
HAL Id: hal-00654406
https://hal.science/hal-00654406

Submitted on 21 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A domain-specific embedded language in C++ for
lowest-order discretizations of diffusive problems on

general meshes
Daniele Antonio Di Pietro, Jean-Marc Gratien, Christophe Prud’Homme

To cite this version:
Daniele Antonio Di Pietro, Jean-Marc Gratien, Christophe Prud’Homme. A domain-specific embed-
ded language in C++ for lowest-order discretizations of diffusive problems on general meshes. BIT
Numerical Mathematics, 2013, 53 (1), pp.111-152. �10.1007/s10543-012-0403-3�. �hal-00654406�

https://hal.science/hal-00654406
https://hal.archives-ouvertes.fr

A DOMAIN-SPECIFIC EMBEDDED LANGUAGE IN C++ FOR
LOWEST-ORDER DISCRETIZATIONS OF DIFFUSIVE PROBLEMS ON

GENERAL MESHES

DANIELE A. DI PIETRO∗, JEAN-MARC GRATIEN† , AND CHRISTOPHE PRUD’HOMME‡

Abstract. In this work we propose an original implementation of a large family of lowest-order methods for
diffusive problems including standard and hybrid finite volume methods, mimetic finite difference-type schemes,
and cell centered Galerkin methods. The key idea is to regard the method at hand as a (Petrov–)Galerkin scheme
based on possibly incomplete, broken affine spaces defined from a gradient reconstruction and a point value. The
resulting unified framework serves as a basis for the development of a FreeFEM-like domain specific language targeted
at defining discrete linear and bilinear forms. Both the back-end and the front-end of the language are extensively
discussed, and several examples of applications are provided. The overhead of the language is evaluated by com-
paring with a more traditional implementation. A benchmark including the comparison with more classical finite
element methods on standard meshes is also proposed.

Key words. Domain specific embedded language, finite volume methods, cell centered Galerkin methods,
Petrov–Galerkin methods

AMS subject classifications. 65N08, 65N30, 65Y05

1. Introduction. Lowest-order methods possibly featuring conservation of physical quan-
tities are traditionally employed in industrial applications where computational cost is a crucial
issue. In this context, the use of general polyhedral, possibly nonconforming meshes commends it-
self for a number of reasons. To cite a few: (i) remeshing can be avoided or postponed in problems
that involve mesh deformation — e.g. in sedimentary basin modeling non-standard elements and
nonconformities can appear due to the erosion of geological layers; — (ii) the number of degrees
of freedom can be reduced by aggregative coarsening techniques — cf. [7] for an application in the
context of discontinuous Galerkin (dG) methods; — (iii) geometrical features can be represented
more accurately without unduly increasing the number of mesh elements.

Handling general polyhedral meshes requires numerical schemes that possess the usual prop-
erties of stability and consistency. In the context of cell centered finite volume methods, a popular
way to achieve consistency on general polyhedral meshes is provided by Multipoint Finite Volume
schemes independently introduced by Aavatsmark, Barkve, Bøe and Mannseth [2] and Edwards
and Rogers [22]. The main advantage of multipoint schemes is that they can be easily fitted into
existing simulators based on standard finite volume schemes. A major drawback is their lack of
stability in some configurations. Two ways of overcoming this difficulty by designing discretizations
based on the variational formulation of the problem and featuring cell- and face-unknowns have
been proposed by Brezzi, Lipnikov and coworkers [8, 9] (Mimetic Finite Difference methods) and
by Droniou and Eymard [20] (Mixed/Hybrid Finite Volume methods). In this context, Eymard,
Gallouët and Herbin [24] have shown that face unknowns can be selectively used as Lagrange mul-
tipliers to enforce flux continuity, or eliminated using a consistent interpolator (SUSHI scheme).
More generally, this point of view leads to the notion that the discretization method can be locally
adapted to the features of the problem. A different approach based on the analogy between lowest
order methods in variational formulation and discontinuous Galerkin methods has been proposed
by one of the authors in [13–15] (Cell Centered Galerkin methods). The key advantage of this
approach is that it largely benefits from the well-established theory for discontinuous Galerkin
methods [17].

When it comes to numerical performance, recent benchmarks [25, 30] have pointed out that
the choice of the scheme for a given problem should be driven by multiple factors including, e.g.,

∗IFP Energies nouvelles, 1 & 4 avenue Bois Préau, 92852 Rueil-Malmaison CEDEX, France, dipietrd@ifpen.fr,
corresponding author
†IFP Energies nouvelles, 1 & 4 avenue Bois Préau, 92852 Rueil-Malmaison CEDEX, France,

j-marc.gratien@ifpen.fr
‡Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble 1, BP 53 38041 Grenoble Cedex 9,

France,christophe.prudhomme@ujf-grenoble.fr

1

mailto:dipietrd@ifpen.fr
mailto:j-marc.gratien@ifpen.fr
mailto:christophe.prudhomme@ujf-grenoble.fr

the features of the problem itself (heterogeneity, presence of convection), the computational mesh
(which may result from an upstream modeling process), and the required precision. In this respect,
there is an increasing urge to dispose of libraries covering a wide range of lowest-order methods
and applications based on similar experiences in the context of Finite Element (FE) methods.
Finite element libraries have nowadays reached a good level of maturity. Just to mention a few,
we recall Feel++ [33–35], FEniCS [31], FreeFEM++ [29]. All of the above projects provide a user-
friendly front-end in the form of a Domain Specific Language (DSL) possibly embedded in a general
purpose, high-level hosting language (Domain Specific Embedded Language or DSEL). DS(E)Ls
are an established means to break the complexity of applications by allowing each contributor to
express themselves in a language as close as possible to their technical jargon. In the context of
scientific computing, complexity spans different levels:
(i) Modeling. Modelers investigate more and more comprehensive physical models expressed in

terms of (systems of) Partial Differential Equations (PDEs) possibly completed by algebraic
closure laws;

(ii) Discretization. Numericians confront with an increasing number of discretization methods
which are potentially suited to convert the PDE problem into a system of algebraic equations.
Disposing of different discretization methods within a unified framework is highly beneficial
since it allows to identify the most efficient choice for the problem at hand;

(iii) Solution. Several low-level numerical packages are available to solve systems of algebraic
equations. Their performance in terms of computational efficiency and stability is strongly
related to both the features of the matrix to solve (symmetry, fill-in pattern, etc.) and to the
underlying hardware architecture;

(iv) Software design. Finally, computer scientists design low-level data structures and algorithm
that benefit from the evolution of both hardware architectures and languages to ensure the
overall efficiency.

Ideally, a software platform should allow contributors at each level to focus on a specific aspect of
the problem without being hindered by the interaction with the other levels. The ultimate goal
of this work is to develop a DSEL aimed at numericians that allow to express a large family of
lowest-order using a syntax as close as possible to the mathematical notation.

An instrumental step in this direction is to provide a unified framework for the methods cited
above, which we do in Sect. 2. The key idea is here to reformulate the method at hand as a
(Petrov–)Galerkin scheme based on possibly incomplete broken affine spaces. More specifically, a
method is defined in three steps by prescribing:
(i) The degrees of freedom. Degrees Of Freedom (DOFs) are attached to mesh items such as

cells, faces, or nodes and ultimately represent the unknowns of the problems;
(ii) The discrete function space(s). Starting from the prescribed set of degrees of freedom, we

identify a piecewise constant gradient reconstruction from which piecewise affine basis func-
tions are defined. The function space spanned by the basis functions is often incomplete in
the sense that it allows to represent only a subset of the broken affine functions on the mesh;

(iii) The formulation. The method (or a linearized version thereof) is defined by linear and
bilinear forms acting on the discrete function spaces defined in the previous point.

This unified perspective, drawing on the lines of [15] and of the precursor work [5], allows, in
particular, to recycle many ideas originally developed in the context of FE methods. A major dif-
ference is that the reconstructed differential operators often have unconventional stencils, possibly
spanning neighbor elements and depending on problem data such as the diffusion coefficient. As
a consequence, the classical FE approach based on a reference element (see, e.g., [23, Chap. 7–8])
proves inadequate.

The implementation in C++ is described in detail in Sect. 3 and uses the latest standard C++-11.
As discussed earlier in this section, the DSEL acts as an interface between the numerician, who
focuses on discretization methods, and the computer scientist, who manages low-level services such
as parallelism and input/output services. As a result, the exposition addresses two levels:
(i) The back-end. This is the foundation for the user-friendly interface, and it contains the

programming counterpart of vector spaces of DOFs as well as an original implementation
of linear operators with unconventional stencil. Although the tools developed at this stage

2

would allow to implement all of the methods discussed in Sect. 2, this would require to cope
directly with low-level computer services;

(ii) The front-end. To avoid this, the front-end provides a specific language which conceals
most of the implementation details and allows the numerician to focus on discretization
methods. Although the DSEL discussed in this section is closely inspired by Feel++ [33], a
few modifications are proposed such as a different treatment for test and trial functions and
index notation for vector problems.

In Sect. 4 we provide several numerical examples to assess the performance of the proposed ap-
proach. A special care is devoted to the evaluation of the overhead of the DSEL and to the
comparison with more standard methods/implementations. The actual implementation of the
DSEL is based on the Arcane framework [27], a proprietary platform conjointly developed at
CEA-DAM and IFP Energies nouvelles which handles technical aspects such as memory manage-
ment, parallelism and post-processing.

2. Setting. In this section we introduce a unified framework for lowest-order methods closely
inspired by [19]. The key idea is here to reformulate the method at hand as a (Petrov–)Galerkin
scheme based on a possibly incomplete, broken affine space. This is done by introducing a piecewise
constant gradient reconstruction, which is used to recover a broken affine function starting from
cell (and possibly face) unknowns. The material is organized as follows. In Sect. 2.1 we present
the discrete setting including the main notations. In Sect. 2.2 we introduce incomplete piecewise
affine broken spaces, which are used in Sect. 2.3 to formulate some popular lowest-order methods.
In Sect. 2.4 we discuss an application to the Stokes problem.

