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BOUSSINESQ MODELING OF SURFACE WAVES DUE TO

UNDERWATER LANDSLIDES

DENYS DUTYKH∗ AND HENRIK KALISCH

Abstract. Consideration is given to the influence of an underwater landslide on waves

at the surface of a shallow body of fluid. The equations of motion which govern the

evolution of the barycenter of the landslide mass include various dissipative effects due

to bottom friction, internal energy dissipation, and viscous drag. The surface waves are

studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model

for the Boussinesq equations is introduced which is able to handle time-dependent bottom

topography, and the equations of motion for the landslide and surface waves are solved

simultaneously.

The numerical solver for the Boussinesq equations can also be restricted to implement a

shallow-water solver, and the shallow-water and Boussinesq configurations are compared.

A particular bathymetry is chosen to illustrate the general method, and it is found that

the Boussinesq system predicts larger wave run-up than the shallow-water theory in the

example treated in this paper. It is also found that the finite fluid domain has a significant

impact on the behavior of the wave run-up.

Key words and phrases: Surface waves, Boussinesq model, submarine landslides, wave

run-up, tsunami.
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1. Introduction

Surface waves originating from sudden perturbations of the bottom topography are often
termed tsunamis. Two distinct generation mechanisms of a tsunami are underwater earth-
quakes, and submarine mass failures. Among the broad class of submarine mass failures,
landslides can be characterised as translational failures which travel considerable distances
along the bottom profile [35, 51]. In the past, the role of landslides and rock falls in the exci-
tation of tsunamis may have been underestimated, as most known occurrences of tsunamis
were accredited to seismic activity. However, it is now more accepted that submarine mass
failures also contribute to a large portion of tsunamis [60], and recent years have seen a
multitude of works devoted to the study of such underwater landslides and the resulting
effect on surface waves [3, 15, 17, 26, 34, 35, 45, 46, 50, 60]. As suggested in [28], it is
possible for underwater landslides and earthquakes to act in tandem, and produce very
large surface waves

A natural question to ask is whether the effect of underwater landslides on surface waves
can be such that they may pose a danger for civil engineering structures located near the
shore. Consequently, one important issue is the wave action and in particular the run-up
and draw-down at beaches in the vicinity of the landslide. While the draw-down itself may
not pose a threat, one consequence of a large draw-down can be the amplification of the
run-up of the following positive wave crest [21, 58].

There have been many numerical and a few experimental studies devoted to this subject,
but it is generally difficult to include many of the complex parameters and dependencies of
a realistic landslide into a physical model. Therefore, most workers attempt to distill the
problem to a model setup where many effects such as turbulence and sedimentation are dis-
regarded. For example, Grilli and Watts [35] study tsunami sensitivity to several landslide
parameters in the case of a landslide in a coastal area of an open ocean. In particular, de-
pendence on the landslide shape and the initial depth of the landslide location are studied,
and it is found that the landslide with the smallest length produced the largest waveheight
and run-up, and that the wave run-up at an adjacent beach is inversely proportional to
the initial depth. The work in [35] relies on integrating the full water-wave equations using
an irrotational boundary-element code, and using an open boundary with transmission
conditions [33, 32]. While most works have considered a given dynamics for the landslide,
the bottom motion in [35] is described by an ordinary differential equation similar to the
one used here. Thus the motion of the landslide is computed using a differential equation
derived from first principles using Newtonian mechanics. However to expedite comparison
with experiments, the landslide in [35] is considered moving on a straight inclined bottom
with constant slope.

More recently, Khakimzyanov and Shokina [41], and Chubarov et. al. [15] have also used
a differential equation to find the bottom motion. One major novelty in their work is that
the landslide motion is computed on a bottom with an arbitrary shape. The time-dependent
bathymetry is then used to drive a numerical solver of the shallow-water equations. An
advantage of this approach when compared to [35] is the reduced computation time. On
the other hand, the description of the wave motion in the shallow-water theory is only
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Figure 1. This figure shows the fixed bathymetry z = h0(x) and the position of
the landslide after 50 s. The position of the barycenter is indicated by
a black dot.

approximate, and in particular, one important effect of surface waves, namely the influence
of frequency dispersion is neglected.

The main aim of the current work is to study the dispersive wave generation in a closed
basin [7] using a more realistic landslide model [14] while keeping the simplicity of the
shallow-water approach. To this end, we use the so-called Peregrine system which is a
particular case of a general class of model systems which arise in the Boussinesq scaling
[12]. A common feature of all Boussinesq-type systems is that they allow a simplified study
of surface waves in which both nonlinear and dispersive effects are taken into account. In
the present case, we need to use a Boussinesq system which can handle complex and time-
dependent bottom topography. Such a system was derived by Wu [66], and can be used in
connection with the dynamic bathymetry.

We conduct two main experiments. First, a comparison with the shallow-water theory is
carried out. Second, the dependence of the tsunami characteristics on the initial depth of
the landslide is investigated. The main findings of the present work are that the predictions
of the shallow-water and Boussinesq theory are divergent for the cases treated in this paper,
and that the effect of a finite fluid domain, such as a river, lake or fjord [50] can lead to
significantly different behavior when compared to tsunamis on an open ocean (see also
[7]). The Boussinesq model in this paper is based on the assumption of an inviscid fluid,
and irrotational flow. These are standard assumptions in the study of surface waves,
and generally give good results, unless there are strong background currents in the fluid.
Another effect which is not taken account of here is the wave resistance on the landslide due
to waves created by the motion of the landslide. However, as observed in [38], this effect
is negligible for most realistic cases of underwater landslides. Viscosity is included in the
dynamic model for the landslide as will be shown in the next section. In order to capture
the effect of slide deformation during the evolution, a damping term in the equation of
motion is included to model the internal friction in the landslide mass.
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The paper is organised in the following way. In Section 2, the equation of motion for
the landslide is developed. Then in Section 3, the Boussinesq model is recalled. In Section
4, solitary-wave solutions of the Peregrine system are found numerically. In Section 5,
the numerical scheme for the Boussinesq system is explained and the numerical method is
tested using the exact solutions of Section 4. Section 6 contains results of numerical runs
for a few specific cases of bottom bathymetry, a parameter study of wave run-up in relation
to the initial depth of the landslide, and a comparison with the shallow-water theory.

