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We characterize the asymptotic independence between blocks consisting of multiple Wiener-Itô integrals. As a consequence of this characterization, we derive the celebrated fourth moment theorem of Nualart and Peccati, its multidimensional extension, and other related results on the multivariate convergence of multiple Wiener-Itô integrals, that involve Gaussian and non Gaussian limits. We give applications to the study of the asymptotic behavior of functions of short and long range dependent stationary Gaussian time series and establish the asymptotic independence for discrete non-Gaussian chaoses.

Introduction

Let B = (B t ) t∈R + be a standard one-dimensional Brownian motion, q 1 be an integer, and let f be a symmetric element of L 2 (R q + ). Denote by I q (f ) the q-tuple Wiener-Itô integral of f with respect to B. It is well known that multiple Wiener-Itô integrals of different orders are uncorrelated but not necessarily independent. In an important paper [START_REF] Üstünel | On independence and conditioning on Wiener space[END_REF], Üstünel and Zakai gave the following characterization of the independence of multiple Wiener-Itô integrals.

Theorem 1.1 (Üstünel-Zakai). Let p, q 1 be integers and let f ∈ L 2 (R p + ) and g ∈ L 2 (R q + ) be symmetric. Then, random variables I p (f ) and I q (g) are independent if and only if R p+q-2 + R + f (x 1 , . . . , x p-1 , u)g(x p+1 , . . . , x p+q-2 , u) du 2 dx 1 . . . dx p+q-2 = 0.

(1.1)

Rosiński and Samorodnitsky [START_REF] Rosiński | Product formula, tails and independence of multiple stable integrals[END_REF] observed that multiple Wiener-Itô integrals are independent if and only if their squares are uncorrelated:

I p (f ) ⊥ ⊥ I q (g) ⇐⇒ Cov(I p (f ) 2 , I q (g) 2 ) = 0. (1.2) 
This condition can be viewed as a generalization of the usual covariance criterion for the independence of jointly Gaussian random variables (the case of p = q = 1).

In the seminal paper [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], Nualart and Peccati discovered the following surprising central limit theorem. Theorem 1.2 (Nualart-Peccati). Let F n = I q (f n ), where q 2 is fixed and f n ∈ L 2 (R q + ) are symmetric. Assume also that E[F 2 n ] = 1 for all n. Then convergence in distribution of (F n ) to the standard normal law is equivalent to convergence of the fourth moment. That is, as n → ∞,

F n law → N(0, 1) ⇐⇒ E[F 4 n ] → 3. (1.3) 
Shortly afterwards, Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF] established a multidimensional extension of Theorem 1.2. Since the publication of these two important papers, many improvements and developments on this theme have been considered. In particular, Nourdin and Peccati [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] extended Theorem 1.2 to the case when the limit of F n 's is a centered gamma distributed random variable. We refer the reader to the book [START_REF] Nourdin | Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality[END_REF] for further information and details of the above results.

Heuristic argument linking Theorem 1.1 and Theorem 1.2 was given by Rosiński [14, pages 3-4], while addressing a question of Albert Shiryaev. Namely, let F and G be two i.i.d. centered random variables with fourth moment and unit variance. The link comes via a simple formula

1 2 Cov (F + G) 2 , (F -G) 2 = E[F 4 ] -3, criterion (1.
2), as well as the celebrated Bernstein's theorem that asserts that F and G are Gaussian if and only if F + G and F -G are independent. A rigorous argument to carry through this idea is based on a characterization of the asymptotic independence of multiple Wiener-Itô integrals, which is much more difficult to handle than the plain independence, and may also be of an independent interest. The covariance between the squares of multiple Wiener-Itô integrals plays the pivotal role in this characterization.

At this point we should also mention an extension of (1.2) to the multivariate setting. Let I be a finite set and (q i ) i∈I be a sequence of non-negative integers. Let F i = I q i (f i ) be a multiple Wiener-Itô integral of order q i , i ∈ I. Consider a partition of I into disjoint blocks I k , so that I = ∪ d k=1 I k , and the resulting random vectors (F i ) i∈I k , k = 1, . . . , d. Then {(F i ) i∈I k : k ≤ d} are independent ⇔ Cov(F 2 i , F 2 j ) = 0 ∀i, j from different blocks. (1.4) The proof of this criterion is similar to the proof of (1.2) in [START_REF] Rosiński | Product formula, tails and independence of multiple stable integrals[END_REF].

In this paper in Theorem 3.4 we establish an asymptotic version of (1.4) characterizing the asymptotic moment-independence between blocks of multiple Wiener-Itô integrals. As a consequence of this result, we deduce the fourth moment theorem of Nualart and Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] in Theorem 4.1, its multidimensional extension due to Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF] in Theorem 4.2, and some neat estimates on the speed of convergence in Theorem 4.3. Furthermore, we obtain new multidimensional extension of a theorem of Nourdin and Peccati [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] in Theorem 4.5, and give another new result on the bivariate convergence of vectors consisting of multiple Wiener-Itô integrals in Theorem 4.7. Proposition 5.3 applies Theorem 4.7 to establish the limit process for functions of short and long range dependent stationary Gaussian time series in the spirit of the celebrated Breuer-Major [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF] and Dobrushin-Major-Taqqu [START_REF] Dobrushin | Non-central limit theorems for non-linear functions of Gaussian fields[END_REF][START_REF] Taqqu | Weak Convergence to Fractional Brownian Motion and to the Rosenblatt Process[END_REF] Theorems. In Theorem 5.4 we establish the asymptotic moment-independence for discrete non-Gaussian chaoses using some techniques of Mossel, O'Donnel and Oleszkiewicz [START_REF] Mossel | Noise stability of functions with low influences: invariance and optimality[END_REF].

The paper is organized as follows. In Section 2 we list some basic facts from Gaussian analysis and prove some lemmas needed in the present work. In particular, we establish Lemma 2.3, which a version of the Cauchy-Schwarz Inequality well suited to deal with contractions of functions, see (2.8). It is used in the proof of the main result, Theorem 3.4. Section 3 is devoted to the main results on the asymptotic independence. Section 4 gives some immediate consequences and related applications of the main result. Section 5 provides further applications to the study of short and long range dependent stochastic processes and multilinear random forms in non-Gaussian random variables.

Preliminaries

We will give here some basic elements of Gaussian analysis that are in the foundations of the present work. The reader is referred to the books [START_REF] Nourdin | Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality[END_REF][START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for further details and ommited proofs.