2.1. Discretization. Let Ω ⊂ Rd, d ≥ 2, denote a bounded connected polyhedral domain.
The first ingredient in the definition of lowest-order methods is a suitable discretization of Ω.
We denote by Th a finite collection of nonempty, disjoint open polyhedra Th = {T} forming a
partition of Ω such that h = maxT∈Th hT , with hT denoting the diameter of the element T ∈
Th. Admissible meshes include general polyhedral discretizations with possibly nonconforming
interfaces; see Figure 2.1 for an example in d = 2. Mesh nodes are collected in the set Nh and,
for all T ∈ Th, NT contains the nodes that lie on the boundary of T . We say that a hyperplanar
closed subset F of Ω is a mesh face if it has positive (d−1)-dimensional measure and if either there
exist T1, T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface) or there exists T ∈ Th
such that F ⊂ ∂T ∩ ∂Ω (and F is called a boundary face). Interfaces are collected in the set F ih,
boundary faces in Fbh and we let Fh : =F ih ∪ Fbh. Moreover, we set, for all T ∈ Th,

FT : ={F ∈ Fh | F ⊂ ∂T}. (2.1)

Symmetrically, for all F ∈ Fh, we define

TF : ={T ∈ Th | F ⊂ ∂T}.

The set TF consists of exactly two mesh elements if F ∈ F ih and of one if F ∈ Fbh. For all mesh
nodes P ∈ Nh, FP denotes the set of mesh faces sharing P , i.e.

FP : ={F ∈ Fh | P ∈ F}. (2.2)

For every interface F ∈ F ih we introduce an arbitrary but fixed ordering of the elements in TF
and let nF = nT1,F = −nT2,F , where nTi,F , i ∈ {1, 2}, denotes the unit normal to F pointing out
of Ti ∈ TF . On a boundary face F ∈ Fbh, nF denotes the unit normal pointing out of Ω. The
barycenter of a face F ∈ Fh is denoted by xF : =

∫
F
x/|F |.

For each element T ∈ Th we identify a point xT ∈ T (the cell center) such that T is star-shaped
with respect to xT . For all F ∈ FT we let

dT,F : = dist(xT , F).

It is assumed that, for all T ∈ Th and all F ∈ FT , dT,F > 0 is uniformly comparable to hT .
Starting from cell centers we can define a pyramidal submesh of Th as follows:

3

Fig. 2.1. Mesh Th (left) and pyramidal submesh Ph (right)

Ph : ={PT,F }T∈Th, F∈FT
,

where, for all T ∈ Th and all F ∈ FT , PT,F denotes the open pyramid of apex xT and base F , i.e.,

PT,F : ={x ∈ T | ∃y ∈ F \ ∂F, ∃θ ∈ (0, 1) | x = θy + (1− θ)xT }.

The pyramids {PT,F }T∈Th, F∈FT
are nondegenerate by assumption. Let Sh be such that

Sh = Th or Sh = Ph. (2.3)

For all k ≥ 0, we define the broken polynomial spaces of total degree ≤ k on Sh,

Pkd(Sh) : ={v ∈ L2(Ω) | ∀S ∈ Sh, v|S ∈ Pkd(S)},

with Pkd(S) given by the restriction to S ∈ Sh of the functions in Pkd.
Remark 2.1 (Admissible mesh sequence). In the context of a priori convergence analysis for

vanishing mesh size h it is necessary to bound some quantities uniformly with respect to h. This
leads to the concept of admissible mesh sequence. This topic is not addressed in detail herein
since our focus is mainly on implementation. For a comprehensive discussion we refer to Brezzi,
Lipnikov and coworkers [8, 9], Droniou and Eymard [20], Eymard, Gallouët, and Herbin [24],
Di Pietro and Ern [17, Chap. 1] and Di Pietro [15].

We close this section by introducing trace operators which are of common use in the context
of nonconforming FE methods. Let v be a scalar-valued function defined on Ω smooth enough to
admit on all F ∈ Fh a possibly two-valued trace. To any interface F ⊂ ∂T1 ∩ ∂T2 we assign two
non-negative real numbers ωT1,F and ωT2,F such that

ωT1,F + ωT2,F = 1,

and define the jump and weighted average of v at F for a.e. x ∈ F as

JvKF (x) : =v|T1
− v|T2

, {v}ω,F (x) : =ωT1,F v|T1
(x) + ωT2,F v|T2

(x). (2.4)

If F ∈ Fbh with F = ∂T ∩ ∂Ω, we conventionally set {v}ω,F (x) = JvKF (x) = v|T (x). The index ω
is omitted from the average operator when ωT1,F = ωT2,F = 1

2 , and we simply write {v}F (x). The
dependence on both the point x and the face F is also omitted from both the jump and average
trace operators if no ambiguity arises.

2.2. A unified abstract perspective for lowest-order methods. The key idea to get
a unifying perspective is to consider lowest-order methods as nonconforming methods based on
incomplete broken affine spaces that are defined starting from the space of degrees of freedom
(DOFs) Vh. More precisely, we let

Th : =RTh , Fh : =RFh ,

and consider the following choices:

Vh = Th or Vh = Th × Fh. (2.5)
4

xT
xT2

xT1

F1

F2

(a) Set Tg = {T, T1, T2} for the
L-group g = {F1, F2}

F F

F F

(b) GF = L-groups containing the face F

Fig. 2.2. L-construction

The choice Vh = Th corresponds to cell centered finite volume (CCFV) and cell centered Galerkin
(ccG) methods, while the choice Vh = Th × Fh leads to mimetic finite difference (MFD) and
mixed/hybrid finite volume (MHFV) methods. The key ingredient in the definition of a broken
affine space is a piecewise constant linear gradient reconstruction Gh : Vh → [P0

d(Sh)]d with
suitable properties. We emphasize that the linearity of Gh is a foundamental assumption for the
implementation discussed in Sect. 3.

Using the above ingredients, we can define the linear operator Rh : Vh → P1
d(Sh) such that,

for all vh ∈ Vh,

∀S ∈ Sh, S ⊂ TS ∈ Th, ∀x ∈ S, Rh(vh)|S = vTS
+ Gh(vh)|S ·(x− xTS

). (2.6)

The operator Rh maps every vector of DOFs vh ∈ Vh onto a piecewise affine function Gh(vh)
belonging to P1

d(Sh). Hence, we can define a broken affine space as follows:

Vh = Rh(Vh) ⊂ P1
d(Sh). (2.7)

The operator Rh is assumed to be injective, so that a bijective operator can be obtained by
restricting its codomain. In what follows we show how some common lowest-order methods can be
interpreted in these terms. To simplify the exposition, we focus on discrete spaces approximating
H1

0 (Ω), i.e., possibly including strongly enforced boundary conditions.

2.3. Pure diffusion. In this section we provide a few examples for the gradient operator
Gh that allow to recover some of the methods listed in the previous section for the following
heterogeneous diffusion model problem:

−∇·(κ∇u) = f in Ω,

u = 0 on ∂Ω,

with source term f ∈ L2(Ω). Here, κ denotes a uniformly elliptic tensor field piecewise constant
on the mesh Th.

2.3.1. The G-method. As a first example we consider the special instance of CCFV meth-
ods analyzed in [4]. A preliminary step consists in introducing the so-called L-construction orig-
inally proposed by Aavatsmark, Eigestad, Mallison, and Nordbotten [3]. The key idea of the
L-construction is to use d + 1 cell and boundary face values (provided, in this case, by the ho-
mogeneous boundary condition) to express a continuous piecewise affine function with continuous
diffusive fluxes. The values are selected using d neighboring faces belonging to a cell and sharing
a common vertex. More precisely, we define the set of L-groups as follows:

G : = {g ⊂ FT ∩ FP , T ∈ Th, P ∈ NT | card(g) = d} ,
5

with FT and FP given by (2.1) and (2.2) respectively. It is useful to introduce a symbol for the
set of cells concurring in the L-construction: For all g ∈ G, we let (cf. Figure 2.2(a))

Tg : ={T ∈ Th | T ∈ TF , F ∈ g}.

Let now g ∈ G and denote by Tg an element Tg such that g ⊂ FTg
(this element may not be

unique). For all vh ∈ Vh we construct the function ξgvh
piecewise affine on the family of pyramids

{PT,F }F∈g, T∈Tg such that: (i) ξgvh
(xT) = vT for all T ∈ Tg and ξgvh

(xF) = 0 for all F ∈ g ∩ Fbh;
(ii) ξgvh

is affine inside Tg and is continuous across every interface in the group: For all F ∈ g∩F ih
such that F ⊂ ∂T1 ∩ ∂T2,

∀x ∈ F, ξgvh
|T1

(x) = ξgvh
|T2

(x);

(iii) ξgvh
has continuous diffusive flux across every interface in the group: For all F ∈ g ∩ F ih such

that F ⊂ ∂T1 ∩ ∂T2,

(κ∇ξgvh
)|T1 ·nF = (κ∇ξgvh

)|T2 ·nF .

For further details on the L-construction including an explicit formula for ξgvh
we refer to [3, 4].

For every face F ∈ Fh we define the set GF of L-groups containing F (see Figure 2.2(b)),

GF : ={g ∈ G | F ∈ g}, (2.8)

and introduce the set of nonnegative weights {ςg,F }g∈GF such that
∑

g∈GF ςg,F = 1. The trial
space for the G-method is obtained as follows: (i) let Sh = Ph and Vh = Th; (ii) let Gh = Gg

h with
Gg
h such that

∀vh ∈ Th, ∀T ∈ Th, ∀F ∈ FT , Gg
h(vh)|PT,F

=
∑
g∈GF

ςg,F∇ξgvh
|PT,F

. (2.9)

We denote by Rg
h the reconstruction operator defined as in (2.6) with Gh = Gg

h and let V g
h :

=Rg
h(Vh). The G-method of [4] is then equivalent to the following Petrov–Galerkin method:

Find uh ∈ V g
h s.t. ag

h(uh, vh) =

∫
Ω

fvh for all vh ∈ P0
d(Th), (2.10)

where ag
h(uh, vh) : =−

∑
F∈Fh

∫
F
{κ∇huh}·nF JvhK with ∇h broken gradient on Sh.

Remark 2.2 (An unconditionally stable method). The main drawback of the G-method is
that stability can only be proved under quite stringent conditions; see, e.g., [4, Lemma 3.4]. A
possible way to circumvent this difficulty has been recently proposed by one of the authors [14] in
the context of ccG methods. The key idea is to use V g

h both as a trial and test space, and modify
the discrete bilinear form to recover both consistency and stability. Since the discrete functions in
V g
h are discontinuous across the lateral faces of the pyramids in Ph, least-square penalization of

the jumps is required to assert stability in terms of coercivity. The resulting method also enters
the present framework, but is not detailed here for the sake of conciseness.

