chosen as representative of the damage intensities, and the correspondent crack depths can be 

easily inferred through existing damage models as reported in [30]. The response of the considered 

beams to harmonic loadings is first analysed and the results are reported in terms of frequency 

response functions and compared with other results provided in the literature. Subsequently, it is 

shown how the proposed modal analysis can also be efficaciously applied to determine the free 

vibration response of beams with multiple switching cracks. 

4.1 HARMONIC LOADING

In order to compare the proposed approach with other accurate results reported in the literature, the  

first application considered herein is relative to a prismatic cantilever steel beam, in presence of two 

closing cracks and subjected to a harmonic concentrated load at the free end, considered by Pugno 

et al. [26]. The beam has length L=0.70 m, square cross-section with height h=20 mm, Young 

modulus 8 22.06 10 /E KN m� �  and mass density 2 48 /KN s m5 � � . According to the referenced 

paper [26] three different configurations of the crack depths and positions, as reported in Table 1, 
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have been considered.  In the analyses considered by Pugno et al. [26] the structure has been 

discretised by using Euler-type finite elements with two nodes and two degrees of freedom per 

node, furthermore, they assumed that the transition from closed to open crack, and vice versa, is 

smooth rather than instantaneous. Assuming that the dynamic response is periodic, they employed 

the harmonic balance method to solve the equations of motion, furthermore, in order to demonstrate 

the efficiency of their procedure, in the same paper a comparative analysis with results, previously 

obtained by the same authors through direct numerical integration according to a different 

procedure presented in [25], has been also reported. 

In Figure 2 the results obtained by Pugno et al. [26] in terms of maximum displacement u of the free 

end, normalised with respect to the maximum load value P, are compared with those obtained by 

the proposed approach. In order to perform the comparison, the values of damage intensity 

parameter !, adopted in this work, corresponding to the relative crack depths is defined as follows 

[30]:

( )h C
L

! 6� (33)

where ( )C 6  is the local compliance due to the concentrated crack, which is here adopted according 

to the model proposed in [15] as follows: 

� �
� �2

2
( )

0.9 1
C

6 6
6

6

�
�

�
(34)

The values of the damage intensity parameters corresponding to the cases considered by Pugno et 

al. [26] are reported in Table 1. 

The cantilever beam, is characterised by the first fundamental frequency in the undamaged 

configuration equal to 33.7f Hz� and has been subjected to a concentrated harmonic force 

sin( )P t�  at the free end section in order to obtain the corresponding frequency response. The 

results have been reported in term of the maximum displacement response of the beam, at the same 

section, discarding the transient part of the response. Nine mode shapes have been considered for 

each linear phases of the analyses and a modal damping ratio equal to 2% has been set for all the 
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needed vibration modes. From the comparisons reported in Figure 2, it can be observed a good 

agreement with the results obtained by Pugno et al. [26]. However, since the model adopted in this 

work considers instantaneous crack closure, the results obtained with the proposed procedure are 

closer to those obtained according to the method reported in [25] that considers the same model of 

‘switching’ crack for representing the opening and closing of the crack. The small differences, that 

can be observed by the comparison, can also be associated to the different beam models adopted by 

each approach, to the different damage models adopted for the crack depth, and, finally, to the 

unavoidable numerical errors. 

The results plotted in Figure 3a are relative to the beam, in presence of two cracks, corresponding to 

configuration 3 of Table 1 with a modal damping ratio equal to 2% and are compared with the 

response of both the undamaged beam and the beam with open cracks. The analyses have been 

extended to a frequency range wider than that reported in [26] in order to show an additional 

fundamental frequency (the second fundamental frequency in the undamaged configuration is 

211.0f Hz� ). As highlighted by many authors in previous studies [7,8,21,27], it can be observed 

that the fundamental frequency of the beam with switching cracks is collocated between those of 

the undamaged beam and the beam with open cracks. The analysis has been also conducted for 

reduced values of the damping ratio such as 1% and 0.5%, and the results have been reported in 

Figs 3b and 3c. It must be noted that, for lower levels of damping, additional extra peaks can be observed. 