Let H be a real separable Hilbert space. For any q 1 let H ⊗q be the qth tensor product of H and denote by H ⊙q the associated qth symmetric tensor product. We write X = {X(h), h ∈ H} to indicate an isonormal Gaussian process over H, defined on some probability space (Ω, F , P ). This means that X is a centered Gaussian family, whose covariance is given in terms of the inner product of H by E [X(h)X(g)] = h, g H . We also assume that F is generated by X.

For every q 1, let H q be the qth Wiener chaos of X, that is, the closed linear subspace of L 2 (Ω, F , P ) generated by the random variables of the type {H q (X(h)), h ∈ H, h H = 1}, where H q is the qth Hermite polynomial defined as

H q (x) = (-1) q e x 2 2 d q dx q e -x 2 2 .
(2.5)

We write by convention H 0 = R. For any q 1, the mapping

I q (h ⊗q ) = H q (X(h)) (2.6) 
can be extended to a linear isometry between the symmetric tensor product H ⊙q equipped with the modified norm √ q! • H ⊗q and the qth Wiener chaos H q . For q = 0 we write

I 0 (c) = c, c ∈ R.
It is well known (Wiener chaos expansion) that L 2 (Ω, F , P ) can be decomposed into the infinite orthogonal sum of the spaces H q . Therefore, any square integrable random variable F ∈ L 2 (Ω, F , P ) admits the following chaotic expansion

F = ∞ q=0 I q (f q ), (2.7) 
where f 0 = E[F ], and the f q ∈ H ⊙q , q 1, are uniquely determined by F . For every q 0 we denote by J q the orthogonal projection operator on the qth Wiener chaos. In particular, if F ∈ L 2 (Ω, F , P ) is as in (2.7), then J q F = I q (f q ) for every q 0. Let {e k , k 1} be a complete orthonormal system in H. Given f ∈ H ⊙p and g ∈ H ⊙q , for every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H ⊗(p+q-2r) defined by

f ⊗ r g = ∞ i 1 ,...,ir=1
f, e i 1 ⊗ . . . ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ . . . ⊗ e ir H ⊗r .

(2.8)

Notice that f ⊗ r g is not necessarily symmetric: we denote its symmetrization by f ⊗ r g ∈ H ⊙(p+q-2r) . Moreover, f ⊗ 0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗ q g = f, g H ⊗q . In the particular case where H = L 2 (A, A, µ), where (A, A) is a measurable space and µ is a σ-finite and non-atomic measure, one has that H ⊙q = L 2 s (A q , A ⊗q , µ ⊗q ) is the space of symmetric and square integrable functions on A q . Moreover, for every f ∈ H ⊙q , I q (f ) coincides with the q-tuple Wiener-Itô integral of f . In this case, (2.8) can be written as

(f ⊗ r g)(t 1 , . . . , t p+q-2r ) = A r f (t 1 , . . . , t p-r , s 1 , . . . , s r )
× g(t p-r+1 , . . . , t p+q-2r , s 1 , . . . , s r )dµ(s 1 ) . . . dµ(s r ).

We have

f ⊗ r g 2 = f ⊗ p-r f, g ⊗ q-r g for r = 0, . . . , p ∧ q, (2.9) 
where • ( • , respectively) stands for inner product (the norm, respectively) in an appropriate tensor product space H ⊗s . Also, the following multiplication formula holds: if f ∈ H ⊙p and g ∈ H ⊙q , then

I p (f )I q (g) = p∧q r=0 r! p r q r I p+q-2r (f ⊗ r g), (2.10) 
where f ⊗ r g denotes the symmetrization of f ⊗ r g. We conclude these preliminaries by three useful lemmas, that will be needed throughout the sequel. (i) Multiple Wiener-Itô integral has all moments satisfying the following hypercontractivitytype inequality 

E|I p (f )| r 1/r ≤ (r -1) p/2 E|I p (f )| 2 1/2 , r 2. (2.11) (ii) If a sequence of distributions of {I p (f n )} n≥1 is tight, then sup n E|I p (f n )| r < ∞ for every r > 0. ( 2 
P |I p (f )| 2 > θE|I p (f )| 2 ≥ (1 -θ) 2 E|I p (f )| 2 2 E|I p (f )| 4 ≥ (1 -θ) 2 9 -p . (2.13)
By the assumption, there is an M > 0 such that P (|I p (f n )| 2 > M) < 9 -p-1 , n ≥ 1. By (2.13) with θ = 2/3 and all n, we have

P |I p (f n )| 2 > M < 9 -p-1 ≤ P |I p (f n )| 2 > (2/3)E|I p (f n )| 2 .
As a consequence, E|I p (f n )| 2 ≤ (3/2)M. Applying (2.11) we conclude (2.12). 2

Lemma 2.2.

(1) Let p, q 1, f ∈ H ⊙p and g ∈ H ⊙q . Then

f ⊗g 2 = p!q! (p + q)! p∧q r=0 p r q r f ⊗ r g 2 , (2.14) 
(2) Let q 1 and f

1 , f 2 , f 3 , f 4 ∈ H ⊙q . Then (2q)! f 1 ⊗ f 2 , f 3 ⊗ f 4 = q-1 r=1 q! 2 q r 2 f 1 ⊗ r f 3 , f 4 ⊗ r f 2 +q! 2 f 1 , f 3 f 2 , f 4 + f 1 , f 4 f 2 , f 3 .
(2.15) (3) Let q 1, f ∈ H ⊙(2q) and g ∈ H ⊙q . We have

f ⊗ q f, g ⊗ g = 2q! 2 (2q)! f ⊗ q f, g ⊗ g + q! 2 (2q)! q-1 r=1 q r 2 f ⊗ r g, g ⊗ r f .
(2.16)

Proof. Without loss of generality, we suppose throughout the proof that H is equal to L 2 (A, A, µ), where (A, A) is a measurable space and µ is a σ-finite measure without atoms.

(1) Let σ be a permutation of {1, . . . , p+q} (this fact is written in symbols as σ ∈ S p+q ). If r ∈ {0, . . . , p ∧ q} denotes the cardinality of {1, . . . , p} ∩ {σ(p + 1), . . . , σ(p + q)}, then it is readily checked that r is also the cardinality of {p + 1, . . . , p + q} ∩ {σ(1), . . . , σ(p)} and that A p+q f (t 1 , . . . , t p )g(t p+1 , . . . , t p+q )f (t σ(1) , . . . , t σ(p) )g(t σ(p+1) , . . . , t σ(p+q) )dµ(t 1 ) . . . dµ(t p+q )

= A p+q-2r (f ⊗ r g)(x 1 , . . . , x p+q-2r ) 2 dµ(x 1 ) . . . dµ(x p+q-2r ) = f ⊗ r g 2 .
(2.17)

Moreover, for any fixed r ∈ {0, . . . , p ∧ q}, there are p! p r q! q r permutations σ ∈ S p+q such that {1, . . . , p} ∩ {σ(p + 1), . . . , σ(p + q)} = r. (Indeed, such a permutation is completely determined by the choice of: (a) r distinct elements y 1 , . . . , y r of {p + 1, . . . , p + q}; (b) pr distinct elements y r+1 , . . . , y p of {1, . . . , p}; (c) a bijection between {1, . . . , p} and {y 1 , . . . , y p }; (d) a bijection between {p + 1, . . . , p + q} and {1, . . . , p + q}\{y 1 , . . . , y p }.) Now, observe that the symmetrization of f ⊗ g is given by f ⊗g(t 1 , . . . , t p+q ) = 1 (p + q)! σ∈S p+q f (t σ(1) , . . . , t σ(p) )g(t σ(p+1) , . . . , t σ(p+q) ).