2.3.2. A cell centered Galerkin method. The L-construction is used to define a trace
reconstruction in the ccG method of [13,15]. More specifically, for all F ∈ F ih, we select one group
gF ∈ GF with GF defined by (2.8) and introduce the linear trace operator Tg

h : Th → Fh which
maps every vector of cell centered DOFs vh ∈ Th on a vector (vF)F∈Fh

∈ Fh such that

vF =

{
ξgF
vh

(xF) if F ∈ F ih,
0 if F ∈ Fbh.

(2.11)

The trace operator Tg
h is then employed in a gradient reconstruction based on Green’s formula and

inspired by Eymard, Gallouët, and Herbin [24]. More precisely, we introduce the linear gradient
operator Ggreen

h : Th × Fh → [P0
d(Th)]d such that, for all (vT ,vF) ∈ Th × Fh and all T ∈ Th,

Ggreen
h (vT ,vF)|T =

1

|T |
∑
F∈FT

|F |(vF − vT)nT,F . (2.12)

6

The discrete space for the ccG method under examination can then be obtained as follows: (i) let
Sh = Th and Vh = Th; (ii) let Gh = Gccg

h with Gccg
h such that

∀vh ∈ Vh, Gccg
h (vh) = Ggreen

h (vh,T
g
h(vh)). (2.13)

The reconstruction operator defined taking Gh = Gccg
h in (2.6) is denoted by Rccg

h , and the
corresponding discrete space by V ccg

h : =Rccg
h (Th). We define the weights in the average operator

as follows: For all F ∈ F ih such that F ⊂ ∂T1 ∩ ∂T2,

ωT1,F = λ2

λ1+λ2
, ωT2,F = λ1

λ1+λ2
,

where λi : =κ|Ti
nF ·nF for i ∈ {1, 2}. Set, for all (uh, vh) ∈ V ccg

h × V ccg
h ,

accg
h (uh, vh) : =

∫
Ω

κ∇huh·∇hvh −
∑
F∈Fh

∫
F

[{κ∇huh}ω·nF JvhK + JuhK{κ∇vh}ω·nF]

+
∑
F∈Fh

η
γF
hF

∫
F

JuhKJvhK,
(2.14)

with ∇h broken gradient on Th, γF = 2λ1λ2

λ1+λ2
on internal faces F ⊂ ∂T1 ∩ ∂T2, γF = κ|TnF ·nF on

boundary faces F ⊂ ∂T ∩ ∂Ω and η is a (strictly positive) penalty parameter. The ccG method
reads

Find uh ∈ V ccg
h s.t. accg

h (uh, vh) =

∫
Ω

fvh for all vh ∈ V ccg
h . (2.15)

The bilinear form accg
h has been originally introduced by Di Pietro, Ern and Guermond [18]

in the context of dG methods for degenerate advection-diffusion-reaction problems. In particular,
when the diffusion field κ is homogeneous, the method (2.15) coincides with the Symmetric Interior
Penalty (SIP) method of Arnold [6] associated to the bilinear form

asip
h (uh, vh) =

∫
Ω

κ∇huh·∇hvh −
∑
F∈Fh

∫
F

[{κ∇huh}·nF JvhK + JuhK{κ∇hvh}·nF]

+
∑
F∈Fh

η
γF
hF

∫
F

JuhKJvhK.
(2.16)

For further details on the link between ccG and discontinuous Galerkin methods we refer to [13–15].
Remark 2.3 (Numerical integration). Recalling that the gradient reconstruction is piecewise

constant one realizes that the integrals appearing in the first line of (2.14) can be evaluated exactly
using the barycenter of the mesh item (cell or face) as a quadrature node. The penalty term in
the second line involves the face integral of a quadratic polynomial, which would require a cubature
with degree of exactness of (at least) 2. In practice, however, it suffices to penalize the low-order
part of the jumps by replacing the penalty term in the second line of (2.14) by

∑
F∈Fh

η
γ

hF

∫
F

〈JuhK〉F 〈JvhK〉F ,

where 〈ψ〉F : =
∫
F
ψ/|F |. For a discussion on penalty strategies acting on the low-degree part of

the jumps we refer to [10,28].

2.3.3. The SUSHI method. As a last example we consider two variants of the SUSHI
scheme of Eymard, Gallouët, and Herbin [24]; see also Droniou, Eymard, Gallouët, and Herbin [21]
for a discussion on the link with the MFD methods of Brezzi, Lipnikov, and coworkers [8,9]. This
method is based on the gradient reconstruction (2.12), but stabilization is achieved in a rather

7

different manner with respect to (2.14). More precisely, we define the linear residual operator
rh : Th × Fh → P0

d(Ph) as follows: For all T ∈ Th and all F ∈ FT ,

rh(vTh ,v
F
h)|PT,F

=
d

1
2

dT,F

[
vF − vT −Ggreen

h (vTh ,v
F
h)|T ·(xF − xT)

]
.

We observe, in passing, that the factor d
1
2 can in general be replaced by a user-defined stabiliza-

tion parameter η > 0. The advantage of taking η = d
1
2 is that it yields the classical two-point

method on κ-orthogonal meshes. The discrete space for the SUSHI method with hybrid unknowns
is obtained as follows: (i) let Sh = Ph and Vh = Th × Fh; (ii) let Gh = Ghyb

h with Ghyb
h such that,

for all (vTh ,v
F
h) ∈ Th × Fh, all T ∈ Th and all F ∈ FT ,

Ghyb
h (vTh ,v

F
h)|PT,F

= Ggreen
h (vTh ,v

F
h)|T + rh(vTh ,v

F
h)|PT,F

nT,F . (2.17)

Denote by Rhyb
h the reconstruction operator defined by (2.6) with Gh = Ghyb

h . The SUSHI method
with hybrid unknowns reads

Find uh ∈ V hyb
h s.t. asushi

h (uh, vh) =

∫
Ω

fvh for all vh ∈ V hyb
h , (2.18)

with

asushi
h (uh, vh) : =

∫
Ω

κ∇huh·∇hvh, (2.19)

and ∇h broken gradient on Ph. Alternatively, one can obtain a cell centered version by setting
Vh = Th and replacing Ghyb

h defined by (2.17) by Gh = Gcc
h with Gcc

h such that

∀vh ∈ Th, Gcc
h (vh) = Ghyb

h (vh,T
g
h(vh)), (2.20)

and Tg
h defined by (2.11). This variant coincides with the version proposed in [24] for homogeneous

κ, but it has the advantage to reproduce piecewise affine solutions to (2.3) on Th when κ is
heterogeneous. The discrete space obtained taking Gh = Gcc

h in (2.7) is labeled V cc
h .

2.4. Stokes. To close this section, we discuss a more complicated example involving a system
of PDEs. More specifically, we focus on the steady Stokes problem

−4u+∇p = f in Ω, (2.21a)
∇·u = 0 in Ω, (2.21b)
u = 0 on ∂Ω, (2.21c)∫

Ω

p = 0, (2.21d)

where u : Ω→ Rd is the vector-valued velocity field, p : Ω→ R is the pressure, and f : Ω→ Rd is
the forcing term. Equations (2.21a) and (2.21b) express the conservation of momentum and mass
respectively. The problem is supplemented by the homogeneous boundary condition (2.21c) (for a
discussion on other boundary conditions we refer, e.g., to Ern and Guermond [23]). Following [15],
we consider a discretization based on the spaces

Uh : =[V ccg
h]d, Ph : =P0

d(Th)/R. (2.22)

The momentum diffusion is discretized by the bilinear form ah ∈ L(Uh × Uh,R) such that

ah(uh, vh) =

d∑
i=1

asip
h (uh,i, vh,i), (2.23)

8

where, for all wh ∈ Uh, the Cartesian components of wh are denoted by (wh,i)i∈{1,...,d}. The
velocity-pressure coupling hinges on the bilinear form bh ∈ L(Uh × Ph,R) (see, e.g., [12]):

bh(vh, qh) = −
∫

Ω

(∇h·vh)qh +
∑
F∈Fh

∫
F

JvhK·nF {qh}. (2.24)

The discrete divergence operator associated to bh is not surjective with choice of spaces (2.22).
The stability of the velocity-pressure coupling can be recovered by penalizing pressure jumps via
the bilinear form sh ∈ L(Ph × Ph,R) such that

sh(ph, qh) =
∑
F∈Fi

h

∫
F

hF JphKJqhK. (2.25)

The discrete problem reads: Find (uh, ph) ∈ Uh × Ph such that, for all (vh, qh) ∈ Uh × Ph,

ah(uh, vh) + bh(vh, ph)− bh(uh, qh) + sh(ph, qh) =

∫
Ω

f ·vh. (2.26)

3. Implementation. The framework of Sect. 2 serves as a basis for a DSEL targeted at
expressing linear and bilinear forms using a syntax closely inspired by that of Feel++ [34,35]. To
illustrate the capabilities of the DSEL in a nutshell, compare Listing 1 with the expression of the
bilinear form asip

h (2.16).

Listing 1
Implementation of the bilinear form asip

h defined by (2.16) using the DSEL. For the sake of simplicity, κ is
assumed to be scalar-valued and homogeneous

// The space V ccg
h spans functions in P1

d(Th) whose gradient is given by (2.13)
Mesh Th(/* . . . */);
FunctionSpace <Mesh ,

span< poly <1>, gradient <GreenGradient > >
>::type Vh(Th);

// Trial and test functions
auto uh = Vh.trialFunction("uh");
auto vh = Vh.testFunction("vh");
// Penalty parameter (η and κ are positive scalars)
auto penalty = eta*K/H();
// Bilinear form asip

h and linear form b
BilinearForm ah = integrate (allCells(Th),dot(K*grad(uh),grad(vh)))

+ integrate (allFaces(Th),
- jump(uh)*dot(N(),avg(K*grad(vh)))
- dot(N(),avg(K*grad(uh)))*jump(vh)
+ penalty*jump(uh)*jump(vh)
);

LinearForm bh = integrate (allCells(Th), f*vh);
// Initialize context with global matrix A and global right-hand side vector b
LinearSystemContext ctx(A, b);
// Linear system assembly
eval(ah, ctx);
eval(bh, ctx);

The material is organized as follows: in Sect. 3.1 we introduce the back-end, that is to say, the
portion of the implementation invisible to the user; in Sect. 3.2 we present the DSEL and explain
how it transposes in back-end objects.

9

3.1. Algebraic back-end. In this section we introduce the foundation upon which rests
the user-friendly interface. More specifically, in Sect. 3.1.1 we present vector spaces and discrete
variables, which provide the basic representation of discrete functions in terms of vectors of DOFs.
In Sect. 3.1.2 we propose an original implementation of linear operators with unconventional
stencil. Its use in the context of FE-like matrix assembly is discussed in Sect. 3.1.3.