2. The landslide model

In this section we briefly present a mathematical model of underwater landslide motion.
This process has to be addressed carefully since it determines the subsequent formation of
water waves at the free surface. In the present study, we will assume the movable mass to
be a solid body with a prescribed shape and known physical properties. Since the landslide
mass and volume is preserved during the evolution, it is sufficient to determine the position
of the barycenter x = xc(t) as a proxy for the motion of the whole body. As observed in
the introduction, most studies of wave generation due to underwater landslides are based
on prescribed bottom motion, or on solving the equation of motion on a uniform slope while
taking account of different types of friction and viscous terms. Examples of such works
are [16, 48, 63]. A more general approach was recently pioneered by Khakimzyanov and
Shokina in [41], where curvature effects of the bottom topography were taken into account.
Since this model is applicable to a wider range of cases, we follow the approach of [41].

The static bathymetry is prescribed by a sufficiently smooth single-valued function z =
−h0(x), and the landslide shape is initially prescribed by a localised function z = ζ0(x).
To be specific, in this study we choose the following shape function for the landslide mass:

ζ0(x) = A

{

1
2

(

1 + cos(2π(x−x0)
ℓ

)
)

, |x− x0| ≤ ℓ
2

0, |x− x0| > ℓ
2
.

(2.1)

In this formula, A is the maximum height, ℓ is the length of the slide and x0 is the initial
position of its barycenter. It is clear that the model description given below and the method
of numerical integration used in the present work is applicable to any other smooth profile,
as long as it is sufficiently localized and fully submerged.

Since the landslide motion is translational, its shape at time t is given by the function
z = ζ(x, t) = ζ0(x − xc(t)). Recall that the landslide center is located at a point with
abscissa x = xc(t). Then, the impermeable bottom for the water wave problem can be
easily determined at any time by simply superposing the static and dynamic components.
Thus the bottom boundary conditions for the fluid are to be imposed at

z = −h(x, t) = −h0(x) + ζ(x, t).

To simplify the subsequent presentation, we introduce the classical arc-length parame-
terisation, where the parameter s = s(x) is given by the formula

s = L(x) =

ˆ x

x0

√

1 + (h′

0(ξ))
2 dξ. (2.2)
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The function L(x) is monotone and can be efficiently inverted to yield the original Cartesian
abscissa x = L−1(s). Within the parameterisation (2.2), the center of the landslide is
initially located at a point with the curvilinear coordinate s = 0. The local tangential
direction is denoted by τ and the normal direction by n.

A straightforward application of Newton’s second law reveals that the landslide motion
is governed by the differential equation

m
d2s

dt2
= Fτ (t),

where m is the landslide mass and Fτ (t) is the tangential component of the sum of forces
acting on the moving submerged body. In order to project the forces onto the axes of
the local coordinate system, the angle θ(x) between τ and Ox is needed. This angle is
determined by

θ(x) = − arctan
(

h′

0(x)
)

.

Let us denote by ρw and ρℓ the densities of the water and landslide material correspond-
ingly. If V is the volume of the slide, then the total mass m is given by the expression

m :=
(

ρℓ + cwρw
)

V, (2.3)

where cw is the added mass coefficient. As explained in [6], a portion of the water mass
has to be added to the mass of the landslide since it is entrained by the underwater body
motion. For a cylinder, the coefficient cw is equal exactly to one, but in the present case, the
coefficient has to be estimated. The volume of the sliding material is given by V = W · S,
where W is the landslide width in the transverse direction, and S can be computed by

S =

ˆ

R

ζ0(x) dx.

The last integral can be computed exactly for the particular choice (2.1) of the landslide
shape to give

V =
1

2
ℓAW.

The total projected force acting on the landslide can be conventionally represented as
a sum of the force Fg representing the joint action of gravity and buoyancy, and the total
contribution of various dissipative forces.

The gravity and buoyancy forces act in opposite directions and their horizontal projection
Fg can be easily computed by

Fg(t) = (ρℓ − ρw)Wg

ˆ

R

ζ(x, t) sin
(

θ(x)
)

dx.

Now, let us specify the dissipative forces. The water resistance to the motion of the
landslide Fr due to viscous dissipation is proportional to the maximal transverse section
of the moving body and to the square of its velocity. In addition, the coefficient sign

(

ds
dt

)

is needed to dissipate the landslide kinetic energy independently of its direction of motion.
Thus the force Fr takes the form

Fr = − sign

(

ds

dt

)

1

2
cdρwAW

(ds

dt

)2

,
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Figure 2. This figure shows position and velocity of the barycenter of the land-
slide as functions of dimensional time for three different values of the
friction coefficient cf .

where cd is the resistance coefficient of the water. The friction force Ff is proportional to
the normal force exerted on the body due to the weight:

Ff = −cf sign

(

ds

dt

)

N(x, t).

The normal force N(x, t) is composed of the normal components of gravity and buoyancy
forces, but also of the centripetal force due to the variation of the bottom slope:

N(x, t) = (ρℓ − ρw)gW

ˆ

R

ζ(x, t) cos
(

θ(x)
)

dx+ ρℓW

ˆ

R

ζ(x, t)κ(x)
(ds

dt

)2

dx.

Here κ(x) is the signed curvature of the bottom which can be computed using the formula

κ(x) =
h′′

0(x)
(

1 + (h′

0(x))
2
)

3

2

.

We note that the last term vanishes for a plane bottom since κ(x) ≡ 0 in this particular
case. Energy loss inside the sliding material due to internal friction is modeled by

Fi = −cvρℓWS
ds

dt
,

where cv is an internal friction coefficient. Finally, dissipation in the boundary layer be-
tween the landslide and the solid bottom is taken account of by the term

Fb = −cbρwWℓ
ds

dt

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

,
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Figure 3. This figure shows the velocity and acceleration of the barycenter of the

landslide as a function of dimensional time. The friction coefficient
is cf = tan(3◦). The discontinuities in the acceleration are due to the

coefficient sign
(

ds
dt

)

in the definition of the friction force.

where cb is the Chézy coefficient.
Finally, if we sum up the contributions of all the forces described above, we obtain the

second order differential equation

(γ + cw)S
d2s

dt2
= (γ − 1)g

(

I1(t)− cfσ(t)I2(t)
)

− σ(t)
(

cfγI3(t) +
1

2
cdA
)(ds

dt

)2

− cvγS
ds

dt
− cbℓ

ds

dt

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

, (2.4)

where γ := ρℓ
ρw

> 1 is the ratio of densities, σ(t) := sign
(

ds
dt

)

and the integrals I1,2,3(t) are

defined by

I1(t) =

ˆ

R

ζ(x, t) sin
(

θ(x)
)

dx,

I2(t) =

ˆ

R

ζ(x, t) cos
(

θ(x)
)

dx,

I3(t) =

ˆ

R

ζ(x, t)κ(x) dx.