Therefore, using (2.17), we can write (2) We proceed analogously. Indeed, we have

f ⊗g 2 = f ⊗ g, f ⊗g = 1 (p + q)! σ∈S p+q A p+q f (
f 1 ⊗ f 2 , f 3 ⊗ f 4 = f 1 ⊗ f 2 , f 3 ⊗ f 4 = 1 (2q)! σ∈S 2q A 2q f 1 (t 1 , . . . , t q )f 2 (t q+1 , . . . , t 2q )
×f 3 (t σ(1) , . . . , t σ(q) )f 4 (t σ(q+1) , . . . , t σ(2q) )dµ(t 1 ) . . . dµ(t 2q ) = 1 (2q)! q r=0 f 1 ⊗ r f 3 , f 4 ⊗ r f 2 Card{σ ∈ S 2q : {σ(1), . . . , σ(q)} ∩ {1, . . . , q} = r}, from which we deduce (2.15).

(3) We have

(g ⊗ g)(t 1 , . . . , t 2q ) = 1 (2q)! σ∈S 2q g(t σ(1) , . . . , t σ(q) )g(t σ(q+1) , . . . , t σ(2q) ) = 1 (2q)! q r=0
σ∈S 2q {σ(1),...,σ(q)}∩{1,...,q}=r g(t σ(1) , . . . , t σ(q) )g(t σ(q+1) , . . . , t σ(2q) ), and

(f ⊗ q f )(t 1 , . . . , t 2q ) = A q
f (t 1 , . . . , t q , x 1 , . . . , x q )f (x 1 , . . . , x q , t q+1 , . . . , t 2q )dµ(x 1 ) . . . dµ(x q ), so that where (A,A) is a measurable space equipped with a σ-finite measure µ. For any integer M 1, put [M] = {1, ..., M}. Also, for every element z = (z 1 , ..., z M ) ∈ A M and every nonempty set c ⊂ [M], let z c denote the element of A |c| (where |c| is the cardinality of c) obtained by deleting from z the entries with index not contained in c. (For instance, if M = 5 and c = {1, 3, 5}, then z c = (z 1 , z 3 , z 5 ).) Let (α) C, q 2 be integers, and let c 1 , ..., c q be nonempty subsets of [C] such that each element of [C] appears in exactly two of the c i 's (this implies that i c i = [C] and

f ⊗ q f, g ⊗ g = f ⊗ q f, g ⊗ g = 1 (2q)! q r=0 f ⊗ r g, g ⊗ r f Card{σ ∈ S 2q : {σ(1), . . . , σ(q)} ∩ {1, . . . , q} = r} = 1 (2q)! q r=0 q r 2 q! 2 f ⊗ r g, g ⊗ r f = q! 2 (2q)! f ⊗ q g, g ⊗ q f + q! 2 (2q)! f ⊗ g, g ⊗ f + 1 (2q)! q-1 r=1 q r 2 q! 2 f ⊗ r g, g ⊗ r f . Since f ⊗ q g, g ⊗ q f = f ⊗ g, g ⊗ f = f ⊗ q f, g ⊗ g , the desired conclusion (2.16) follows. Lemma 2.3 (Generalized Cauchy-Schwarz Inequality). Assume that H = L 2 (A, A, µ),
i |c i | = 2C); (β) let h 1 , ..., h q be functions such that h i ∈ L 2 (µ |c i | ) := L 2 (A |c i | , A |c i | , µ |c i | ) for every i = 1, ..., q (in particular, each h i is a function of |c i | variables). Then A C q i=1 h i (z c i ) µ C (dz [C] ) q i=1 h i L 2 (µ |c i | ) .
(2.18)

Moreover, if c 0 := c j ∩ c k = ∅ for some j = k, then A C q i=1 h i (z c i ) µ C (dz [C] ) h j ⊗ c 0 h k L 2 (µ |c j △c k | ) q i =j,k h i L 2 (µ |c i | ) , (2.19) 
where

h j ⊗ c 0 h k (z c j △c k ) = A |c 0 | h j (z c j )h k (z c k ) µ |c 0 | (dz c 0 ). (Notice that h j ⊗ c 0 h k = h j ⊗ |c 0 | h k when h j and h k are symmetric.)
Proof. In the case q = 2, (2.18) is just the Cauchy-Schwarz inequality and (2.19) is an equality. Assume that (2.18)-(2.19) hold for at most q -1 functions and proceed by induction. Among the sets c 1 , . . . , c q at least two, say c j and c k , have nonempty intersection.

Set c 0 := c j ∩ c k , as above. Since c 0 does not have common elements with c i for all i = j, k, by Fubini's theorem

A C q i=1 h i (z c i ) µ C (dz [C] ) = A C-|c 0 | h j ⊗ c 0 h k (z c j △c k ) q i =j,k h i (z c i ) µ C-|c 0 | (dz [C]\c 0 ). (2.20)
Observe that every element of [C] \ c 0 belongs to exactly two of the q -1 sets: c j △c k , c i , i = j, k. Therefore, by the induction assumption, (2.18) implies (2.19), provided c j △c k = ∅. When c j = c k , we have h j ⊗ c 0 h k = h j , h k and (2.19) follows from (2.18) applied to the product of q -2 functions in (2.20). This proves (2.19), which in turn yields (2.18) by the Cauchy-Schwarz inequality. The proof is complete.

The main results

The following theorem characterizes moment-independence of limits of multiple Wiener-Itô integrals.