3.1.1. Vector spaces and discrete variables. We assume in what follows that a Mesh
type is available defining (i) a positive integer dim corresponding to the space dimension; (ii) the
subtypes Cell, Face, and Node for mesh elements of codimension 0, 1, and dim respectively.
Mesh cells, faces and nodes inherit from the base class Item and are therefore collectively referred
to as mesh items; (iii) the subtype Pyramid representing, for a given cell T ∈ Th and a face
F ⊂ FT , the pyramid PT,F . The relevant sets of mesh items can be accessed by the free functions
listed in Table 3.1. The Lebesgue measure of a mesh item can be obtained via the free function
measure(const Item & I). Observe that the notion of geometric element type, standard in FE
methods, is absent from the mesh concept, as it is irrelevant for the methods considered in this
work.

Degrees of freedom are materialized by objects of type DegreeOfFreedom. Each instance of
DegreeOfFreedom is attached to a mesh item which can be retrieved by the DegreeOfFreedom
member function item(). The returned Item object can then be recast into the appropriate Cell,
Face, or Node object in a safe way. The vector space of DOFs, denoted by Vh in Sect. 2.2, is
represented by an instance of the class VariableMng, whereas the elements vh ∈ Vh are instances
of the class Variable. The class Variable has two template parameters ItemT (either a Cell,
Face, Node, or a DegreeOfFreedom) and ValueT (either Real, RealVector, or RealMatrix, hence
handling scalar, vector and matrix valued variables) corresponds to a vector containing elements of
type ValueT and indexed by ItemTs. Instances of the class Variable are managed by VariableMng,
which handles memory in a centralized manner thus ensuring better performance. Access to
variables is granted by VariableMng via a unique string key.

Example 3.1 (Cell centered spaces of DOFs). If Vh = RTh and vh ∈ Vh, the notation vh =
(vT)T∈Th transposes in the random accessor vh[T] where vh is an instance of Variable<Cell,Real>
and T is of type Cell.

Example 3.2 (Hybrid spaces of DOFs). The hybrid space Vh = RTh × RFh features degrees
of freedom localized at both cells and faces. In this case, the implementation of Example 3.1 is
modified as follows: (i) instances of DegreeOfFreedom are created for all cells in allCells(Th)
and all faces in allFaces(Th) (cf. Table 3.1); (ii) vectors of DOFs are represented by instances
of Variable<DegreeOfFreedom,ValueT> indexed by DegreesOfFreedom. Notice that the use of
DegreeOfFreedom instead of Cell would also have been possible for Example 3.1. However, in our
present implementation, the resulting code would have been slightly more inefficient.

In what follows the reader can safely assume that all implementations of spaces of DOFs rely
on DegreeOfFreedom as described in Example 3.2.

3.1.2. Linear operators with embedded stencil: The class LinearCombination. The
point of view presented in Sect. 2 naturally leads to FE-like assembly of local contributions stem-
ming from integrals over elements or faces. However, a few major differences have to be considered:
(i) the stencil of the gradient operator Gh (and, consequently, of the piecewise affine reconstruc-

tion Rh) may vary from element to element, and is possibly data-dependent. This is the
case, e.g., for the methods of Sect. 2.3 based on the L-construction;

(ii) additionally, the stencil may be non-local, since DOFs from neighboring elements may enter
local reconstructions.

The above facts invalidate the classical approach based on a global table of DOFs inferred from
a mesh and a finite element in the sense of Ciarlet [11, pag. 93]. Our solution to overcome the
above difficulties while preserving the FE spirit of the assembly stage summarizes as follows:
(i) the notion of local element is dropped. Degrees of freedoms are globally indexed by mesh

items (Cell, Face, or Node) or DegreeOfFreedoms as is the case for Variables (cf. Sect. 3.1.1);
(ii) linear operators such as Gh, Rh, and trace reconstructions have embedded stencils.

10

I1

I2

=I = I1 ∪ I2

(τ1,I)I∈I1\I2 (τ1,I + τ2,I)I∈I1∩I2 (τ2,I)I∈I2\I1

I1 ∩ I2

+

Fig. 3.1. Computing the sum of two linear combinations l1 = (I, τ1,I)I∈I1 and l2 = (I, τ2,I)I∈I2
requires

computing the intersection I1 ∩ I2 and the union I1 ∪ I2

Linear operators with embedded stencil are represented by instances of the class LinearCombination,
which realizes a linear application from Vh on the space of real tensors Tr of order r with r equal to
0 (scalar), 1 (vector), or 2 (matrix). LinearCombination has two templates parameters ValueT
and ItemT representing, respectively, the value of the coefficients and the type of the item for
indexing (Cell, Face, Node, or DegreeOfFreedom). The template parameter ItemT defaults to
DegreeOfFreedom since this yields the more flexible (although not necessarily the most efficient)
implementation as discussed in Example 3.2.

For a fixed r ∈ {0, 1, 2}, a LinearCombination l can be represented as a list of couples
(I, τI)I∈I where I ⊂ Vh is the stencil (implemented as a vector of global DOFs) and (τI)I∈I, with
τI ∈ Tr for all I ∈ I, is the corresponding vector of coefficients. The stencil I can be accessed by
invoking

Vector <ItemT > LinearCombination <ValueT ,ItemT >:: stencil ();

The evaluation at vh ∈ Vh is obtained by calling the function

ValueT
LinearCombination <ValueT ,ItemT >:: eval(Variable <ValueT ,ItemT > & vh)
{

return
∑
I∈I

τIvI;

}

An efficient algebra for linear combinations is implemented by extending the operators defined for
the type ValueT. Particular attention is required when dealing with expressions that contain the
sum or subtraction of linear combinations, since this involves computing the intersection and the
union of the corresponding stencils; see Figure 3.1.

Efficiency in this case is achieved by standard buffering techniques implemented via the aux-
iliary class LinearCombinationBuffer with template parameters ValueT and ItemT (default-
ing to DegreeOfFreedom). Once all the algebraic operations are buffered, an object of type
LinearCombination can be obtained calling the function

LinearCombination <ValueT ,ItemT >
LinearCombinationBuffer <ValueT ,ItemT >:: linearCombination ()

Unlike LinearCombinationBuffer, LinearCombination is optimized for fast traversing the vec-
tors of stencils and coefficients, it supports efficient multiplication and division by constants, but
it cannot be used in expressions involving the sum or subtraction of LinearCombinations. An
example of usage is provided in Listing 2, where the implementation of the gradient reconstruction
Ggreen
h defined by (2.12) is discussed. Observe that the gradient Gccg

h can be obtained from the
11

same piece of code by simply changing the value returned by the trace reconstruction operator Th

in line 6.
Listing 2

Implementation of the gradient reconstruction Ggreen
h (2.12) for an element T ∈ Th.

1 // Cell centered DOF vT as a scalar linear combination
2 LinearCombination <Real > vT(IT , 1.);
3 // Algebraic operations are buffered to improve efficiency
4 LinearCombinationBuffer <RealVector > buffer;
5 for (F ∈ FT) {
6 LinearCombination <Real > vF = Th.eval(F);

7 buffer +=
|F |
|T |

(vT -vF)nT,F ;

8 }
9 // All buffered operations are actually performed here
10 LinearCombination <RealVector > GT = buffer.linearCombination ();

A further refinement to improve performance is provided by the class LinearCombinationMng
with template parameters ValueT and ItemT (defaulting to DegreeOfFreedom). This class can
be used to perform operations on a set of linear combinations sharing the same values for the
template parameters ValueT and ItemT. More specifically, LinearCombinationMng (i) allows to
efficiently compute the intersection and union of linear combination stencils required to compute
the sum of two linear combinations (see Figure 3.1); (ii) optimizes memory management by avoid-
ing unnecessary copies while performing buffered operations.

3.1.3. Finite element-like assembly. LinearCombinations provide the key facilities to
build local contributions stemming from integrals over elements or faces in the assembly step. To
illustrate the main ideas, we start with an example.

Example 3.3 (Local left-hand side contribution). For a given T ∈ Th and for uh, vh ∈ V ccg
h

we consider the local contribution Aloc associated to the term∫
T

κ∇huh·∇hvh.

Both (κ∇huh)|T = κ|T∇(uh|T) and (∇hvh)|T = ∇(vh|T) are instances of LinearCombination,
say lu = (J, τu,J)J∈J and lv = (I, τv,I)I∈I. The local left-hand side contribution is

Aloc = [|T |τv,I ·τu,J]I∈I, J∈J . (3.1)

The stencils I and J play the same role as the lines of the table of DOFs corresponding to test and
trial functions supported in T in standard FE implementations. As such, they are related to the
lines and columns of the global matrix A to which Aloc contributes,

A(I,J)← A(I,J) + Aloc. (3.2)

The programming counterpart of (3.2) is given in Listing 3 (the function contract implements
the tensor contraction corresponding to the rank of its arguments).

Listing 3
Left-hand side assembly (A represents here the global matrix)

Cell T;
LinearCombination <RealVector > lu /* = ∇huh */;
LinearCombination <RealVector > lv /* = ∇hvh */;
SparseRealMatrix A(/* . . . */);
// Local contribution (see (3.1))
RealMatrix Aloc = contract(lv, measure(T)*K[T]*lu);
// Assembly (see (3.2))
assemble(A, lv.stencil(), lu.stencil(), Aloc);

12

Remark 3.4 (Matrix assembly). Coherently with the mathematical notation (3.2), the as-
sembly of the local contribution in line 8 of Listing 3 is realized by the function

assemble(SparseRealMatrix & A,
const Vector <DegreeOfFreedom > & I,
const Vector <DegreeOfFreedom > & J,
const RealMatrix & Aloc);

The actual indices of the lines and columns to which Aloc contributes can be inferred from the
arguments I and J (every DegreeOfFreedom stores the global number of the corresponding algebraic
unknown).

Generalizing Example 3.3, we notice that bilinear forms result from the sum of terms with the
following general form: ∑

I∈Ih

∫
I

(γu × Lu(uh)) · (γv ∗ Lv(vh)) , (3.3)

where
(i) Ih ∈

{
Th,Fh,F ih,Fbh

}
is a set of mesh items (cf. Sect. 3.1.1);

(ii) γu and γv are tensor fields of rank rγu and rγv respectively possibly depending on constants
and on discrete variables;

(iii) Lu is a linear operator acting on the trial function uh ∈ Uh and yielding a tensors-valued
field of order ru. The operator Lu is represented by an instance of LinearCombination;

(iv) Lv is a linear operator acting on the test function vh ∈ Vh (which can possibly belong to a
space Vh 6= Uh) and yielding a tensor-valued field of order rv. The operator Lv is represented
by an instance of LinearCombination;

(v) × (resp. ∗) is an admissible product between a tensor of order rγu (resp. rγv) and a tensor
of order ru (resp. rv) yielding a tensor-valued field with order r;

(vi) · is the contraction product for tensors of order r.
The factors (γu×Lu(uh)) and (γv∗Lv(vh)) are respectively referred to as trial and test expressions.