In order to obtain a well-posed initial value problem, equation (2.4) has to be supplemented
with initial conditions for s(0) and s′(0). In the remainder we always take homogeneous
initial conditions, and consider the motion driven only by the gravitational acceleration
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Figure 4. This figure shows position and velocity of the barycenter of the land-
slide as functions of dimensional time for three different values of the

friction coefficient cv.
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Figure 5. This figure shows position and velocity of the barycenter of the land-
slide as functions of dimensional time for three different values of the
friction coefficient cb.

of the landslide. However, different boundary conditions might also be reasonable from a
modeling point of view.
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In order to approximate solutions of equation (2.4), we employ the Bogacki-Shampine
third-order Runge-Kutta scheme. The integrals I1,2,3(t) are computed using the trapezoidal
rule, and once the landslide trajectory s = s(t) is found, we use equation (2.2) to find its
motion x = xc(t) in the initial Cartesian coordinate system. This yields the bottom motion
that drives the fluid solver.

For illustrative purposes we show a few examples of landslide trajectories over the bottom
profile depicted in Figure 1. The other parameters used in the simulations are given in
Section 6 and also in Table 2. We performed a series of simulations in order to study
the effect of various dissipative terms on the landslide trajectory. The dependence on the
friction coefficient cf is shown in Figure 2 where the landslide barycenter position xc(t)
and its velocity vc(t) are shown as functions of time for cf = tan(1◦), tan(2◦) and tan(3◦).

Ìn the case of the weak friction cf = tan(1◦), the landslide reaches a sufficient speed to
escape from the basin depicted on Figure 1. For the latter case (cf = tan(3◦)) we show

also simultaneously the landslide speed vc(t) :=
dxx

dt
and its acceleration ac(t) :=

dvc
dt

= d2xc

dt2
.

In particular, one can see that the acceleration is a discontinuous function whose jumps
correspond exactly to moments of time where the speed vc changes its sign, in accordance
with the employed model (2.4). However, in our model there are also two new dissipative
terms Fi and Fb whose importance has to be studied also. Now we fill fix the value of
cf = tan(3◦) for all subsequent experiments and we will vary two other coefficients cv
and cb for fixed other parameters given in Table 2. These numerical results are presented
in Figures 4 and 5. One can see that the influence of these parameters on the landslide
trajectory is weaker. However, we prefer to keep them in the model in order to have more
degrees of freedom for the fine tuning of the slide trajectory if it is needed.

3. The Boussinesq model

Once the motion of the landslide is determined, and therefore the time-dependent bathymetry
h(x, t) = h0(x) − ζ(x, t) is given, the next step is to consider the coupling between the
bathymetry variations and the evolution of surface waves. The main assumptions on the
fluid are that it is inviscid and incompressible, and that the flow is irrotational. Under
these assumptions, the potential-flow free surface problem governs the motion of the fluid.
However, in the present case, the fluid is shallow, and the waves at the surface are of
small amplitude when compared to the depth of the fluid. In that case, the potential-flow
problem may be simplified, and the model used in this paper is a variant of the so-called
classical Boussinesq system derived by Boussinesq [12].

Let us first consider the case of an even bottom, and a constant fluid depth d0. Denote
a typical wave amplitude by a, and a typical wavelength by λ. The parameter α = a

d0

then describes the relative amplitude of the waves, and the parameter β =
d2
0

λ2 measures
the ’shallowness’ of the fluid in comparison to the wavelength. In the case when both α
and β are small and approximately of the same order of magnitude, the system

ηt + d0ux + (ηu)x = 0,

ut + gηx + uux −
d20
3
uxxt = 0

(3.1)
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may be used as an approximate model for the description of the evolution of the surface
waves and the fluid flow. In (3.1), η denotes the deflection of the free surface from its rest

position, and u denotes the horizontal fluid velocity at a height z = d0(−1+
√

1/3) in the
fluid column if z is measured from the rest position of the free surface. The same equation
appears if the velocity is taken to be the average of the horizontal velocity over the flow
depth.

The system (3.1) was first derived by Peregrine in [49], and falls into a general class of
Boussinesq systems, as shown in the systematic studies [11, 44]. As opposed to the shallow-
water approximation, the pressure is not assumed to be hydrostatic, and the horizontal
velocity varies with depth. In fact, the horizontal velocity profile is a quadratic function
of z [65]. Non-hysrostatic effects lead the appearance of linear dispersive terms in the
governing equations. The problem of landslide generated waves has been addressed in
the fully nonlinear shallow water framework [64, 14, 55, 8]. Nevertheless, several authors
obtained recently interesting results even in the linear [52, 53] or nonlinear [26, 17, 7]
hydrostatic models.

The derivation of (3.1) given in [49] also featured and extension to non-constant but
time-independent bathymetry. However, the present case of a dynamic bottom profile calls
for a system which allows for time-dependent bathymetry, and such a system was derived
in [66]. Given a bottom topography described by z = −h(x, t), the system takes the form

ηt +
(

(h + η)u
)

x
+ ht = 0,

ut + gηx + uux =
1

2
h
(

ht + (hu)x
)

xt
− h2

6
uxxt.

(3.2)

In order for this system to be asymptotically valid, we need α ∼ β as before. Moreover,
concerning the unsteady bottom profile, we make the assumptions that hx ≤ O(αβ1/2),
and ht ≤ O(αβ1/2).

In comparison to the shallow-water equations with a time-dependent bottom topography,
the system (3.2) has additional terms on the right-hand side of the second equation. The
effect of these terms is to incorporate frequency dispersion into the model. One practical
aspect of this modification is that wave breaking can be completely avoided as long as
the amplitude of the waves is small enough. Wave breaking is also possible in evolution
systems of Boussinesq type [9], but the amplitudes occurring in the present problem are far
from the breaking limit. The phase speed of a small-amplitude linear wave of wavelength
2π/k in the equation (3.2) with a stationary even bottom has the form

c2 =
gd0

1 +
d2
0

3
k2

,

while the phase speed is given by

c2 = gd0
tanh(kd0)

kd0

in the linearized full water wave problem. Thus one might argue that the dispersion in (3.2)
is too strong in comparison with dispersion in realistic water waves. However, as discussed
in [9], the linear dispersion relation of (3.2) is still closer to the dispersion relation of the
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original water-wave problem than most other standard Boussinesq equations which feature
even faster decay of the phase speed with increasing k.

4. Solitary waves

Before the numerical method for approximating solutions of (3.2) is presented, we digress
for a moment, and explain how to find numerically exact solutions of the system (3.1).
These solutions will later be used to test the implementation of the numerical procedure.
Assuming the special form

η(x, t) = η(ξ), u(x, t) = u(ξ), ξ := x− cst,

and substituting this representation into the governing equations (3.1), there appears

−csη
′ +
(

(d+ η)u
)′

= 0,

−csu
′ +

1

2
(u2)′ + gη′ + cs

d2

3
u′′′ = 0.