Theorem 3.1. Let d 2, and let q 1 , . . . , q d be positive integers. Consider vectors

(F 1,n , . . . , F d,n ) = I q 1 (f 1,n ), . . . , I q d (f d,n ) , n 1, with f i,n ∈ H ⊙q i . Assume that for some random vector (U 1 , . . . , U d ), (F 1,n , . . . , F d,n ) law → (U 1 , . . . , U d ) as n → ∞. (3.21) 
Then U i 's admit moments of all orders and the following three conditions are equivalent:

(α) U 1 , . . . , U d are moment-independent, that is, E[U k 1 1 . . . U k d d ] = E[U k 1 1 ] . . . E[U k d d ] for all k 1 , . . . , k d ∈ N; (β) lim n→∞ Cov(F 2 i,n , F 2 j,n ) = 0 for all i = j; (γ) lim n→∞ f i,n ⊗ r f j,n =
0 for all i = j and all r = 1, . . . , q i ∧ q j ; Moreover, if the distribution of each U i is determined by its moments, then (a) is equivalent to that (δ) U 1 , . . . , U d are independent.

Remarks 3.2.

(1) Theorem 3.1 raises a question whether the moment-independence implies the usual independence under weaker conditions than the determinacy of the marginals. (Recall that a random variable having all moments is said to be determinate if any other random variable with the same moments has the same distribution.) The answer is negative in general, see [START_REF] Bisgaard | When does E(X k • Y l ) = E(X k ) • E(Y l ) imply independence?[END_REF]Theorem 5 ].

(2) Assume that d = 2 (for simplicity). In this case, (γ) becomes f 1,n ⊗ r f 2,n → 0 for all r = 1, . . . , q 1 ∧ q 2 . In view of Theorem 1.1 of Üstünel and Zakai, one may expect that (γ) could be replaced by a weaker condition (γ ′ ):

f 1,n ⊗ 1 f 2,n → 0.
However, the latter is false. To see it, consider a sequence f n ∈ H ⊙2 such that

f n 2 = 1 2 and f n ⊗ 1 f n → 0. By Theorem 4.1 below, F n := I 2 (f n ) law → U ∼ N(0, 1). Putting f 1,n = f 2,n = f n , we observe that (γ ′ ) holds but (α) does not, as (I 2 (f 1,n ), I 2 (f 2,n )) law → (U, U).
(3) Taking into account that assumptions (γ) and (δ) of Theorem 4.1 are equivalent, it is natural to wonder whether assumption (γ) of Theorem 3.1 is equivalent to its symmetrized version:

lim n→∞ f i,n ⊗ r f j,n = 0 for all i = j and all r = 1, . . . , q i ∧ q j .
The answer is negative in general, as is shown by the following counterexample. Let f 1 , f 2 : [0, 1] 2 → R be symmetric functions given by

f 1 (s, t) = -1 s, t ∈ [0, 1/2] 1 elsewhere and f 2 (s, t) = -1 s, t ∈ (1/2, 1] 1
elsewhere.

Then f 1 , f 2 = 0 and

(f 1 ⊗ 1 f 2 )(s, t) =    -1 if s ∈ [0, 1/2] and t ∈ (1/2, 1] 1 if t ∈ [0, 1/2] and s ∈ (1/2, 1] 0 elsewhere, so that f 1 ⊗ 1 f 2 ≡ 0 and f 1 ⊗ 1 f 2 = √ 2. (4)
The condition of moment-independence, (α) of Theorem 3.1, can also be stated in terms of cumulants. Recall that the joint cumulant of random variables X 1 , . . . , X m is defined by

κ(X 1 , . . . , X m ) = (-i) m ∂ m ∂t 1 • • • ∂t m log E[e i(t 1 X 1 +•••+tmXm) ] t 1 =0,...,tm=0 , provided E|X 1 • • • X m | < ∞.
When all X i are equal to X, then κ(X, . . . , X) = κ m (X), the usual mth cumulant of X, see [START_REF] Leonov | On a method of calculation of semi-invariants[END_REF]. Then Theorem 3.

1(α) is equivalent to (α') for all integers 1 ≤ j 1 < • • • < j k ≤ d, k ≥ 2, and m 1 , . . . , m k ≥ 1 κ(U j 1 , . . . , U j 1 m 1 , . . . , U j k , . . . , U j k m k ) = 0. (3.22)
Theorem 3.1 was proved in the first version of this paper [START_REF] Nourdin | Asymptotic independence of multiple Wiener-Ito integrals and the resulting limit laws[END_REF]. Our proof of the crucial implication (γ) ⇒ (α) involved tedious combinatorial considerations. We are thankful to an anonymous referee who suggested a shorter and more transparent line of proof using Malliavin calculus. It significantly reduced the amount of combinatorial arguments of the original version but requires some basic facts from Malliavin calculus. We incorporated referee's suggestions and approach into the proof of a more general Theorem 3.4. Even though Theorem 3.1 becomes a special case of Theorem 3.4 (see Corollary 3.6), we keep its original statement for a convenient reference.

Definition 3.3. For each n 1, let F n = (F i,n
) i∈I be a family of real-valued random variables indexed by a finite set I. Consider a partition of I into disjoint blocks I k , so that I = ∪ d k=1 I k . We say that vectors (F i,n ) i∈I k , k = 1, . . . , d are asymptotically momentindependent if each F i,n admits moments of all orders and for any sequence (ℓ i ) i∈I of non-negative integers,

lim n→∞ E i∈I F ℓ i i,n - d k=1 E i∈I k F ℓ i i,n = 0. (3.23)
The next theorem characterizes the asymptotic moment-independence between blocks of multiple Wiener-Itô integrals.

Theorem 3.4. Let I be a finite set and (q i ) i∈I be a sequence of non-negative integers. For each n 1, let F n = (F i,n ) i∈I be a family of multiple Wiener-Itô integrals, where

F i,n = I q i (f i,n ) with f i,n ∈ H ⊙q i . Assume that for every i ∈ I sup n E F 2 i,n < ∞. (3.24)
Given a partition of I into disjoint blocks I k , the following conditions are equivalent:

(a) random vectors (F i,n ) i∈I k , k = 1, . . . , d are asymptotically moment-independent;

(b) lim n→∞ Cov(F 2 i,n , F 2 j,n ) = 0 for every i, j from different blocks; (c) lim n→∞ f i,n ⊗ r f j,n = 0 for every i, j from different blocks and r = 1, . . . , q i ∧ q j . Proof: The implication (a) ⇒ (b) is obvious.