The results reported in Figure 4 are relative to a simply supported beam with different number of 

equally spaced cracks subjected to a harmonic uniform load 0( , ) sin( )p t p t� �� . The latter results 

are reported in dimensionless form, by making use of the frequency parameter 4 2 4 /( )o omL E I� ��

introduced in equation (7), and are expressed in terms of maximum displacement u of the middle 

span cross-section normalised with respect to the value of the static displacement uS due to the 

amplitude of the distributed load for the undamaged beam. The simply supported beam is 

characterised by the value of the frequency parameter 3.15� �  corresponding to the first natural 
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frequency in the undamaged configuration. 

In the adopted ‘switching crack model’ the nonlinear behaviour of the beam is associated to a 

succession of linear phases. According to this model the state of each crack depends on the sign of 

the curvature only, as a consequence the normalised frequency responses, reported in what follows, 

do not depend on the amplitude of the load but on the load condition only. 

Figure 4 is relative to 1, 2, 4 and 8 cracks characterised by equal damage intensity parameters 

0.05! � , and reports a comparison of the results provided by the proposed approach, for beams 

with switching cracks, with the response of the corresponding undamaged beam and the beam with 

open cracks. Once again, the fundamental natural frequencies of the beam with switching cracks are 

collocated between those corresponding to the always-open and to the always-closed (undamaged) 

beams. In Figure 4, for the four analysed beams with switching cracks, it can be also observed the 

reduction of the fundamental frequency with the increase of the number of equally spaced and 

equally damaged cracks. 

A further significant difference in the frequency response functions is associated to the presence of 

peaks, for the case of switching cracks, at lower and higher frequencies with respect to the 

fundamental one, indicating that the structures behave non-linearly.  

In Figure 5 the time histories correspondent to each peak of the frequency response function of the 

simply supported beam with 4 cracks are reported. The crack state histories, indicating whether 

each crack is open or closed at each time instant, are also reported. The latter figure highlights the 

roughly bi-linear behaviour of the beam with multiple closing cracks for each considered peak since 

all the cracks open and close nearly at the same time.  

In Figure 6 the snap-shots relative to the time-history correspondent to the frequency parameter  

3.05� �  are represented. The circles present, along the beam span, in some snap-shots of Figure 6 

coincide with the crack positions and their appearance indicate that the corresponding cracks are in 

open state. It has to be noted that, since at 3.05� �  a forced resonance occurs, the sequence of 

snapshots proposed in Fig.6 might be interpreted as an approximated nonlinear normal mode since 
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in [36,37] it is stated that “forced resonances in nonlinear systems occur in neighborhood of 

nonlinear normal modes”. 

A further insight into the appearance of peaks in the frequency response spectrum is pursued by 

analysing the case of a simply supported beam with two cracks subjected to an anti-symmetric 

uniform load 7 80( , ) 1 2 ( 0.5) sin( )p t p U t� � �� � �  such that the cracks are at anti-phase positions, 

i.e. the two cracks open and close alternatively. 

The relevant frequency response spectrum is reported in Figure 7 showing that the beam with 

closing cracks exhibits extra peaks if compared to the undamaged beam and the beam with open 

cracks. At this stage, it is not clear how the number of extra peaks is related to the number of 

cracks.

In Figure 8 the time histories corresponding to the peaks at  6.06� �  and 6.78� �  of the 

frequency response function are reported together with the crack state histories, indicating whether 

each crack is open or closed at each time instant. In Figure 9 the snap-shots relative to the time-

histories correspondent to the frequency parameters 6.06� �  and 6.78� �  are represented. It can 

be noted that the time history relative to Fig.8a (frequency parameter 6.06� � ) is relative to a 

forced resonance in fact the correspondent snapshots reported in Fig.9 are representative of a 

synchronous periodic oscillation and, according to [36], may be interpreted as an approximation of 

the nonlinear normal mode. 

4.2 FREE VIBRATIONS

The results reported in Figures 10 and 11 are relative to the undamped free vibration responses of a 

simply supported beam with three closing crack, collocated at the positions � = 0.1, 0.2 and 0.3, all 

characterised by the damage intensity parameter !=0.15, correspondent to a significant damage. 