Assuming decay of both η and u to zero as |x| → ∞, the integration of the mass conserva-
tion equation from −∞ to ξ gives the following relation between η and u:

u =
csη

d+ η
, η =

d · u
cs − u

. (4.1)

The momentum balance equation can now be integrated to yield

− cs

(

u− d2

3
u′′

)

+
1

2
u2 + gη = 0. (4.2)
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Figure 6. This figure shows the comparison of the numerical approximation of
solitary wave solutions of (3.1) to Grimshaw’s third-order asymptotic

approximation of solitary waves using the Euler equations for the full
water wave problem. The left panel shows the surface elevation, and
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√

1/3).
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Finally, in order to obtain a closed form equation in terms of the velocity u, we substitute
the expression (4.1) for η into (4.2). The resulting differential equation can be written in
operator notation as

Lu = N(u),

where the linear operator L and the nonlinear operator N, are defined respectively by

Lu := cs

(

u− d2

3
u′′

)

, and N(u) :=
1

2
u2 +

gdu

cs − u
.

While nothing formal appears to be known about existence of localised solutions of (4.1),
(4.2), it is straightforward to compute approximations of solitary waves numerically. In
particular, one may use the well known Petviashvili iteration method which takes the form

un+1 = L
−1

·N(un) ·

(

(un,N(un))

(un,Lun)

)−q

. (4.3)

The exponent q is usually defined as a function of the degree p of the nonlinearity, with
the rule of thumb that the expression q := p

p−1
generally works well. In our case, the

nonlinearities are quadratic, so that we choose p = 2, and hence q = 1.
The Petviashvili method was analyzed in [47], and can be very efficiently implemented

using the Fast Fourier Transform [27]. The iteration can be started for instance with the
third-order asymptotic solution of Grimshaw [36]. The iterative procedure is continued
until the L∞ norm between two successive iteration is on the order of machine precision.
Figure 6 shows approximate solitary-wave solutions of (3.1) with various wave speeds, and
compares them to the third-order asymptotic approximation of solitary-wave solutions of
the full water-wave problem obtained by Grimshaw [36]. The left panel shows comparisons
of the free-surface excursion, while the right panel shows a comparison of the horizontal
component of the velocity field, evaluated at the non-dimensional height z̃ given by z̃ =
−1 +

√

1/3. Figure 7 shows a comparison of the wavespeed-amplitude relation between
the solitary-wave approximation of (3.1) and the ninth-order asymptotic approximation to
the full water-wave problem obtained by Fenton [25].
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Figure 7. This figure shows the amplitude-speed relation of solitary wave solu-
tions of (3.1) and of Fenton’s ninth-order asymptotic approximation
of solitary waves using the Euler equations for the full water wave

problem.

5. The numerical scheme

For the numerical discretisation, a finite-volume discretisation procedure similar to the
one used in [4, 5] is employed. Let us take as a unit of length the undisturbed depth d0 of

the fluid above the barycenter of the landslide, and as a unit of time the ratio
√

d0
g
. Then

the Peregrine system (3.2) is rewritten in terms of the total water depth H as

Ht + [Hu]x = 0, (5.1)

ut +
[

1
2
u2 + (H − h)

]

x
=

1

2
hhxtt +

1

2
h(hu)xxt −

1

6
h2uxxt, (5.2)

The system (5.1), (5.2) can be formally rewritten in the form

Vt + [F(V) ]x = Sb + M(V), (5.3)

where the density V and the advective flux F(V) are defined by

V ≡
(

H
u

)

, F(V) ≡
(

H u
1
2
u2 + (H − h)

)

.

The source term is defined by

Sb ≡
(

0
1
2
hhxtt

)

,
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and the dispersive term is defined by

M(V) ≡
(

0
1
2
h(hu)xxt − 1

6
h2uxxt

)

.

We begin our presentation by a discretisation of the hyperbolic part of (5.1), (5.2), which is
the classical nonlinear shallow-water system, and then discuss the treatment of dispersive
terms. The Jacobian of the advective flux F(V) is easily computed to be

A(V) =
∂ F(V)

∂V
=

(

u H
1 u

)

,

and it is clear that A(V) has the two distinct eigenvalues

λ± = u ± cs, cs ≡
√
H.

The corresponding right and left eigenvectors are the columns of the matrices

R =

(

H −H
cs cs

)

, L = R−1 =
1

2

(

H−1 c−1
s

−H−1 c−1
s

)

.

We consider a partition of the real line R into cells (or finite volumes) Ci = [xi− 1

2

, xi+ 1

2

]

with cell centers xi =
1
2
(xi− 1

2

+ xi+ 1

2

) (i ∈ Z). Let ∆xi denote the length of the cell Ci. In

the sequel we will consider only uniform partitions with ∆xi = ∆x, ∀i ∈ Z. We would like
to approximate the solution V(x, t) by discrete values. In order to do so, we introduce the
cell average of V on the cell Ci (denoted with an overbar), i.e.,

V̄i(t) ≡
(

H̄ i(t) , ūi(t)
)

=
1

∆x

ˆ

Ci

V(x, t) dx.

A simple integration of (5.3) over the cell Ci leads to the exact relation

dV̄

dt
+

1

∆x

[

F(V(xi+ 1

2

, t)) − F(V(xi− 1

2

, t))
]

=
1

∆x

ˆ

Ci

Sb(V) dx ≡ S̄i.

Since the discrete solution is discontinuous at cell interfaces xi+ 1

2

(i ∈ Z), we replace the

flux at the cell faces by the so-called numerical flux function

F(V(xi± 1

2

, t)) ≈ Fi± 1

2

(V̄L
i± 1

2

, V̄R
i± 1

2

),

where V̄L,R

i± 1

2

denotes the reconstructions of the conservative variables V̄ from left and right

sides of each cell interface (the reconstruction procedure employed in the present study
will be described below). Consequently, the semi-discrete scheme takes the form

dV̄i

dt
+

1

∆x

[

Fi+ 1

2

− Fi− 1

2

]

= S̄i. (5.4)

In order to discretise the advective flux F(V), we follow the method of [30, 31] and use
the following FVCF scheme

F(V,W) =
F(V) + F(W)

2
− U(V,W) ·

F(W) − F(V)

2
.
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The first part of the numerical flux is centered, the second part is the upwinding introduced
through the Jacobian sign-matrix U(V,W) defined by

U(V,W) = sign
[

A(1
2
(V +W))

]

, sign(A) = R · diag(s+, s−) · L,

where s± ≡ sign(λ±). After some simple algebraic computations, one can find

U =
1

2

(

s+ + s− (H/cs) (s
+ − s−)

(cs/H) (s+ − s−) s+ + s−

)

,

the sign-matrix U being evaluated at the average state of left and right values.
Finally the source term Sb(x, t) = (0, 1

2
hhxtt), which is due to the moving bottom, is

discretised by evaluating the bathymetry function and its derivatives at cell centers:

1

∆x

ˆ

Ci

Sb(x, t) dx ≈
(

0, 1
2
h(xi, t) hxtt(xi, t)

)

.