To show (b) ⇒ (c), fix i, j belonging to different blocks. By (2.10) we have

F i,n F j,n = q i ∧q j r=0 r! q i r q j r I q i +q j -2r (f i,n ⊗ r f j,n ),
which yields

E[F 2 i,n F 2 j,n ] = q i ∧q j r=0 r! 2 q i r 2 q j r 2 (q i + q j -2r)! f i,n ⊗ r f j,n 2 .
Moreover,

E[F 2 i,n ]E[F 2 j,n ] = q i !q j ! f i,n 2 f j,n 2 .
Applying (2.14) to the second equality below, we evaluate Cov(F 2 i,n , F 2 j,n ) as follows:

Cov(F 2 i,n , F 2 j,n ) = (q i + q j )! f i,n ⊗f j,n 2 -q i !q j ! f i,n 2 f j,n 2 
(3.25)

+ q i ∧q j r=1 r! 2 q i r 2 q j r 2 (q i + q j -2r)! f i,n ⊗ r f j,n 2 = q i !q j ! q i ∧q j r=1 q i r q j r f i,n ⊗ r f j,n 2 + q i ∧q j r=1 r! 2 q i r 2 q j r 2 (q i + q j -2r)! f i,n ⊗ r f j,n 2 max r=1,...,q i ∧q j f i,n ⊗ r f j,n 2 . (3.26)
This bound yields the desired conclusion. Now we will prove (c) ⇒ (a). We need to show (3.23) for fixed l i . Writing

F l i i,n as F i,n × . . . × F i,n l i
and enlarging I and I k 's accordingly, we may and do assume that all l i = 1. We will prove (3.23) by induction on Q = i∈I q i . The formula holds when Q = 0 or 1. Therefore, take Q ≥ 2 and suppose that (3.23) holds whenever i∈I q i ≤ Q -1.

Fix i 1 ∈ I 1 and set 

X n = i∈I 1 \{i 1 } I q i (f i,n ), Y n = j∈I\I 1 I q j (f j,n ). Assume that q 1 ≥ 1,
E i∈I F i,n = E I q i 1 (f i 1 ,n )X n Y n = E δ(I q i 1 -1 (f i 1 ,n ))X n Y n = E I q i 1 -1 (f i 1 ,n ) ⊗ 1 D(X n Y n ) = E Y n I q i 1 -1 (f i 1 ,n ) ⊗ 1 DX n + E X n I q i 1 -1 (f i 1 ,n ) ⊗ 1 DY n = A n + B n .
First we consider B n . Using the product rule for DY n we obtain

B n = j∈I\I 1 E I q i 1 -1 (f i 1 ,n ) ⊗ 1 DF j,n i∈I\{i 1 ,j} F i,n = j∈I\I 1 q j E I q i 1 -1 (f i 1 ,n ) ⊗ 1 I q j -1 (f j,n ) i∈I\{i 1 ,j} F i,n .
By the multiplication formula (2.10) we have

I q i 1 -1 (f i 1 ,n ) ⊗ 1 I q j -1 (f j,n ) = q i 1 ∧q j s=1 (s -1)! q i 1 -1 s -1 q j -1 s -1 I q i 1 +q j -2s (f i 1 ,n ⊗ s f j,n ).
Since i 1 and j belong to different blocks, condition (c) of the theorem applied to the above expansion yields that

I q i 1 -1 (f i 1 ,n ) ⊗ 1 I q j -1 (f j,n ) converges to zero in L 2 .
Combining this with (3.24) and Lemma 2.1 we infer that lim n→∞ B n = 0. Now we consider A n . If Card(I 1 ) = 1, then X n = 1 by convention and so A n = 0. Hence

lim n→∞ E i∈I F i,n -E F i 1 ,n d k=2 E i∈I k F i,n = lim n→∞ B n = 0.
Therefore, we now assume that Card(I 1 ) ≥ 2. Write A n = E Z n Y n , where

Z n = I q i 1 -1 (f i 1 ,n ) ⊗ 1 DX n = i∈I 1 \{i 1 } q i I q i 1 -1 (f i 1 ,n ) ⊗ 1 I q i -1 (f i,n ) j∈I 1 \{i 1 ,i} F j,n = i∈I 1 \{i 1 } q i q i 1 ∧q i s=1 (s -1)! q i 1 -1 s -1 q i -1 s -1 I q i 1 +q i -2s (f i 1 ,n ⊗ s f i,n ) j∈I\{i 1 ,i} F j,n .
Thus A n is a linear combination of the terms

E I q i 1 +q i -2s (f i 1 ,n ⊗ s f i,n ) j∈I 1 \{i 1 ,i} F j,n Y n , where i 1 , i ∈ I 1 , i 1 = i, 1 ≤ s ≤ q i 1 ∧ q i .
The term under expectation is a product of multiple integrals of orders summing to j∈I q j -2s. Therefore, the induction hypothesis applies provided lim

n→∞ f i 1 ,n ⊗ s f i,n ⊗ r f j,n = 0 (3.27)
for all j ∈ I k with k 2 and all r = 1, . . . , (q i 1 + q i -2s) ∧ q j . Suppose that (3.27) holds. Then by the induction hypothesis

lim n→∞ A n -E[Z n ]E[Y n ] = 0.
Moreover,

E[Z n ] = E I q i 1 -1 (f i 1 ,n ) ⊗ 1 DX n = E[I q i 1 (f i 1 ,n )X n ] = E i∈I 1 F i,n .
Hence, by the induction hypothesis applied to Y n and the uniform boundedness of all moments of F i,n , we get

lim n→∞ E i∈I F i,n - d k=1 E i∈I k F i,n = lim n→∞ A n -E[Z n ]E[Y n ] = 0.
It remains to show (3.27). To this aim we will describe the structure of the terms under the limit (3.27). Without loss of generality we may assume that H = L 2 (µ) := L 2 (A, A, µ), where (A, A) is a measurable space and µ is a σ-finite measure without atoms. Recall notation of Lemma 2.3. For every integer M 1, put [M] = {1, ..., M}. Also, for every element z = (z 1 , ..., z M ) ∈ A M and every nonempty set c ⊂ [M], we denote by z c the element of A |c| (where |c| is the cardinality of c) obtained by deleting from z the entries with index not contained in c. (For instance, if M = 5 and c = {1, 3, 5}, then z c = (z 1 , z 3 , z 5 ).)

Observe that f i 1 ,n ⊗ s f i,n ⊗ r f j,n is a linear combination of functions ψ(z J 1 ), z ∈ A M obtained as follows. Set M = q i 1 + q i + q jsr and M 0 = q i 1 + q is, so that 

M > M 0 ≥ 2. Choose b 1 , b 2 ⊂ [M 0 ] such that |b 1 | = q i 1 , |b 2 | = q i and |b 1 ∩ b 2 | = s,
J 1 = [M] \ J. Then f i 1 ,n ⊗ s f i,n ⊗ r f j,n is a linear combination of functions of the form ψ(z J 1 ) = A J f i 1 ,n (z b 1 )f i,n (z b 2 )f j,n (z b 3 ) µ |J| (dz J ),
where the summation goes over all choices b 1 , b 2 under the constraint that the sets b 1 ∩ b 2 and b 3 are fixed. This constraint makes J 1 unique, |J 1 | = q i 1 + q i + q j -2s -2r.