Example 3.5 (Bilinear term). The term considered in Example 3.3 can be recast into the
form (3.3) by setting Ih = Th, γu = κ and rγu = 2, γv = 1 and rγv = 0, Lu = ∇h and ru = 1,
Lv = ∇h and rv = 1, and denoting by ×, ∗, and · the standard matrix-vector product, the scalar
product, and the standard vector inner product respectively.

Right-hand side contributions can be handled in a similar fashion. The details are omitted
for brevity.

3.2. Functional front-end. In this section we discuss the front-end of the language. More
specifically, in Sect. 3.2.1 we introduce function spaces, which provide a functional representation
for discrete functions building upon vector spaces. In Sect. 3.2.2 we address linear and bilinear
expressions, which are the main building blocks for the programming counterpart of linear and
bilinear forms. For the sake of clarity, the discussions in both Sections 3.2.1 and 3.2.2 are focused
on the scalar case. The extension to the vector case is briefly addressed in Sect. 3.2.3. By the end
of this section, all the elements of Listing 1 should become familiar to the reader.

3.2.1. Function spaces. The programming counterparts of incomplete broken polynomial
spaces defined by (2.7) are classes that match the concept defined in Listing 4.

Listing 4
Function space concept

struct FunctionSpaceConcept {
c la s s DiscreteFunction; // See Listing 5 for details
c la s s TrialFunction; // See Listing 6 for details
c la s s TestFunction; // See Listing 7 for details
// Constructor
FunctionSpaceConcept(const Mesh & Th);
// Create a general discrete function

13

DiscreteFunction discreteFunction(const String & key) const;
// Create a trial function
TrialFunction trialFunction(const String & key) const;
// Create a test function
TestFunction testFunction(const String & key) const;
// Constant value of Gh|S for S ∈ Sh expressed as a linear combination of DOFs
LinearCombination <RealVector > Gh(S) const;
// Value of Rh|S(x) for x ∈ S and S ∈ Sh expressed as a linear combination of

DOFs
LinearCombination <Real > Rh(S, x) const;

};

The key role of a function space is to bridge the gap between the algebraic representation of DOFs
and the functional representation used in the methods of Sect. 2. This is achieved by the functions
FunctionSpaceConcept::Gh and FunctionSpaceConcept::Rh, which are the C++ counterparts of
the linear operators Gh and Rh respectively; see Sect. 2.1. More specifically,
(i) for all S ∈ Sh, FunctionSpaceConcept::Gh(S) returns a vector-valued linear combination

corresponding to the (constant) restriction Gh|S ;
(ii) for all S ∈ Sh and all x ∈ S, FunctionSpaceConcept::Rh(S, x) returns a scalar-valued

linear combination corresponding to Rh|S(x) defined according to (2.6).
The LinearCombinations returned by Gh and Rh can be used to build linear and bilinear contri-
butions as described in Sect. 3.1.3.

A function space also defines the functional subtypes DiscreteFunction, TestFunction and
TrialFunction corresponding to the mathematical notions of discrete functions, test and trial
functions respectively. TrialFunctions and DiscreteFunctions are associated to a Variable
object containing the corresponding vector of DOFs. For DiscreteFunctions, the vector of DOFs
is used for the evaluation at a point x ∈ S, S ∈ Sh; cf. Listing 5. TestFunctions are used
to represent the basis of the discrete space, and are not associated to a vector of DOFs. As to
TrialFunctions, the implementation is similar to TestFunctions and it has additionally access
to the solution of the discrete problem.

Unlike DiscreteFunctions, TrialFunctions and TestFunctions have partially lazy evalua-
tion mechanisms, i.e., the evaluation returns a LinearCombination instead of a value; cf. Listings 6
and 7. The main motivation for introducing functional subtypes is to avoid differentiating DSEL
keywords for test and trial functions as is currently the case in Feel++; cf. Sect. 3.2.2.

Listing 5
Mockup of discrete function

struct DiscreteFunction {
i n l ine Real eval(S, x) const {

return m_Vh ->Rh(S, x).eval(m_DOFs);
}
i n l ine RealVector grad(S) const {

return m_Vh ->Gh(S).eval(m_DOFs);
}

private:
MyFunctionSpace * m_Vh;
Variable <Real > m_DOFs;

};

Listing 6
Mockup of trial function

struct TrialFunction {
i n l ine LinearCombination <Real > eval(S, x) const {

return m_Vh ->Rh(S, x);
}

14

i n l ine LinearCombination <RealVector > grad(S) const {
return m_Vh ->Gh(S);

}
private:

MyFunctionSpace * m_Vh;
Variable <Real > m_DOFs;

};

Listing 7
Mockup of test function

struct TestFunction {
i n l ine LinearCombination <Real > eval(S, x) const {

return m_Vh ->Rh(S, x);
}
i n l ine LinearCombination <RealVector > grad(S) const {

return m_Vh ->Gh(S);
}

private:
MyFunctionSpace * m_Vh;

};

Actual function spaces can be generated via a helper template class FunctionSpace with two
template parameters (labels are defined using the boost::parameter library):
(i) a template parameter identified by the label poly (equal to poly<0> or poly<1>) and cor-

responding to the smallest containing polynomial space (either P0
d(Th) or P1

d(Th));
(ii) a template paramater identified by the label gradient and corresponding to a (piecewise

constant) gradient reconstruction.
The gradient reconstruction fixes both the vector space of DOFs Vh according to (2.7) and
the choice (2.3) for Sh. Gradient reconstructions are generated via the helper template class
GradientReconstruction from the following template arguments:
(i) a template parameter identified by the label submesh (equal to Pyramidal or Identity).

This corresponds to the choice (2.3) for the auxiliary submesh;
(ii) a template parameter identified by the label dof (equal to CellCentered or Hybrid) corre-

sponding to the choice (2.5);
(iii) a template parameter identified by the label interpolator which corresponds to a trace

interpolator such as the one defined by (2.11). The default value for this parameter is
NoInterpolator meaning that face unknowns are not interpolated.

It is important to observe that the template parameter dof is not redundant since the space of
DOFs cannot be, in general, deduced from the interpolator. Indeed, following [24], it is possible
to conceive a trace interpolator that automatically decides whether to keep a face unknown or
to interpolate it according to the problem data. In this case, while dof should be set equal to
Hybrid, the actual size of the space of DOFs will only be determined at run time. The programming
counterparts of the gradient reconstructions and discrete spaces discussed in Sect. 2 are listed in
Tables 3.2 and 3.3 respectively.

Example 3.6 (Matrix assembly for the SUSHI method). Using function spaces, test and trial
functions the assembly of the matrix corresponding to the bilinear form asushi

h defined by (2.19) can
be obtained as described in Listing 8.

Listing 8
Matrix assembly for the SUSHI method

Mesh Th(/* . . . */);
Variable <Cell ,RealMatrix > K; // Diffusion tensor κ
FunctionSpace <Mesh ,

span< poly <1>, gradient <SUSHIHGradient > >
15

>::type Vh(Th);
auto uh = Vh.trialFunction ();
auto vh = Vh.testFunction ();
SparseRealMatrix A(/* . . . */);
for (auto T: allCells(Th)) {

for (auto S : allPyramids(T)) {
// retrieve the LinearCombination associated to the gradient
// of trial and test functions
auto Gu = uh.grad(S);
auto Gv = vh.grad(S);
assemble(A,

Gv.stencil(),
Gu.stencil(),
contract(Gv , measure(S)*K[T]*Gu)
);

}
}

3.2.2. Linear and bilinear expressions. The main goal of the DSEL is to allow a notation
as close as possible to that of the mathematical counterpart described in Sect. 2. The focus of
this section is on bilinear forms, as the ingredients for linear forms are essentially similar. In what
follows we exemplify production rules for trial and test expressions as well as bilinear terms of
the form (3.3) using the Extended Backus–Naur Form (EBNF), see [1]. The exposition is not
meant to be exhaustive, but instead to present a few significant examples from which others can
be inferred. The actual implementation is based on the boost::proto library by Niebler [32].

Terminals. The terminals of the DSEL is composed of a number predefined types categorized
in the following families:

• the BaseType family for the standard C++ types representing integers and reals;
• the VarType family for all discrete variable types defined in Sect. 3.1.1;
• the MeshGroupType family for types representing collection of mesh entities such as the

ones listed in Table 3.1;
• the DiscreteFunction, TestFunction and TrialFunction families representing the dis-

crete functions, test and trial functions defined in Sect. 3.2.
Trial and test expressions. Trial (resp. test) expressions are obtained as the product of a

coefficient γu (resp. γv) by a linear operator Lu (resp. Lv) acting on a trial (resp. test) function.
The coefficient can result from the algebraic combination of constant values and Variables eval-
uated at item I (cf.(3.3)). Listing 9 displays a few production rules for coefficients involving, in
particular, constant values, Variables over Cells and products thereof.

Listing 9
Examples of production rules for the coefficient γ in (3.3)

BaseExpr = BaseType | BaseExpr * BaseExpr;

VarExpr = VarType | BaseExpr * VarExpr | VarExpr * VarExpr;

CoefExpr = BaseExpr | VarExpr;

To obtain trial and test expressions, we introduce linear operators acting on test and trial
functions. A few examples are provided in Listing 10, and include (i) id, the value of the trial/test
function; (ii) grad, the gradient of the trial/test function; (iii) trace operators like jump and avg
representing, respectively, the jump and average of a trial/test function across a face. Besides
linear operators, the production rules for trial and test expressions in Listing 10 include various
products by coefficients resulting from the production rules of Listing 9 (dot and ddot denote,
respectively, the vector inner product and the contraction for tensors of order 2).

16

Listing 10
Production rules for trial and test expressions

LinearOperator = "id" | "grad" | "jump" | "avg";

TrialExpr = TrialFunction |
CoefExpr * TrialExpr |
"dot("CoefExpr , TrialExpr")" |
"ddot("CoefExpr , TrialExpr")" |
LinearOperator"("TrialExpr")";

TrialExpr = TestFunction |
CoefExpr * TestExpr |
"dot("CoefExpr , TestExpr")" |
"ddot("CoefExpr , TestExpr")" |
LinearOperator"("TestExpr")";

Bilinear forms. Once test and trial expressions are available, bilinear terms can be obtained
as contraction products of trial and test expressions or as sums, as described in Listing 11.