Recall that the bathymetry is composed of the static part and of the landslide subject to
a translational motion:

h(x, t) = h0(x)− ζ(x, t) = h0(x)− ζ0
(

x− xc(t)
)

.

The derivative hxtt can be readily obtained from the formula

hxtt(x, t) =
d2xc

dt2
d2ζ0
dx2

(x− xc(t))−
(dxc

dt

)2d3ζ0
dx3

(x− xc(t)).

5.1. High-order reconstruction

In order to obtain a higher-order scheme in space, we need to replace the piecewise
constant data by a piecewise polynomial representation. This goal is achieved by various
so-called reconstruction procedures such as MUSCL TVD [42, 61, 62], UNO [40], ENO [39],
WENO [67] and many others. In recent studies on unidirectional wave models [23] and on
Boussinesq-type equations [22], the UNO2 scheme showed a good performance with small
dissipation in realistic propagation and run-up simulations. Consequently, we retain this
scheme for the discretisation of the advective flux of the Peregrine system (5.1), (5.2).

The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic
interpolant Q(x) to a piecewise smooth function V(x) (see [40] for more details). On each
segment containing the face xi+ 1

2

∈ [xi, xi+1], the function Q(x) = qi+ 1

2

(x) is locally a

quadratic polynomial and wherever v(x) is smooth we have

Q(x) − V(x) = 0 + O(∆x3),
dQ

dx
(x± 0) − dV

dx
= 0 + O(∆x2).

Also, Q(x) should be non-oscillatory in the sense that the number of its local extrema does
not exceed that of V(x). Since qi+ 1

2

(xi) = V̄i and qi+ 1

2

(xi+1) = V̄i+1, it can be written in

the form

qi+ 1

2

(x) = V̄i + di+ 1

2

{V} × x− xi

∆x
+ 1

2
Di+ 1

2

{V} × (x− xi)(x− xi+1)

∆x2
,

where di+ 1

2

{V} ≡ V̄i+1−V̄i and Di+ 1

2

V is closely related to the second derivative of the in-

terpolant since Di+ 1

2

{V} = ∆x2 q′′

i+ 1

2

(x). The polynomial qi+ 1

2

(x) is chosen to be the least
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oscillatory between two candidates interpolating V(x) at (xi−1, xi, xi+1) and (xi, xi+1, xi+2).
This requirement leads to the following choice of Di+ 1

2

{V} ≡ minmod
(

Di{V},Di+1{V}
)

with

Di{V} = V̄i+1 − 2 V̄i + V̄i−1, Di+1{V} = V̄i+2 − 2 V̄i+1 + V̄i,

and where minmod(x, y) is the usual minmod function defined as

minmod(x, y) ≡ 1
2
[ sign(x) + sign(y) ]×min(|x|, |y|).

To achieve the second order O(∆x2) accuracy, it is sufficient to consider piecewise linear
reconstructions in each cell. Let L(x) denote this approximately reconstructed function
which can be written in this form

L(x) = V̄i + Si ·
x− xi

∆x
, x ∈ [xi− 1

2

, xi+ 1

2

].

In order to L(x) be a non-oscillatory approximation, we use the parabolic interpolation
Q(x) constructed below to estimate the slopes Si within each cell

Si = ∆x×minmod
(dQ

dx
(xi − 0),

dQ

dx
(xi + 0)

)

.

In other words, the solution is reconstructed on the cells while the solution gradient is
estimated on the dual mesh as it is often performed in more modern schemes [4, 5]. A brief
summary of the UNO2 reconstruction can be also found in [22, 23].

5.2. Treatment of the dispersive terms

In this section, we explain how we treat numerically the dispersive terms of the Peregrine
system (5.1), (5.2) which are present only in the momentum conservation equation (5.2).
We propose the following approximation for the second component of M(V̄) of M(V̄):

Mi(V̄) =
1

2
h̄i
h̄i+1(ūt)i+1 − 2h̄i(ūt)i + h̄i−1(ūt)i−1

∆x2
− 1

6
h̄2
i

(ūt)i+1 − 2(ūt)i + (ūt)i−1

∆x2

=
h̄i

2∆x2

(

h̄i−1 −
1

3
h̄i

)

(ūt)i−1 −
2

3∆x2
h̄2
i (ūt)i +

h̄i

2∆x2

(

h̄i+1 −
1

3
h̄i

)

(ūt)i+1.

Note that this spatial discretisation is of the second order O(∆x2) so as to be consistent
with the UNO2 advective flux discretisation presented above. If we denote by I the identity
matrix, we can now rewrite the semi-discrete scheme in the form

dH̄

dt
+

1

∆x

[

F
(1)
+ (V̄) − F

(1)
− (V̄)

]

= 0,

(I −M) · dū
dt

+
1

∆x

[

F
(2)
+ (V̄) − F

(2)
− (V̄)

]

= S
(2)
b ,

where F
(1,2)
± (V̄) are the two components of the advective numerical flux vector F at the

right (+) and left (−) faces correspondingly, and S
(2)
b denotes the discretisation of the

second component of Sb.
In order to advance the numerical solution forward in time one has to invert the matrix

(I − M) at every time step. This is no problem in practice, since the matrix appears to
be well conditioned in all cases we have considered. In fact, the invertibility of the matrix
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(I − M) can be rigorously shown to hold for small enough ∆x since the matrix is then
diagonally dominant. The criterion for diagonal dominance in the present case is seen to
be

1 +
2

3∆x2
h̄2
i >

∣

∣

∣

∣

−1

6

h̄2
i

∆x2
+

h̄i

2∆x2
h̄i−1

∣

∣

∣

∣

+

∣

∣

∣

∣

−1

6

h̄2
i

∆x2
+

h̄i

2∆x2
h̄i+1

∣

∣

∣

∣

.

Using a Taylor expansion to express the terms h̄i−1 and h̄i+1 as h̄i−1 = h̄i − ∆xh̄′(xi) +
O(∆x2) and h̄i+1 = h̄i +∆xh̄′(xi) + O(∆x2) , respectively, the criterion reduces to

1 +
1

3∆x2
h̄2
i >

h̄ih̄
′

i

∆x
+ O(1),

and this is guaranteed to hold for small enough ∆x.