The normalised formulation, by making use of the frequency parameter � , whose value 

corresponding to the first natural frequency in the undamaged configuration is 3.15� � , has been 
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once again adopted. The beam is subjected to an initial displacement shape equivalent to the first 

mode of the undamaged beam. In Figure 10 the time-history displacement response of the cross-

section at 0.25� � , normalised with respect to the maximum initial value 0u  is displayed together 

with the modal contributions of the first three modes, the overall contribution of the other 

considered six modes. It can be observed as the mode contributions are variable during the time 

history response, and, although the beam has been subjected to its first mode, after the first linear 

phase all the other modes provide a significant contribution to the free vibration response.

The crack state histories, indicating whether each crack is open or closed at each time instant, are 

also reported at the bottom of Figure 10. The crack state histories highlight the roughly bi-linear 

behaviour of the beam with multiple closing cracks since the three cracks open and close nearly at 

the same time.  

In order to obtain a discrete time history representation of the deformed shape of the beam, a series 

of snap-shots in a time interval equal to a complete cycle of response, are reported in Figure 11. 

Once again, the circles appearing in some snap-shots of Figure 11 indicate that the corresponding 

cracks are in open state. The latter figure shows clearly the variability of the deformed shape during 

the nonlinear response due to the open/closing crack phenomenon. 

Moreover, the results reported in Figures 12 and 13 are relative to the above considered beam, 

however subjected to the second mode of the undamaged beam. In this case the contribution of the 

other modes are more pronounced with respect to the previous case. The corresponding time 

discrete snap-shots representation of the nonlinear response is reported in Figure 13, where the 

modification of the initial undamaged mode shape during a complete cycle of response can be 

observed.

Finally, the results regarding the free vibrations of the simply supported beam under study, with 

three cracks and in presence of a damping 2%$ � , subjected to initial conditions obtained by a 

combination of the first and second vibration modes of the undamaged beam, have been presented 

in Figures 14 and 15. In this case all cracks do not open and close at the same time and in addition 
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the sequence of the crack state is not subjected to a fixed pattern, as shown by the crack state 

histories, reporting the open state of the cracks, at the bottom of Figure 14. The chosen initial 

conditions, together with the presence of damping, generate a nonlinear behaviour, with multiple linear sub-

regions, which is easily handled by the proposed procedure.  

CONCLUSIONS

In this work the non-linear dynamic behaviour of beams with multiple concentrated cracks has been 

analysed. The non-linearity, due to the crack opening and closing phenomenon, has been studied by 

means of the switching crack model. No discretisation of the beam has been adopted. The cracks 

have been modelled by means of Dirac’s deltas which allowed the closed form evaluation of the 

beam mode shapes for a generic crack configuration. 

An integration procedure has been proposed to compute the time history through modal analysis by 

considering the sequence of crack opening/closing phenomena together with the relative phase 

transition conditions. 

Numerical analyses regarding beams with different boundary conditions have been presented, first, 

for the case of harmonic loading in order to compare the results with others available in the 

literature, then, different cases of free vibrations have been investigated. 

The presented procedure can be extensively applied to a wide range of analyses and proved to be 

efficacious to treat the case of a nonlinear behaviour with multiple linear sub-regions.

Furthermore, the results obtained by means of the proposed procedure could be helpful in order to 

validate alternative appealing methods such as the ‘Proper Orthogonal Decomposition’ [39], 

requiring a collection of data of the original response, obtained by a spatial discretisation of the 

continuous system, and could be the object of future work. 

Finally, the application of the present work towards vibration based damage identification 

procedures involving non-linear behaviour is currently under investigation. 
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TABLE CAPTION 

Table 1. Cantilever beam configurations in precence of two cracks. 

FIGURE CAPTIONS 

Figure 1. The considered beam model with open/closed cracks. 

Figure 2. Frequency response functions u/P (u=maximum displacement of the free end, 
P=harmonic load amplitude) for the cantilever beam with two cracks of Table 1: a) configuration 1; 
b) configuration 2; c) configuration 3;  Harmonic Balance Method (HBM) [12] (continuous line); 
Time Numerical Integration (TNI) [18] (broken line); proposed approach (bold line). 