Let c i = b i ∩ J, i = 1, 2, 3 and notice that either

c 1 ∩ c 3 = ∅ or c 2 ∩ c 3 = ∅ since r ≥ 1. Suppose c 0 = c 1 ∩ c 3 = ∅, the other case is identical. Applying Lemma 2.3 with z J 1 fixed we get |ψ(z J 1 )| 2 ≤ |f i 1 ,n ⊗ |c 0 | f j,n (z b 1 △b 3 )| 2 A |c 2 | |f i,n (z b 2 )| 2 µ |c 2 | (dz c 2 )
Since b 1 △b 3 and b 3 \ c 3 make a disjoint partition of J 1 , and additional integration with respect to z J 1 yields

ψ L 2 (µ |J 1 | ) ≤ f i 1 ,n ⊗ |c 0 | f j,n L 2 (µ |b 1 △b 3 | ) f i,n L 2 (µ |b 2 | ) → 0
as n → ∞. This yields (3.27) and completes the proof of Theorem 3.4. 

Cov( (F i,n ) i∈I k 2 , (F i,n ) i∈I l 2 ) = i∈I k ,j∈I l Cov(F 2 i,n , F 2 j,n ) ≥ Cov(F 2 i,n , F 2 j,n ),
as the squares of multiple Wiener-Itô integrals are non-negatively correlated, cf. (3.26).

The following corollary is useful to deduce the joint convergence in law from the convergence of marginals. It is stated for random vectors, as is Theorem 3.4, but it obviously applies in the setting of Theorem 3.1 when all vectors are one-dimensional. Corollary 3.6. Under notation of Theorem 3.4, let (U i ) i∈I be a random vector such that Then the joint convergence holds,

(i) (F i,n ) i∈I k law → (U i ) i∈I k as n → ∞, for each k; (ii) vectors (U i ) i∈I k , k = 1, . . . ,
(F i,n ) i∈I law → (U i ) i∈I , n → ∞. Proof: By (i) the sequence {(F i,n ) i∈I } n≥1 is tight. Let (V i ) i∈I be a random vector such that (F i,n j ) i∈I law → (V i ) i∈I
as n j → ∞ along a subsequence. From Lemma 2.1(ii) we infer that condition (3.24) of Theorem 3.4 is satisfied. It follows that each V i has all moments and (V i ) i∈I k law = (U i ) i∈I k for each k. By (iv), the laws of vectors (U i ) i∈I and (V i ) i∈I are determined by their joint moments, respectively, see [START_REF] Petersen | On the relation between the multidimensional moment problem and the onedimensional moment problem[END_REF]Theorem 3]. Under the assumption (iii), the vectors (F i,n ) i∈I k , k = 1, . . . , d are asymptotically moment independent. Hence, for any sequence (ℓ i ) i∈I of non-negative integers, We can give a short proof of the difficult and surprising part implication (β) ⇒ (α) of the fourth moment theorem of Nualart and Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], that we restate here for a convenience.

E i∈I V ℓ i i -E i∈I U ℓ i i = E i∈I V ℓ i i - d k=1 E i∈I k U ℓ i i = lim n j →∞ E i∈I F ℓ i i,n j - d k=1 E i∈I k F ℓ i i,n j = 0. Thus (V i ) i∈I law = (U i ) i∈I .
Theorem 4.1 (Nualart-Peccati). Let (F n ) be a sequence of the form F n = I q (f n ), where q 2 is fixed and

f n ∈ H ⊙q . Assume moreover that E[F 2 n ] = q! f n 2 = 1 for all n.
Then, as n → ∞, the following four conditions are equivalent:

(α) F n law → N(0, 1); (β) E[F 4 n ] → 3; (γ) f n ⊗ r f n → 0 for all r = 1, . . . , q -1; (δ) f n ⊗ r f n → 0 for all r = 1, . . . , q -1.
Proof of (β) ⇒ (α). Assume (β). Since the sequence (F n ) is bounded in L 2 (Ω) by the assumption, it is relatively compact in law. Without loss of generality we may assume that F n law → Y and need to show that Y ∼ N(0, 1). Let G n be an independent copy of F n of the form G n = I q (g n ) with f n ⊗ 1 g n = 0. This can easily be done by extending the underlying isonormal process to the direct sum H ⊕ H. We then have

(I q (f n + g n ) , I q (f n -g n )) = (F n + G n , F n -G n ) law → (Y + Z, Y -Z)
as n → ∞, where Z stands for an independent copy of Y . Since

1 2 Cov[(F n + G n ) 2 , (F n -G n ) 2 ] = E[F 4 n ] -3 → 0, Y + Z
and Y -Z are moment-independent. (If they were independent, the classical Bernstein Theorem would conclude the proof.) However, in our case condition (α ′ ) in (3.22) says that

κ(Y + Z, . . . , Y + Z m 1 , Y -Z, . . . , Y -Z m 2 ) = 0 for all m 1 , m 2 ≥ 1.
Taking n ≥ 3 we get

0 = κ(Y + Z, . . . , Y + Z n-2 , Y -Z, Y -Z) = κ(Y, . . . , Y n ) + κ(Z, . . . , Z n ) = 2κ n (Y ),
where we used the multilinearity of κ and the fact that Y and Z are i.i.d. Since κ 1 (Y ) = 0, κ 2 (Y ) = 1, and κ n (Y ) = 0 for n ≥ 3, we infer that Y ∼ N(0, 1).

Generalizing a result of Peccati and Tudor.

Applying our approach, one can add a further equivalent condition to a result of Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. As such, Theorem 4.2 turns out to be the exact multivariate equivalent of Theorem 4.1.

Theorem 4.2 (Peccati-Tudor). Let d 2, and let q 1 , . . . , q d be positive integers. Consider vectors

F n = (F 1,n , . . . , F d,n ) = I q 1 (f 1,n ), . . . , I q d (f d,n ) , n 1, with f i,n ∈ H ⊙q i . Assume that, for i, j = 1, . . . , d, as n → ∞, Cov F i,n , F j,n → σ ij .
(4.28)

Let N be a centered Gaussian random vector with the covariance matrix Σ = (σ ij ) 1 i,j d . Then the following two conditions are equivalent (n → ∞):

(i) F n law → N; (ii) E F n 4 → E N 4 ;
where • denotes the Euclidean norm in R d .