5.3. Time stepping

We assume that the linear system of equations is already inverted and we have the
following system of ODEs:

Vt = N(V, t), V(0) = V0.

In order to solve numerically the last system of equations, we apply the Bogacki-Shampine
method proposed by Przemyslaw Bogacki and Lawrence F. Shampine in 1989 [10]. It is a
Runge-Kutta scheme of the third order with four stages. It has an embedded second order
method which is used to estimate the local error and thus, to adapt the time step size.
Moreover, the Bogacki-Shampine method enjoys the First Same As Last (FSAL) property
so that it needs approximately three function evaluations per step. This method is also
implemented in the ode23 function in Matlab [54]. The one step of the Bogacki-Shampine
method is given by:

k1 = N(V(n), tn),

k2 = N(V(n) + 1
2
∆tnk1, tn +

1
2
∆t),

k3 = N(V(n)) + 3
4
∆tnk2, tn +

3
4
∆t),

V(n+1) = V(n) +∆tn
(

2
9
k1 +

1
3
k2 +

4
9
k3
)

,

k4 = N(V(n+1), tn +∆tn),

V
(n+1)
2 = V(n) +∆tn

(

4
24
k1 +

1
4
k2 +

1
3
k3 +

1
8
k4
)

.

Here V(n) ≈ V(tn), ∆t is the time step and V
(n+1)
2 is a second order approximation to the

solution V(tn+1), so the difference between V(n+1) and V
(n+1)
2 gives an estimation of the

local error. The FSAL property consists in the fact that k4 is equal to k1 in the next time
step, thus saving one function evaluation.

If the new time step ∆tn+1 is given by ∆tn+1 = ρn∆tn, then according to the H211b
digital filter approach [56, 57], the proportionality factor ρn is given by

ρn =
( δ

ǫn

)β1
( δ

ǫn−1

)β2

ρ−α
n−1, (5.5)
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Figure 8. This figure shows the convergence rate of the finite-volume scheme in
the L∞-norm (left panel) and the L2-norm (right panel). The numer-

ical integration of a solitary wave as shown in Figure 6 is compared
to a translated profile. It appears that the second-order convergence
is achieved.

where ǫn is a local error estimation at time step tn, and the constants β1, β2 and α are
defined by

α =
1

4
, β1 =

1

4p
, β2 =

1

4p
.

The parameter p gives the order of the scheme, and p = 3 in our case.

Remark 1. The adaptive strategy (5.5) can be further improved if we smooth the factor

ρn before computing the next time step ∆tn+1:

∆tn+1 = ρ̂n∆tn, ρ̂n = ω(ρn).

The function ω(ρ) is called the time step limiter and should be smooth, monotonically

increasing and should satisfy the following conditions:

ω(0) < 1, ω(+∞) > 1, ω(1) = 1, ω′(1) = 1.

One possible choice was suggested in [57]:

ω(ρ) = 1 + κ arctan
(ρ− 1

κ

)

.

In our computations the parameter κ is set to 1.

5.4. Validation

The scheme described in this section is implemented in MATLAB, and runs on a work-
station. To check whether the implementation is correct, we use the approximate solitary
waves of (3.1), computed in the last section. These are used as initial data in the fully
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discrete scheme, and integrated forward in time. The computed solutions are then com-
pared to the same solitary waves, but shifted forward in space by ct0, where c is the wave
speed, and t0 is the final time. This procedure is repeated a number of times with differ-
ent spatial gridsizes. As a result, it is possible to find the spatial convergence rate of the
scheme. As is visible in Figure 8, the convergence achieved by the practical implementation
of the discretisation is very close to the theoretical convergence rate. Since the temporal
discretisation is adaptive, we do not present a convergence study in terms of the timestep
∆t.

5.4.1. Wave generation by moving bottom

We have just shown the convergence of our scheme under the mesh refinement. Even
if the solution we used in validation is fully nonlinear, it only exists on the flat bottom.
Since in the present study we are mainly interested in the wave generation by bottom
motion, the next validation test will be entirely devoted to this question. Namely, we are
going to use an analytical solution to the linearized full Euler equations also known as the
Cauchy–Poisson problem. The use of this solution in tsunami generation problems was
first proposed by J. Hammack (1973) [37].

We consider the linearized water wave problem for a fluid layer of uniform depth z =
−d0 = const. However, a portion of the bottom can move vertically and its deformation
is given by a smooth function ζ(x, t) such that ζ(x, 0) ≡ 0 at time t the bottom profile
is given by z = −d0 + ζ(x, t). Moreover, we will make a special assumption about the
structure of the bottom deformation:

ζ(x, t) = T (t)ζ0(x), T (t) := 1− e−αt, α > 0, t ≥ 0.

Obviously, we have to assume that ||ζ0|| ≪ 1 so that the linear approximation be valid.
Then, the free surface elevation at any time is given by the following formula [37, 20]:

η(x, t) = −α2

2π

ˆ

R

ζ̂0(k)

cosh(kd0)
· e

−αt − cos(ωt)− ω
α
sin(ωt)

α2 + ω2
· e−ikx dk, (5.6)

where ζ̂0(k) is the Fourier transform of ζ0(x) and ω :=
√

gk tanh(kd0) is the wave frequency
corresponding to the wavenumber k. The above integral can be easily computed using the
FFT algorithm. To fix the ideas for numerical computations, we will take the following
localized oscillatory bottom deformation:

ζ0(x) = a cos(k0x)e
−λ0x2

, λ0 > 0.