Listing 11
Production rules for bilinear terms

BilinearTerm = TrialExpr * TestExpr |
"dot("TrialExpr , TestExpr")" |
"ddot("TrialExpr , TestExpr")" |
CoefExpr * BilinearTerm |
BilinearTerm + BilinearTerm;

Bilinear forms finally result from the integration of bilinear terms on groups of mesh items (cf.
Table 3.1). Production rules for bilinear forms are given in Listing 12. Observe that integrate
acts as a binary operator that takes as arguments the group of items over which integration is
performed and the bilinear term to integrate. Compile-time checks are performed to ensure that
the expression corresponding to the bilinear term is meaningful with respect to the type of items
we are integrating on. For example, expressions containing the operators jump and avg will be
rejected when integrating over cells.

Listing 12
Production rules for bilinear forms

IntegrateBilinearTerm = "integrate("MeshGroup , BilinearTerm")";
BilinearForm = IntegrateBilinearTerm |

IntegrateBilinearTerm + BilinearForm;

In the boost::proto based implementation, the production rules of Listings 9, 10, 11, and 12
yield expression trees where each node is an object of type expr identified by a tag. The leafs of
the tree are occupied by terminal expressions including base types and variables (cf. Listing 9),
meshes (cf. Listing 12), test and trial functions (cf. Listing 10).

Bilinear expressions are used to define objects of type BilinearForm. These objects store
the bilinear expression in a collection of generated structures of base type IBaseTerm that wrap
bilinear terms. A standard mechanism based on the visitor pattern allows to evaluate each bilinear
term using its true type.

Example 3.7 (Bilinear form for the SUSHI method). The programming counterpart of the
bilinear form asushi

h defined by (2.19) is given in Listing 13. The corresponding expression tree is
detailed in Fig. 3.2.

Listing 13
DSEL based implementation of the bilinear form asushi

h defined by (2.19)

1 Mesh Th(/* . . . */);
17

expr<tag_integrate>

allCells(Th) expr<tag_dot>

expr<tag_mult>

K expr<tag_grad>

uh

expr<tag_grad>

vh

Fig. 3.2. Expression tree for the bilinear form defined at line 10 of Listing 13. Expressions are in light gray,
language terminals in dark gray

2 FunctionSpace <Mesh ,
3 span< poly <1>, gradient <SUSHIHGradient > >
4 >::type Vh(Th);
5 auto uh = Vh.trialFunction ();
6 auto vh = Vh.testFunction ();
7 // Observe that the language automatically handles the fact that gradients are piecewise

constant
8 // over pyramids rather than cells
9 BilinearForm ah = integrate (allCells(Th),
10 dot(K*grad(uh),grad(vh));

The language is completed by specific keywords such as, e.g., N() and H(), which, for all
F ∈ Fh, return the precomputed values of nF and hF .

Context-based evaluation. Following the philosophy of Feel++ [33] and boost::proto, the
evaluation of linear and bilinear expressions is context-dependent. Contexts are objects that pre-
scribe an evaluation policy for each node type. More precisely, when an expression is evaluated, the
context is invoked at each node of the tree. When evaluating bilinear expressions, the context pro-
vides a representation for the global matrix that matches the assumption discussed in Remark 3.4.
The integration of a generic bilinear expression is then obtained as described in Listing 14. The
function bln_integrate is invoked when evaluating nodes of type expr<tag_integrate> such as
the root of the tree in Figure 3.2. Observe that switching to a matrix-free version only requires to
define an appropriate evaluation context (which is initialized with the vector by which the matrix
is right-multiplied).

Listing 14
Assembly of the generic bilinear contribution (3.3). The function bln_integrate generalizes the example in

Listing 8

1 template <typename ItemT , typename BilinearExprT , typename ContextT >
2 void bln_integrate(const GroupT <ItemT > & group ,
3 const BilinearExprT & expr ,
4 const ContextT & ctx)
5 {
6 // Retrieve trial and test expressions
7 auto trial_expr = getTrialExpr(expr);
8 auto test_expr = getTestExpr(expr);
9 // Retrieve matrix. Matrix representation is context-dependent

18

10 auto A = ctx.getMatrix ();
11 for (auto item : group) { //

∑
I∈Ih

. . .

12 auto Lu = eval(trial_expr , item); // (γu × Lu(uh))|I
13 auto Lv = eval(test_expr , item); //(γv ∗ Lv(vh))|I
14 // Assemble local contribution
15 assemble(A,
16 Lu.stencil(), // line indices
17 Lv.stencil(), // column indices
18 contract(Lv , measure(I)*Lu) // |I|(γu ×Lu(uh))|I · (γv ∗ Lv(vh))|I
19);
20 }
21 }

A few comments on Listing 14 are required. Lines 7 and 8 make use of the functions
getTestExpr and getTrialExpr to retrieve the test and trial components of the bilinear ex-
pression. These functions are implemented essentially in the same spirit as the boost::proto
functions left and right. The evaluation of trial and test expressions at lines 12 and 13 returns
instances of LinearCombination (with suitable instances for the template parameters), which are
available for use in the local assembly at line 16.

3.2.3. The vector case. In this section we briefly address the extensions of the grammar to
handle vector problems. This allows to write the programming counterpart of the method (2.26)
as detailed in Listing 15.

Listing 15
Implementation of the method (2.26) for the Stokes problem

1 Mesh Th(/* . . . */);
2 Real eta;
3 // Function spaces
4 FunctionSpace <Mesh ,
5 span< poly <1>, gradient <GreenGradient > >
6 >::type Uh(Th);
7 FunctionSpace <Mesh ,
8 span< poly <0>, gradient <NullGradient > >
9 >::type Ph(Th);
10 // Test and trial functions
11 auto uh = Uh.trialVectorFunction("uh");
12 auto vh = Uh.testVectorFunction("vh");
13 auto ph = Ph.trialFunction("ph");
14 auto qh = Ph.testFunction("qh");
15 // Penalty parameter
16 auto penalty = eta/H();
17 // Indices
18 Range range(dim);
19 auto _i = range.get ();
20 // Diffusive term (2.23)
21 BilinearForm ah =
22 integrate (allCells(Th),
23 sum(_i)(dot(grad(uh(_i)),grad(vh(_i))))
24)
25 + integrate (allFaces(Th),
26 sum(_i)(- dot(N(),avg(grad(uh(_i))))*jump(vh(_i))
27 - jump(uh(_i))*dot(N(),avg(grad(vh(_i))))
28 + penalty*jump(uh(_i))*jump(vh(_i))

19

29)
30) ;
31 // Pressure gradient (2.24)
32 BilinearForm bh = integrate (allCells(Th), -ph*div(vh))
33 + integrate (allFaces(Th),
34 avg(ph)*dot(N(),jump(vh))
35);
36 // Velocity divergence (2.24)
37 BilinearForm bth = integrate (allCells(Th), div(uh)*qh)
38 + integrate (allFaces(Th),
39 -dot(N(),jump(uh)) * avg(qh)
40);
41 // Inf-sup stabilization (2.25)
42 BilinearForm sh = integrate (internalFaces(Th),
43 H()*jump(ph)*jump(qh)
44);

The following extensions are introduced to handle the vector case:
(i) the concept of expression rank allows to classify the expression as Scalar, Vector, or Tensor;
(ii) the classes VectorFunction, TestVectorFunction, and TrialVectorFunction are intro-

duced to represent discrete vector functions. An example is provided in lines 11 and 12 of
Listing 15;

(iii) the components of discrete vector functions can be traversed using the Range concept; cf.
lines 18 and 19 of Listing 15.

Vector and tensor terminals dispose of an operator()(/*index */) operator that returns
an object of type ScalarView<ExprT> to access the expression component specified by an index
iterator. The unary operator sum(/*range */) returns an expression node which allows to iterate
over its child nodes corresponding to the components of the vector expression. The bilinear forms
ah, bh, bth, and sh defined in Listing 15 can either contribute to a unique global matrix in the
context of monolithic methods, or be used to assemble the corresponding submatrices when, e.g.,
pressure correction methods are used to march in time.

4. Numerical examples. In this section we provide a few numerical examples to assess the
performance of the DSEL. Although the codes are

4.1. Codes description. The performance of the DSEL-based implementation of lowest-
order methods discussed in Sect. 3 is compared with

• Feel++, an open source FE library whose main developer is one of the authors [35]. When
possible, Feel++ is used for comparison with more standard FE methods both in terms
of accuracy and performance. The DSEL implemented in Feel++ has profoundly inspired
the present work;

• fvC++, an stl-based implementation of the back-end discussed in Sect. 3.1 developed by
one of the authors and used in [13–15]. The matrix assembly in fvC++ closely resembles
Listing 8. No language facility is offered in this case.

The three codes are compiled with the gcc 4.5 compiler with the following compile options:

-03 -fno -builtin
-mfpmath=sse -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4 .2
-fno -check -new -g -Wall -std=c++0x
--param -max - in l ine -recursive -depth =32
--param max - in l ine -insns -single =2000

The benchmark test cases are run on a work station with a quad-core Intel Xeon processor Gen-
uineIntel W3530, 2.80GHz, 8MB for cach size.

20

(a) Skewed quadrangular mesh (b) Stratigraphic mesh. The actual
aspect ratio is 10:1

Fig. 4.1. Elements of the mesh families used in the benchmark

4.1.1. Meshes. In our numerical tests we consider the following families of h-refined meshes:
(i) the skewed quadrangular mesh family of Figure 4.1(a) generated using Gmsh [26] is used for the
benchmarks of Sections 4.3 and 4.4; (ii) the stratigraphic mesh family of Figure 4.1(b) representing
a geological basin is used for the benchmark of Sect. 4.5. This mesh family mixes triangular and
quadrangular elements. The actual aspect ratio of the mesh is 10:1, resulting in elongated elements
and sharp angles.

4.1.2. Solvers. The linear systems are solved using the PETSc library. For the diffusion
benchmark of Sect. 4.3, we use the BICGStab solver preconditioned by the euclid ILU(2) pre-
conditioner, with relative tolerance set to 10−13. For the Stokes benchmark of Sect. 4.4, we use
the GMRes solver with a ILU(3) preconditioner and a relative tolerance of 10−13. The constant
null space constraint option is activated to solve the system, and the resulting discrete pressure
is scaled to ensure that the zero-mean constraint (2.21d) is satisfied. Note that our objective is
not to test the solvers but rather compare for a given solution strategy the behavior of the various
methods exposed in Sect. 2 as well as more conventional FE methods.