Proof. Only (ii) ⇒ (i) has to be shown. Assume (ii). As in the proof of Theorem 4.1, we may assume that F n law → Y and must show that Y ∼ N d (0, Σ). Let G n = (G 1,n , . . . , G d,n ) be an independent copy of F n of the form I q 1 (g 1,n ), . . . , I q d (g d,n ) . Observe that

1 2 Cov F n + G n 2 , F n -G n 2 = E[ F n 4 ] -E[ F n 2 ] 2 -2 d i,j=1 Cov(F i,n , F j,n ) 2 .
Using this identity for N and N ′ in place of F n and G n , where N ′ is an independent copy of N, we get

E[ N 4 ] = d i,j=1 σ ii σ jj + 2σ 2 ij . (4.29) Hence 1 2 Cov F n + G n 2 , F n -G n 2 = E[ F n 4 ] -E[ N 4 ] + d i,j=1 σ ii σ jj + 2σ 2 ij -Var(F i,n )Var(F j,n ) -2Cov(F i,n , F j,n ) 2 → 0.
By Remark 3.5, F n + G n and F n -G n are asymptotically moment-independent. Since one-dimensional projections of F n + G n and F n -G n are also asymptotically momentindependent, we can proceed by cumulants as above to determine the normality of Y .

The following result associates neat estimates to Theorem 4.2.

Theorem 4.3. Consider a vector

F = (F 1 , . . . , F d ) = (I q 1 (f 1 ), . . . , I q d (f d ))
with f i ∈ H ⊙q i , and let Σ = (σ ij ) 1 i,j d be the covariance matrix of F ,

σ ij = E[F i F j ].
Let N be the associated Gaussian random vector, N ∼ N d (0, Σ).

(1) Assume that Σ is invertible. Then, for any Lipschitz function h : R d → R we have

E[h(F )] -E[h(N)] √ d Σ 1/2 op Σ -1 op h Lip E F 4 -E N 4 ,
where • op denotes the operator norm of a matrix and

h Lip = sup x,y∈R d |h(x)-h(y)| x-y . (2) For any C 2 -function h : R d → R we have E[h(F )] -E[h(N)] 1 2 h ′′ ∞ E F 4 -E N 4 ,
where

h ′′ ∞ = max 1 i,j d sup x∈R d ∂ 2 h ∂x i ∂x j (x) .
Proof: The proof is divided into three steps.

Step 1: Recall that for a Lipschitz function h : R d → R [8, Theorem 6.1.1] yields

E[h(F )] -E[h(N)] √ d Σ 1/2 op Σ -1 op h Lip d i,j=1 E σ ij - 1 q j DF i , DF j 2 ,
while for a C 2 -function with bounded Hessian [START_REF] Nourdin | Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality[END_REF]Theorem 6.1.2] gives

E[h(F )] -E[h(N)] 1 2 h ′′ ∞ d i,j=1 E σ ij - 1 q j DF i , DF j 2 .
Step 2: We claim that for any i, j = 1, . . . , d,

E σ ij - 1 q j DF i , DF j 2 Cov(F 2 i , F 2 j ) -2σ 2 ij .
Indeed, by [8, identity (6.2.4)] and the fact that σ ij = 0 if q i = q j , we have

E σ ij - 1 q j DF i , DF j 2 =      q 2 i q i ∧q j r=1 (r -1)! 2 q i -1 r-1 2 q j -1 r-1 2 (q i + q j -2r)! f i ⊗ r f j 2 if q i = q j q 2 i q i -1 r=1 (r -1)! 2 q i -1 r-1 4 (2q i -2r)! f i ⊗ r f j 2 if q i = q j    q i ∧q j r=1 r! 2 q i r 2 q j r 2 (q i + q j -2r)! f i ⊗ r f j 2 if q i = q j q i -1 r=1 r! 2 q i r 4 (2q i -2r)! f i ⊗ r f j 2 if q i = q j .
On the other hand, from (3.25) we have

Cov(F 2 i , F 2 j ) -2σ 2 ij =              q i !q j ! q i ∧q j r=1 q i r q j r f i ⊗ r f j 2 + q i ∧q j r=1 r! 2 q i r 2 q j r 2 (q i + q j -2r)! f i ⊗ r f j 2 if q i = q j q i ! 2 q i -1 r=1 q i r 2 f i ⊗ r f j 2 + q i -1 r=1 r! 2 q i r 4 (2q i -2r)! f i ⊗ r f j 2 if q i = q j .
The claim follows immediately.

Step 3: Applying (4.29) we get

E F 4 -E N 4 = d i,j=1 E[F 2 i F 2 j ] -σ ii σ jj -2σ 2 ij = d i,j=1 Cov(F 2 i , F 2 j ) -2σ 2 ij .
Combining Steps 1-3 gives the desired conclusion.

4.3.

A multivariate version of the convergence towards χ 2 .

Here we will prove a multivariate extension of a result of Nourdin and Peccati [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF]. Such an extension was an open problem as far as we know.

In what follows, G(ν) will denote a random variable with the centered χ 2 distribution having ν > 0 degrees of freedom. When ν is an integer, then G(ν)

law = ν i=1 (N 2 i -1)
, where N 1 , . . . , N ν are i.i.d. standard normal random variables. In general, G(ν) is a centered gamma random variable with a shape parameter ν/2 and scale parameter 2. Nourdin and Peccati [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] established the following theorem. Theorem 4.4 (Nourdin-Peccati). Fix ν > 0 and let G(ν) be as above. Let q 2 be an even integer, and let

F n = I q (f n ) be such that lim n→∞ E[F 2 n ] = E[G(ν) 2 ] = 2ν. Set c q = 4 [(q/2)!] 3 [q!] -2 .
Then, the following four assertions are equivalent, as n → ∞:

(α) F n law → G(ν); (β) E[F 4 n ] -12E[F 3 n ] → E[G(ν) 4 ] -12E[G(ν) 3 ] = 12ν 2 -48ν; (γ) f n ⊗ q/2 f n -c q × f n → 0,
and f n ⊗ r f n → 0 for every r = 1, ..., q -1 such that r = q/2; (δ) f n ⊗ q/2 f nc q × f n → 0, and f n ⊗ r f n → 0 for every r = 1, ..., q -1 such that r = q/2.

The following is our multivariate extension of this theorem.