Figure 3. Frequency response function u/P (u=maximum displacement of the free end, 
P=harmonic load amplitude) with the proposed approach for the cantilever beam [undamaged 
(continuous line); open cracks (broken line); closing cracks (bold line)] with two cracks in 
configuration 3 of Table 1: a) damping ratio 2%; b) damping ratio 1%; c) damping ratio 0.5%. 

Figure 4. Frequency response functions u/uS (u=maximum displacement of the middle span cross-
section, uS=static displacement of the undamaged beam) for the simply-supported beam with 
equally spaced cracks with intensity !=0.05 subjected to an uniform harmonic load: a) 1 crack; b) 2 
cracks; c) 4 cracks; d) 8 cracks.

Figure 5. Time response function u/uS (u=maximum displacement of the middle span cross-section, 
uS=static displacement of the undamaged beam) and crack state history [closed crack (empty plot), 
open crack (bold line)] for the simply-supported beam  with 4 cracks with intensity !=0.05
subjected to an uniform harmonic load at the peak frequencies 1.53� � (a and b), 1.75� �  (c and 
d), 2.15� �  (e and f); 3.05� �  (g and h). 

Figure 6. Sequence of snap-shots at different time instants for the simply-supported beam with 4 
cracks subjected to an uniform harmonic load correspondent to the peak frequency 3.05� � .

Figure 7. Frequency response functions u/uS (u=maximum displacement of the cross-section at 
0.25� � , uS=static displacement of the undamaged beam due to the anti-symmetric uniform 

harmonic load) for the simply-supported beam with two cracks with intensity !=0.1.

Figure 8. Time response function u/uS (u=maximum displacement of the cross-section at 0.25� � ,
uS=static displacement of the undamaged beam due to the anti-symmetric uniform harmonic load) 
for the simply-supported beam  with two cracks with intensity !=0.1 subjected to an uniform 
harmonic load at the peak frequencies. 

Figure 9. Sequence of snap-shots at different time instants for the simply-supported beam with two 
cracks subjected to an anti-symmetric uniform harmonic load correspondent to the peak frequencies 

6.06� �  and 6.78� � .
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Figure 10. Time history of the free vibration response u/ 0u  (u=displacement of the cross-section at 

�=0.25, 0u =maximum initial displacement value)  of the simply supported beam with 3 cracks for 
the undamaged first mode initial condition: (a) total response; (b,c,d,e) modal contributions; (f) 
crack state history [closed crack (empty plot), open crack (bold line)]. 

Figure 11. Sequence of snap-shots of the deformed shape at different time instants for the simply-
supported beam with 3 cracks subjected to the undamaged first mode initial condition. 

Figure 12. Time history of the free vibration response u/ 0u  (u=displacement of the cross-section at 

�=0.25, 0u =maximum initial displacement value) of the simply supported beam with 3 cracks for 
the undamaged second mode initial condition: (a) total response; (b,c,d,e) modal contributions; (f) 
crack state history [closed crack (empty plot), open crack (bold line)]. 

Figure 13. Sequence of snap-shots of the deformed shape at different time instants for the simply-
supported beam with 3 cracks subjected to the undamaged second mode initial condition. 

Figure 14. Time history of the free vibration response u/ 0u  (u=displacement of the cross-section at 

�=0.25, 0u =maximum initial displacement value)  of the simply supported beam with 3 cracks for 
mixed undamaged first/second mode initial condition: (a) total response; (b,c,d,e) modal 
contributions; (f) crack state history [closed crack (empty plot), open crack (bold line)]. 

Figure 15. Sequence of snap-shots of the deformed shape at different time instants for the simply-
supported beam with 3 cracks subjected to the mixed undamaged first/second mode initial 
condition.
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Crack 1 Crack 2 
Configuration Depth, d

(mm) 
Position

(mm) 
Intensity, 

!
Depth, d

(mm) 
Position

(mm) 
Intensity, 

!
1 4 50 0.0179 8 500 0.0564 
2 6 50 0.033 8 500 0.0564 
3 6 50 0.033 8 350 0.0564 

Table 1 