4.2. Benchmarks metrics. The benchmarks proposed in this section monitor various met-
rics:
(i) Accuracy. The accuracy of the methods is evaluated in terms of the L2- and of discrete

energy-norms of the error. For the methods of Sect. 2, the L2-norm of the error is evaluated
using the cell center as a quarature node, i.e.,

‖u− uh‖L2(Ω) ≈

(∑
T∈Th

|T |(u(xT)− uT)2

) 1
2

.

The actual definition of the discrete energy-norm is both problem- and method-dependent.
Further details are provided for each test case. The convergence order of a method is classi-
cally expressed relating the error to the meshsize h.

(ii) Memory consumption. When comparing methods featuring different number of unknowns
and stencils, a more fair comparison in terms of system size and memory consumption is
obtained relating the error to the number of DOFs (NDOF) and to the number of nonzero
entries of the corresponding linear system (Nnz).

(iii) Performance. The last set of parameters is meant to evaluate the CPU cost for each method
and implementation. To provide a detailed picture of the different stages and estimate the
overhead associated to the DSEL, we separately evaluate
• tinit, the time to build the discrete space;
• tass, the time to fill the linear systems (local/global assembly). When DSEL-based

implementations are considered, this stage carries the additional cost of evaluating the
21

expression tree for bilinear and linear forms;
• tsolve, the time to solve the linear system.

An important remark is that, in the context of nonlinear problems on fixed meshes, tinit often
corresponds to precomputation stages, while tass contributes to each iteration.

4.3. Benchmark: Pure diffusion. Our first benchmark is based on the following exact
solution for the diffusion problem (2.3):

u(x) = sin(πx1) cos(πx2), κ =

[
1 0
0 1

]
,

with suitable right-hand side f and Dirichlet boundary condition on ∂Ω. The problem is solved
on the skewed mesh family depicted in Figure 4.1(a). We compare the following methods: (i) the
DSEL and fvC++ implementations of the ccG method (2.15). The DSEL implementation is pro-
vided in Listings 1; (ii) the DSEL implementation of the SUSHI method with face unknowns (2.18)
provided in Listing 13; (iii) the Feel++ implementation of the first-order Rannacher–Turek ele-
ments RaTu1; (iv) the Feel++ implementation of Qk elements with k ∈ {1, 2}. Since the solution is
smooth, the Q2 element is expected to yield better performance. In real-life applications, however,
the regularity of the solution is limited by the heterogeneity of the diffusion coefficient; see [16]
and references therein for a discussion.

The accuracy and memory consumption analysis is provided in Figure 4.2. The discrete H1-
norm coincides with the natural coercivity norm for the method; see [15,24] for further details on
the SUSHI and ccG methods. As expected, the higher-order method Q2 elements yields better
performance irrespectively whether the error is related to the meshsize h, the number of DOFs
NDOF, or the number of nonzero elements in the matrix Nnz. It has to be noted, however, that
both the SUSHI and the ccG methods exhibit superconvergence in the discrete H1-norm, thereby
providing a better approximation of the gradient with respect to the first-order element methods.

The CPU cost analysis is provided in Figures 4.3 and 4.4. The cost of each stage of the
computation is related to the number of DOFs in Figure 4.3 to check that the expected complexity
is achieved. This is the case for all the methods considered. A comparison in terms of absolute
computation time is provided in Figure 4.4. Overall, the initialization and assembly steps appear
more expensive for the lowest-order methods. The overhead of the DSEL can be estimated by
comparing with the fvC++ implementation of the ccG. Some remarks are of order. (i) the main
interest of the lowest-order methods presented in Sect. 2 is that general meshes can be handled
seamlessly. For an example based on a less conventional mesh see Sect. 4.5. When a classical FE
implementation is possible, the approach based on a reference element and a table of DOFs can be
expected to overperform the LinearCombination-based handling of degrees of freedom; (ii) the FE
code Feel++ is a more mature project, which benefits from some degree of optimization and finer
tuning; (iii) even when the overhead of the DSEL is disregarded, the stl-based implementation
of LinearCombination in fvC++ yields similar performance as the dedicated implementation used
in the DSEL version.

4.4. Benchmark: Stokes. We consider the following analytical solution of the Stokes prob-
lem (2.21):

u1(x) = − exp(x1)(x2 cos(x2)+sin(x2)), u2(x) = exp(x)x2 sin(x2), p(x) = 2 exp(x1) sin(x2)−p,

where p is chosen in such a way that the constraint (2.21d) is verified. The problem is solved on
the skewed mesh family depicted in Figure 4.1(a). We compare the following methods: (i) the
ccG method (2.26); (ii) an inf-sup stable method based on first-order Rannacher–Turek RaTu1

elements for the velocity and Q0 elements for the pressure; (iii) an inf-sup stable method based on
second-order Q2 elements for the velocity and Q1 elements for the pressure. The error is measured
in terms of the L2-norm for both the velocity and the pressure. The energy-norm of the error is

22

10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

100

RaTu1

Q1

Q2

SUSHI
ccG

(a) L2-error vs. h

10−2 10−1

10−4

10−3

10−2

10−1

100

RaTu1

Q1

Q2

SUSHI
ccG

(b) H1-error vs. h

102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

RaTu1

Q1

Q2

SUSHI
ccG

(c) L2-error vs. NDOF

102 103 104 105

10−4

10−3

10−2

10−1

100

RaTu1

Q1

Q2

SUSHI
ccG

(d) H1-error vs. NDOF

103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

100

RaTu1

Q1

Q2

SUSHI
ccG

(e) L2-error vs. Nnz

103 104 105 106

10−4

10−3

10−2

10−1

100

RaTu1

Q1

Q2

SUSHI
ccG

(f) H1-error vs. Nnz

Fig. 4.2. Accuracy and memory consumption analysis for the example of Sect. 4.3

defined as follows:

Esto(uh, ph)2 : =‖∇u−∇huh‖2L2(Ω)d,d + ‖p− ph‖2L2(Ω)

+ α

 ∑
F∈Fh

h−1
F ‖JuhK‖

2
L2(F)d +

∑
F∈Fi

h

hF ‖JphK‖2L2(F)

 ,

23

102 103 104 105

10−2

10−1

tinit

tass

tsolve

(a) RaTu1 (Feel++)

102 103 104

10−2

10−1

tinit

tass

tsolve

(b) Q1 (Feel++)

102 103 104 105

10−2

10−1

100

tinit

tass

tsolve

(c) Q2 (Feel++)

102 103 104 105

10−2

10−1

100
tinit

tass

tsolve

(d) SUSHI (DSEL)

102 103 104

10−2

10−1

100

tinit

tass

tsolve

(e) ccG (DSEL)

102 103 104

10−2

10−1

100
tinit

tass

tsolve

(f) ccG (fvC++)

Fig. 4.3. Performance analysis for the example of Sect. 4.3

where α = 1 for the ccG method and α = 0 for both the RaTu1 − Q0 and the Q2 − Q1 methods.
The accuracy and memory consumption analysis for the Stokes benchmark is provided in

Figure 4.5. As expected, the higher-order method benefits from the regularity of the solution and
is therefore more efficient. The results in terms of the L2-error on the velocity are comparable
for both the ccG and the RaTu1 − Q0 methods, whereas the ccG method has a slight edge when
it comes to the L2-norm of the pressure. As regards the energy norm, the differences between
the RaTu1 − Q0 and the ccG methods are essentially related to the presence of the jumps of the

24

0 0.5 1 1.5 2 2.5

RaTu1

Q1

Q2

ccG-DSEL

ccG-fvCpp

SUSHI

tinit

tass

tsolve

Fig. 4.4. Comparison of different methods and implementation for the test case of Sect. 4.3 (time vs. NDOF,
h = 0.00625)

pressure in the energy norm for the latter. An interesting remark is that the superconvergence
phenomenon observed in the example of Sect. 4.3 for the ccG method is no longer present here.

The performance analysis for the Stokes benchmark is provided in Figure 4.5. Similar con-
siderations hold as for the benchmark of Sect. 4.3. In this case, however, tsolve largely dominates
tinit + tass (especially for the Q2−Q1 method), and it is excluded from the overall time comparison
in Figure 4.7 to improve readability.

4.5. A problem in basin modeling. The last problem is based on the basin mesh family
depicted in Figure 4.1(b) which contains both triangular and quadrangular elements. Handling
this kind of meshes usually requires some specific modifications in finite element codes, since two
reference finite elements exists. A key advantage of the lowest-order methods considered in the
present work is that their construction remains unchanged for elements of different shape. We
consider the anisotropic test case of [4],

u(x) = sin(πx1) sin(πx2), κ =

[
ε 0
0 1

]
,

with suitable right-hand side f and Dirichlet boundary conditions on ∂Ω. The anisotropy ratio ε
is taken equal to 0.1. We compare the following discretizations: (i) the G-method (2.10) whose
DSEL implementation is provided Listing 16; (ii) the ccG method (2.15); (iii) the SUSHI method
(2.18) with discrete gradient (2.20) expressed in terms of cell unknowns only.