The values of all parameters used in numerical simulation are given in Table 1. The
nonlinearity parameter a/d0 is chosen to be 0.05, which is far above the nonlinearity of
the earthquake generated tsunamis. However, we think that this value corresponds better
to the scope of the present study. In order to simulate this set-up using the Peregrine
system, we consider a symmetric 1D computational domain [−220, 220] discretized into
N = 2000 equal control volumes. The time stepping tolerance parameter was set far below
the spatial discretization error (∼ O(∆x2)). First, we will take a moderately fast bottom
uplift corresponding to the parameter α = 1.0. Computational results are presented in
Figures 9(a–e). One can see that the overall agreement is fairly good even if some small
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Gravity acceleration: g 1.0
Undisturbed water depth: d0 1.0
Bottom displacement amplitude: a 0.05
Bottom oscillation inverse length: k0

π
40

Bottom localization parameter: λ0 0.7× 10−3

Vertical uplift speed: α 1.0 and 2.0

Table 1. Values of various parameters used to simulate the wave generation by
moving bottom.

differences can be noticed on Figures 9(c-d). However, the resulting wave form predicted
by the Peregrine system follows closely the linearized full Euler solution (5.6). Now, we
will double the bottom uplift speed (α = 2.0). This result is presented in Figures 10(a–e).
One can see more substantial differences during the generation phase (see panels b–d).
However, here again the resulting wave is surprisingly well represented by the Boussinesq-
type equations. The observed discrepancies during the generation phase are essentially due
to the simplified structure of the vertical speed in Boussinesq-type equations [24].
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Figure 9. Free surface waves generated by a moderately fast bottom motion. The
blue dashed line corresponds to the analytical Cauchy–Poisson solu-

tion, while the solid black line is our numerical solution to the Pere-
grine system.
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Figure 10. Free surface waves generated by a fast bottom motion. The blue
dashed line corresponds to the analytical Cauchy–Poisson solution,

while the solid black line is our numerical solution to the Peregrine
system.
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6. Numerical results and discussion

Let us consider a one-dimensional computational domain I = [a, b] = [0, 220] composed
of two regions: the generation region and a sloping beach on the right. More specifically,
the static bathymetry function h0(x) is given by a smoothed out profile generated from
the expression

h0(x) =

{

d0 + tan δ · (x− a) + p(x), a ≤ x ≤ m,
d0 + tan δ · (m− a)− tan δ · (x−m), x > m,

where the function p(x) is defined as

p(x) = A1sech (k1(x− x1)) + A2sech (k2(x− x2)),

In essence, this function represents a perturbation of the sloping bottom by two underwater
bumps. We made this nontrivial choice in order to illustrate the advantages of our landslide
model, which was designed to handle general non-flat bathymetries. The parameters can be
chosen in order to fit a given bathymetry, but the particular values used here are A1 = 4.75,
A2 = 8.85, k1 = 0.06, k2 = 0.13, x1 = 45, x2 = 80, and m = 120. The bottom profile for
these parameters is depicted in Figure 11. Of course, in general, if the bottom topography
is known, then a numerical bathymetry map could also be used.

We now present some results of the solution of the surface wave problem using the
model in Section 3, integrated numerically with the method of Section 5. A landslide is
introduced on the left side of the bathymetry, and using the method of Section 2, its path
along the bottom is determined by following the barycenter. Simultaneously, the system
(3.2) is solved with the time-dependent bottom topography given from the solution of the
landslide problem. The problem is integrated up to a final time T . Figure 12 shows wave
records at six virtual wave gauges for both the dispersive system (3.2) and the shallow-
water system. It appears from this figure that the shallow-water system underpredicts
the development of free-surface oscillations. In particular, the wave gauges located at

Symbol Parameter Units Values

g gravitational acceleration m/s2 9.81
d0 water depth at x = a m 1.0− 2.0

tan(δ) bottom slope 0.1
A landslide amplitude m 0.55
l landslide length m 52.4
cw added mass coefficient 1.0
cd water drag coefficient 1.0
cf friction coefficient tan(3◦)
γ density ratio water/landslide 1.8
cb friction coefficient with bottom 7.63× 10−4

cv viscous friction coefficient 1.27× 10−3

Table 2. Values of various parameters used in numerical computations.
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Figure 11. This figure shows the physical setup of the problem. The river bed

is indicated in dark grey. The computational fluid domain is shaded
light grey, and the landslide is visible in black. Note the difference in
horizontal and vertical scales in the left panel. The right panel shows

a closeup of the left beach and part of the landslide in a one-to-one
aspect ratio.

x = 40 and x = 60 show similar waveheights for both the shallow-water, and the dispersive
system, but a qualitative divergence, as small oscillations are already developing which are
not captured by the shallow-water system. Once the waves have propagated to the wave
gauges located at x = 80, the dispersive oscillations have amplified, so that the waveheight
is larger by a factor of 2 to 3 than the waveheight predicted by the shallow-water system.
Going further to the wave gauges located at x = 100 and x = 120, the now rising bottom
starts to have a damping effect on the waves.

The maximum and minimum free surface elevation over the whole domain is shown in
Figure 13. On the lower panel of the same Figure 13 we show the maximal unsigned
horizontal velocity. One can see that for short times the hydrostatic and dispersive models
give very close extreme values. Later the differences start to appear due to the accumulation
of dispersive effects.

Figure 14 shows the development of the kinetic energy of the landslide mass and simulta-
neously the total (kinetic plus potential) energy contained in the body of the fluid and the
surface waves. Energy development is an important question in the study of tsunamis, and
there have been studies exclusively devoted to this question [59]. Energy issues connected
to water wave models of Boussinesq type have also been studied before [1, 2, 19]. While
these models contained a source of energy, in the case at hand, the work done by friction
as the landslide slides down the bottom acts as a drain of energy, and after the landslide
has come to rest, all energy has been transferred to the fluid. However, not all energy can
be considered as residing in the wave motion, because a significant amount of energy is
needed to lift the water from the final position of the landslide to the initial position of
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Figure 12. This figure shows time series of the surface elevation at wave gauges
located at x = 40, x = 60, x = 80, x = 100 and x = 120. The solid

(blue) curve depicts the wave elevation computed with the dispersive
system (3.2), and the dashed curve represents results obtained from
the shallow-water system. All variables are non-dimensional.
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Figure 13. Maximum and minimum of the surface excursion, and the horizontal
velocity as a function of (non-dimensional) time.
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Figure 14. This figure shows the development of the wave energy, and the ki-
netic energy of the landslide as a function of (non-dimensional) time.
Note that the kinetic energy of the landslide starts from 0 (all en-

ergy is potential) and also ends at 0 (all energy has been dissipated
or transferred to the fluid).

the landslide. This results in a large increase in potential energy of the fluid, and only a
fraction of the potential energy of the landslide is transferred to the wave motion. This
fact has also been explained in previous works [38].

In order to compute the wave energy in the fluid, we use the integral

Ew =

ˆ b

a

{g

2
η2 + 1

2
(h0 + η)u2

}

dx, (6.1)

which arises from the shallow-water theory. The kinetic energy of the landslide is given by

Esl =
1
2
mv2, (6.2)

with the generalised mass m given by (2.3), and v = ds
dt

as defined in Section 2. Figure 14
shows the development of the wave energy and kinetic energy of the landslide. The upper
panel shows the energy according to the shallow-water and dispersive model. The lower
panel shows the kinetic energy of the landslide.