Listing 16
Implementation of the G-method (2.10)

Mesh Th(/* . . . */);
FunctionSpace <Mesh ,

span< poly <0>, gradient <NullGradient > >
>::type Vh(Th);

FunctionSpace <Mesh ,
span< poly <1>, gradient <GGradient > >

>::type Uh(Th);
auto uh = Uh.trialFunction("uh");
auto vh = Vh.testFunction("vh");
BilinearForm ah = integrate (allFaces(Th),

-dot(N(),avg(K*grad(uh)))*jump(vh)
);

LinearForm bh = integrate (allCells(Th), f*v);

25

10−2 10−1
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

RaTu1 − Q0

Q2 − Q1

ccG

(a) ‖u− uh‖L2(Ω)d vs. h

10−2 10−1

10−5

10−4

10−3

10−2

10−1

100

RaTu1 − Q0

Q2 − Q1

ccG

(b) ‖p− ph‖L2(Ω) vs. h

10−2 10−1

10−5

10−4

10−3

10−2

10−1

RaTu1 − Q0

Q2 − Q1

ccG

(c) Esto(uh, ph) vs. h

103 104 105
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

RaTu1 − Q0

Q2 − Q1

ccG

(d) ‖u− uh‖L2(Ω)d vs. NDOF

103 104 105

10−5

10−4

10−3

10−2

10−1

100

RaTu1 − Q0

Q2 − Q1

ccG

(e) ‖p− ph‖L2(Ω) vs. NDOF

103 104 105

10−5

10−4

10−3

10−2

10−1

RaTu1 − Q0

Q2 − Q1

ccG

(f) Esto(uh, ph) vs. NDOF

104 105 106 107
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

RaTu1 − Q0

Q2 − Q1

ccG

(g) ‖u− uh‖L2(Ω)d vs. Nnz

104 105 106 107

10−5

10−4

10−3

10−2

10−1

100

RaTu1 − Q0

Q2 − Q1

ccG

(h) ‖p− ph‖L2(Ω) vs. Nnz

104 105 106 107

10−5

10−4

10−3

10−2

10−1

RaTu1 − Q0

Q2 − Q1

ccG

(i) Esto(uh, ph) vs. Nnz

Fig. 4.5. Accuracy and memory consumption analysis for the example of Sect. 4.4

The difficulty in this case is related to both the mesh, which mixes elongated triangular and
quadrangular elements, and the anisotropy of the diffusion tensor. The results are presented in
Figure 4.8. To facilitate the comparison with the results of [4, Figure 5], the discrete energy norm
is defined according to [4, eq. (4.1)] for both the G-method and the SUSHI scheme, while for the
ccG method we have used the norm of [15, eq. (3.7)]. While all of the methods have cell centered
unknowns only, their stencils differ significantly. It is interesting to remark that, despite its larger
stencil, the ccG method outperforms both the G-method and the SUSHI methods in terms of the
discrete H1-norm even when relating the error to the number of nonzero elements in the matrix.
On the other hand, the G-method displays good convergence properties in the L2-norm, but its
performance is poor when it comes to the discrete H1-norm. Finally, the SUSHI method may be
a compromise when the memory occupation of the ccG method becomes inacceptable.

REFERENCES

[1] ISO/IEC 14977, 1996(E).
[2] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, Discretization on unstructured grids for in-

homogeneous, anisotropic media, Part I: Derivation of the methods, SIAM J. Sci. Comput., 19 (1998),
pp. 1700–1716.

[3] I. Aavatsmark, G. T. Eigestad, B. T. Mallison, and J. M. Nordbotten, A compact multipoint

26

103 104 105

10−2

10−1

100

101

tinit

tass

tsolve

(a) RaTu1 − Q0 (Feel++)

103 104 105

10−2

10−1

100

101

102 tinit

tass

tsolve

(b) Q2 − Q1 (Feel++)

103 104 105

10−2

10−1

100

101
tinit

tass

tsolve

(c) ccG (DSEL)

103 104 105

10−2

10−1

100

101

tinit

tass

tsolve

(d) ccG (fvC++)

Fig. 4.6. Performance analysis for the example of Sect. 4.4

0.2 0.4 0.6 0.8 1

RaTu1Q0

Q2Q1

ccG-DSEL

ccG-fvCpp

tinit

tass

Fig. 4.7. Comparison of different methods and implementations for the test case of Sect. 4.4

flux approximation method with improved robustness, Numer. Methods Partial Differ. Eq., 24 (2008),
pp. 1329–1360.

[4] L. Agélas, D. A. Di Pietro, and J. Droniou, The G method for heterogeneous anisotropic diffusion on
general meshes, M2AN Math. Model. Numer. Anal., 44 (2010), pp. 597–625.

[5] L. Agélas, D. A. Di Pietro, R. Eymard, and R. Masson, An abstract analysis framework for noncon-
forming approximations of diffusion problems on general meshes, IJFV, 7 (2010), pp. 1–29.

[6] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer.

27

10−2.2 10−2 10−1.8 10−1.6 10−1.4 10−1.2

10−3

10−2

G-method
SUSHI
ccG

(a) L2-error vs. h

10−2.2 10−2 10−1.8 10−1.6 10−1.4 10−1.2

10−1

100

G-method
SUSHI
ccG

(b) H1-error vs. h

102 103

10−3

10−2

G-method
SUSHI
ccG

(c) L2-error vs. NDOF

102 103

10−1

100

G-method
SUSHI
ccG

(d) H1-error vs. NDOF

103 104 105

10−3

10−2

G-method
SUSHI
ccG

(e) L2-error vs. Nnz

103 104 105

10−1

100

G-method
SUSHI
ccG

(f) H1-error vs. Nnz

Fig. 4.8. Accuracy and memory consumption analysis for the example of Sect. 4.5

Anal., 19 (1982), pp. 742–760.
[7] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini, On the flexibility of agglomeration

based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231 (2012), pp. 45–65.
[8] F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of mimetic finite difference methods for diffusion

problems on polyhedral meshes, SIAM J. Numer. Anal., 45 (2005), pp. 1872–1896.
[9] F. Brezzi, K. Lipnikov, and V. Simoncini, A family of mimetic finite difference methods on polygonal

and polyhedral meshes, M3AS, 15 (2005), pp. 1533–1553.
[10] E. Burman and B. Stamm, Minimal stabilization for discontinuous Galerkin finite element methods for

28

hyperbolic problems, Communications in Computational Physics, (2009), pp. 498–524.
[11] P. G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, P. G. Ciarlet

and J.-L-Lions, eds., vol. II: Finite Element Methods, North-Holland, Amsterdam, 1991, ch. 2.
[12] D. A. Di Pietro, Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an

artificial compressibility flux, Int. J. Numer. Methods Fluids, 55 (2007), pp. 793–813.
[13] , Cell-centered Galerkin methods, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 31–34.
[14] , A compact cell-centered Galerkin method with subgrid stabilization, C. R. Acad. Sci. Paris, Ser. I., 348

(2011), pp. 93–98.
[15] , Cell centered Galerkin methods for diffusive problems, M2AN Math. Model. Numer. Anal., 46 (2012),

pp. 111–144.
[16] D. A. Di Pietro and A. Ern, Analysis of a discontinuous Galerkin method for heterogeneous dif-

fusion problems with low-regularity solutions, Numer. Meth. PDEs, (2011). Published online. DOI:
10.1002/num.20675.

[17] , Mathematical Aspects of Discontinuous Galkerin Methods, no. 69 in Mathématiques & Applications,
Springer Verlag, Berlin, 2011.

[18] D. A. Di Pietro, A. Ern, and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semi-
definite diffusion with advection, SIAM J. Numer. Anal., 46 (2008), pp. 805–831.

[19] D. A. Di Pietro and J.-M. Gratien, Lowest order methods for diffusive problems on general meshes:
A unified approach to definition and implementation, in Finite Volumes for Complex Applications VI,
J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds., Springer–Verlag, 2011, pp. 3–19.

[20] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid,
Num. Math., 105 (2006), pp. 35–71.

[21] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, A unified approach to mimetic finite difference,
hybrid finite volume and mixed finite volume methods, M3AS, 20 (2010), pp. 265–295.

[22] M.G. Edwards and C.F. Rogers, Finite volume discretization with imposed flux continuity for the general
tensor pressure equation, Comput. Geosci., 2 (1998), pp. 259–290.

[23] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159 of Applied Mathematical
Sciences, Springer-Verlag, New York, NY, 2004.

[24] R. Eymard, Th. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion
problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces,
IMA J. Numer. Anal., 30 (2010), pp. 1009–1043.

[25] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini, 3D benchmark on
discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex
Applications VI Problems & Perspectives, J. Halama R. Herbin J. Fořt, J. Fürst and F. Hubert, eds.,
Springer-Verlag, 2011, pp. 95–130.

[26] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79 (2009),
pp. 1309–1331.

[27] G. Grospellier and B. Lelandais, The Arcane development framework, in Proceedings of the 8th workshop
on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ’09, New York, NY, USA,
2009, ACM, pp. 4:1–4:11.

[28] P. Hansbo and M. G. Larson, Discontinuous Galerkin and the Crouzeix–Raviart element: application to
elasticity, M2AN Math. Model. Numer. Anal., 1 (2003), pp. 63–72.

[29] F. Hecht and O. Pironneau, FreeFEM++ Manual, Laboratoire Jacques Louis Lions, 2005.
[30] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on

general grids, in Finite Volumes for Complex Applications V, John Wiley & Sons, 2008, pp. 659–692.
[31] A. Logg, J. Hoffman, R.C. Kirby, and J. Jansson, Fenics. http://www.fenics.org/, 2005.
[32] E. Niebler, boost::proto documentation, 2011. http://www.boost.org/doc/libs/1_47_0/doc/html/proto.

html.
[33] C. Prud’homme, A domain specific embedded language in C++ for automatic differentiation, projection,

integration and variational formulations, Scientific Programming, 2 (2006), pp. 81–110.
[34] C. Prud’homme, V. Chabannes, and G. Pena, Feel++: A computational framework for Galerkin methods,

(2012). In preparation.
[35] C. Prud’homme, V. Chabannes, G. Pena, and S. Veys, Feel++: Finite Element Embedded Language

in C++. Free Software available at http://www.feelpp.org. Contributions from A. Samake, V. Doyeux,
M. Ismail.

29

http://dx.doi.org/10.1002/num.20675
http://dx.doi.org/10.1002/num.20675
http://www.fenics.org/
http://www.boost.org/doc/libs/1_47_0/doc/html/proto.html
http://www.boost.org/doc/libs/1_47_0/doc/html/proto.html
http://www.feelpp.org

Table 3.1
Mesh accessors for an object Th of type Mesh

Item set Accessor

Th allCells(Th)
Fh allFaces(Th)
F ih interfaces(Th)
Fbh boundaryFaces(Th)

Table 3.2
Template parameters for the gradient reconstructions operator of Sect. 2

Name Definition Type name submesh interpolator dof

Gg
h (2.9) GGradient Pyramidal Barycentric CellCentered

Ggreen
h (2.12) GreenGradient Identity LInterpolator CellCentered
Ghyb
h (2.17) SUSHIHGradient Pyramidal NoInterpolator Hybrid
Gcc
h (2.20) SUSHICCGradient Pyramidal LInterpolator CellCentered

Table 3.3
Template parameters for the discrete spaces of Sect. 2

Name Sh poly gradient

P0
d(Th) Identity poly<0> gradient<NullGradient>
V g
h Pyramidal poly<1> gradient<GGradient>

V ccg
h Identity poly<1> gradient<GreenGradient>

V hyb
h Pyramidal poly<1> gradient<SUSHIHGradient>
V cc
h Pyramidal poly<1> gradient<SUSHICCGradient>

30