We have also computed the Froude number Fr = v√
gh(xc)

during the evolution. Here

v is the x-component of the velocity of the barycenter of the landslide, xc is the position
of the barycenter, and h(xc) is the corresponding local water depth. This number was
always found to be much less than 1 in all numerical experiments. The maximum value
was generally about 0.5.

To compute the wave run-up and draw-down, we use exact representations given by Choi
et al. [13] (a similar formula was also derived in [18]). On the right beach, the undisturbed
water depth at the edge of the computational domain is h = 3, and the distance from the
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Figure 15. This figure shows the run-up on the left and right beach using (6.4),

computed with the dispersive system (solid curve) and the nonlin-
ear shallow-water system (dashed curve) as a function of (non-
dimensional) time.

computational domain to the shore line is L = 30. Using the shallow-water wave speed, the
travel time of a wave from the edge of the computational domain to the shore is computed
as

T =
2L√
gh

= 2

√

L

gα
. (6.3)

Then the formula for the wave run-up R at the shore reads

R =

ˆ t−T

0

t− τ

(t− τ)2 − T 2
· dη
dτ

(x, τ) dτ (6.4)

with x = 220. At the left beach, the undisturbed water depth is h = 1.642, and the distance
to the beach is L = 11.2814. A similar formula can be then be computed for x = 0.

Figure 15 shows the run-up on the left and right beaches both in the Boussinesq scaling
and in the shallow-water theory. While the agreement is fair on the left beach, it appears
immediately that the Boussinesq theory predicts a wave run-up on the right beach which
is much larger (roughly by a factor of two) than the wave run-up according to the shallow-
water theory. A possible explanation for this divergence is the nature of the numerical
solver when applied to the shallow-water system. In this case, there is continuous numerical
dissipation through the handling of hyperbolic wave breaking. Since the waves do not break
in the Boussinesq scaling, the dissipation is not present, or at least much smaller. The
difference can also be read off from the comparison of the wave energy in the Boussinesq
and shallow-water system provided in Figure 14. It can be seen there that the wave
energy in the shallow-water model starts to diverge from the Boussinesq model at non-
dimensional time t = 50. The difference between the two increases continuously, until at
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Figure 16. This figure shows the maximal and minimal wave amplitude, and the
maximum run-up on the left and right beaches as a function of the
initial depth of the center of the landslide d0.

the final time, the Boussinesq energy is about 50% larger than the shallow-water energy.
Note that significant run-up in Figure 15 does not happen until non-dimensional time
t = 75, at which time the energy in the Boussinesq system is already much larger than in
the shallow-water system.

In Figure 16, we have plotted the maximum wave amplitude, the minimum wave am-
plitude, and the maximum wave run-up on the left and right beaches. In comparison to
previous studies, such as [35], where an open domain was used, it appears that in our case,
the maximal amplitude, as well as the run-up have a minimum at d0 between 1 and 1.5.
In [35], it was found that maximum wave amplitude and run-up (on the left beach) were
strictly decreasing functions of d0. The phenomenon of rising amplitude and run-up may
be accredited to resonant effects which are absent on an open domain (such as an ocean
beach), but cannot be neglected for tsunamis generated by landslides in rivers and lakes.

7. Conclusion

The influence of an underwater landslide on surface waves in a closed basin have been
studied. The key features of the study have been that the motion of the underwater
landslide have been determined by integrating a second-order ordinary differential equation
derived from first principles of Newtonian mechanics, and that the wave motion has been
studied in the Boussinesq scaling which allows for both nonlinear and dispersive effects.
The dynamics of the motion of the bottom have been developed following recent work in
[41]. The Boussinesq model which has been utilised here allows for a dynamic bathymetry,
and was derived in [66]. The numerical method used in this paper is an extension of the
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method put forward in [4, 5]. The results presented in Section 6 clearly show that dispersion
may have a strong effect on the run-up and draw-down at the beaches. Of course, this
difference could be more or less pronounced depending on the particular case under study.
For example, the divergence between the shallow-water theory and the dispersive model
is stronger at the right beach than at the left beach. The results also show that a finite
domain exhibits different behavior than a half-open domain (such as used in [35]) with
respect to the dependence of the wave run-up on the initial depth of the landslide. While
the run-up is a strictly decreasing function of the initial depth in an open domain, a closed
domain appears to exhibit resonant effects, which make the dependence more complex.
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2011-AdG 290562-MULTIWAVE is also gratefully acknowledged.

H. Kalisch acknowledges support of the Research Council of Norway through grant no.
NFR 213474/F20.

References

[1] A. Ali and H. Kalisch. Energy balance for undular bores. Comptes Rendus Mecanique, 338:67–70,

2010. 24

[2] A. Ali and H. Kalisch. Mechanical balance laws for Boussinesq models of surface water waves. J.

Nonlinear Sci., 22:371–398, (2012). 24

[3] J.-P. Bardet, C. E. Synolakis, H. L. Davies, F. Imamura, and E. A. Okal. Landslide Tsunamis: Recent

Findings and Research Directions. Pure and Applied Geophysics, 160:1793–1809, 2003. 2

[4] T. J. Barth. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes

equations. Lecture series - van Karman Institute for Fluid Dynamics, 5:1–140, 1994. 13, 16, 29

[5] T. J. Barth and M. Ohlberger. Encyclopedia of Computational Mechanics, Volume 1, Fundamentals,

chapter Finite Vol. John Wiley and Sons, Ltd, 2004. 13, 16, 29

[6] G. K. Batchelor. An introduction to fluid dynamics, volume 61 of Cambridge mathematical library.

Cambridge University Press, 2000. 5

[7] S. A. Beisel, L. B. Chubarov, D. Dutykh, G. Khakimzyanov and N. Shokina. Simulation of surface

waves generated by an underwater landslide in a bounded reservoir. Russ. J. Numer. Anal. Math.

Modelling, 27(6):539–558, 2012. 3, 10

[8] S. A. Beisel, D G. Khakimzyanov and L. B. Chubarov. Surface wave modeling generated by an

underwater landslide moving along a nonuniform slope. Computational Technologies, 15(3):39–51,

2010. 10

[9] M. Bjørkav̊ag and H. Kalisch. Wave breaking in Boussinesq models for undular bores. Physics Letters

A, 375:1570–1578, 2011. 10

[10] P. Bogacki and L. F. Shampine. A 3(2) pair of Runge-Kutta formulas. Applied Mathematics Letters,

2(4):321–325, 1989. 17

[11] J. L. Bona, M. Chen, and J.-C. Saut. Boussinesq equations and other systems for small-amplitude long

waves in nonlinear dispersive media. I: Derivation and linear theory. Journal of Nonlinear Science,

12:283–318, 2002. 10



D. Dutykh & H. Kalisch 30 / 32
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