Theorem 4.5. Let d 2, let ν 1 , . . . , ν d be positive reals, and let q 1 , . . . , q d 2 be even integers. Consider vectors

F n = (F 1,n , . . . , F d,n ) = I q 1 (f 1,n ), . . . , I q d (f d,n ) , n 1, with f i,n ∈ H ⊙q i , such that lim n→∞ E[F 2 i,n ] = 2ν i for every i = 1, . . . , d. Assume that: (i) E[F 4 i,n ] -12E[F 3 i,n ] → 12ν 2 i -48ν i for every i; (ii) lim n→∞ Cov(F 2 i,n , F 2 j,n ) = 0 whenever q i = q j for some i = j; (ii) lim n→∞ E[F 2 i,n F j,n ] = 0 whenever q j = 2q i . Then (F 1,n , . . . , F d,n ) law → (G(ν 1 ), . . . , G(ν d ))
where G(ν 1 ), . . . , G(ν d ) are independent random variables having centered χ 2 distributions with ν 1 , . . . , ν d degrees of freedom, respectively.

Proof. Using the well-known Carleman's condition, it is easy to check that the law of G(ν) is determined by its moments. By Corollary 3.6 it is enough to show that condition (γ) of Theorem 3.1 holds. Fix 1 i = j d as well as 1 r q i ∧ q j . Switching i and j if necessary, assume that q i q j . From Theorem 4.4(γ) we get that f k,n ⊗ r f k,n → 0 for each 1 k d and every 1 r q k -1, except when r = q k /2. Using the identity

f i,n ⊗ r f j,n 2 = f i,n ⊗ q i -r f i,n , f j,n ⊗ q j -r f j,n (4.30) 
(see (2.9)) together with the Cauchy-Schwarz inequality we infer that condition (γ) of Theorem 3.1 holds for all values of r, i and j, except of the cases: r = q i = q j , r = q i /2 = q j /2, and r = q i = q j /2. Assumption (i) together with (3.26) show that f i,n ⊗ r f j,n → 0 for all 1 r q i = q j . Thus, it remains to verify condition (γ) of Theorem 3.1 when r = q i = q j /2. Lemma 2.2 (identity (2.16) therein) yields

f j,n ⊗ q i f j,n , f i,n ⊗ f i,n = 2q i ! 2 q j ! f j,n ⊗ q i f j,n , f i,n ⊗ f i,n + q i ! 2 q j ! q i -1 s=1 q i s 2 f j,n ⊗ s f i,n , f i,n ⊗ s f j,n .
Using (4.30) and Theorem 4.4 and a reasoning as above, it is straightforward to show that the sum q i -1 s=1 q i s 2 f j,n ⊗ s f i,n , f i,n ⊗ s f j,n tends to zero as n → ∞. On the other hand, the condition on the q i -th contraction in Theorem 4.4(δ) yields that f j,n ⊗ q i f j,nc q j f j,n → 0 as n → ∞. Moreover, we have

f j,n , f i,n ⊗ f i,n = 1 q j ! E[F j,n F 2 i,n ],
which tends to zero by assumption (ii). All these facts together imply that f j,n ⊗ q i f j,n , f i,n ⊗ f i,n → 0 as n → ∞. Using (4.30) for r = q i we get f i,n ⊗ q i f j,n → 0, showing that condition (γ) of Theorem 3.1 holds true in the last remaining case. The proof of the theorem is complete.

2 Example 4.6. Consider F n = (F 1,n , F 2,n ) = (I q 1 (f 1,n ), I q 2 (f 2,n ))
, where 2 ≤ q 1 ≤ q 2 are even integers. Suppose that

E[F 2 1,n ] → 1, E[F 4 1,n ] -6E[F 3 1,n ] → -3, and E[F 2 2,n ] → 2, E[F 4 2,n ] -6E[F 3 2
,n ] → 0, as n → ∞. When q 1 = q 2 or q 2 = 2q 1 we require additionally:

Cov(F 2 1,n , F 2 2,n ) → 0 (q 1 = q 2 ), E[F 2 1,n F 2,n ] → 0 (q 2 = 2q 1 ).
Then Theorem 4.5 (the case ν 1 = 2, ν 2 = 4) gives Theorem 4.7. Let p 1 , . . . , p r , q 1 , . . . , q s be positive integers. Assume further that min p i max q j . Consider

F n law → (V 1 -1, V 2 + V 3 -2) where V 1 , V 2 , V
(F 1,n , . . . , F r,n , G 1,n , . . . , G s,n ) = I p 1 (f 1,n ), . . . , I pr (f r,n ), I q 1 (g 1,n ), . . . , I qs (g s,n ) , n 1,
with f i,n ∈ H ⊙p i and g j,n ∈ H ⊙q j . Suppose that as n → ∞

F n = (F 1,n , . . . , F r,n ) law → N and G n = (G 1,n , . . . , G s,n ) law → V, (4.31) 
where N ∼ N r (0, Σ), the marginals of V are determined by their moments, and N, V are independent. If E[F i,n G j,n ] → 0 (which trivially holds when p i = q j ) for all i, j, then

(F n , G n ) law → (N, V ) (4.32)
jointly, as n → ∞.

Proof. We will show that condition (c) of Theorem 3.4 holds. By (2.12) we may and do assume that E[F 2 i,n ] = 1 for all i and n. By Theorem 4.1(γ), f i,n ⊗ r f i,n → 0 for all r = 1, . . . , p i -1. Observe that f i,n ⊗ r g j,n 2 = f i,n ⊗ p i -r f i,n , g j,n ⊗ q j -r g j,n so that f i,n ⊗ r g j,n → 0 for 1 ≤ r ≤ p i ∧ q j = q j , except possibly when r = p i = q j . But in this latter case,

p i ! f i,n ⊗ r g j,n = p i ! f i,n , g j,n = E[F i,n G j,n
] → 0 by the assumption. Corollary 3.6 concludes the proof. Theorem 4.7 admits the following immediate corollary. Corollary 4.8. Let p q be positive integers. Consider two stochastic processes F n = (I p (f t,n )) t∈T and G n = (I q (g t,n )) t∈T , where f t,n ∈ H ⊙p and g t,n ∈ H ⊙q . Suppose that as

n → ∞ F n f.d.d. → X and G n f.d.d.
→ Y, where X is centered and Gaussian, the marginals of Y are determined by their moments, and X, Y are independent. If E[I p (f t,n )I q (g s,n )] → 0 (which trivially holds when p = q) for all s, t ∈ T , then

(F n , G n ) f.d.d.
→ (X, Y ) jointly, as n → ∞.

Further Applications

5.1. Partial sums associated with Hermite polynomials. Consider a centered stationary Gaussian sequence {G k } k 1 with unit variance. For any k 0, denote by

r(k) = E[G 1 G 1+k ]
the covariance between G 1 and G 1+k . We extend r to Z -by symmetry, that is, r(k) = r(-k). For any integer q 1, we write

S q,n (t) = ⌊nt⌋ k=1 H q (G k ), t 0,
to indicate the partial sums associated with the subordinated sequence {H q (G k )} k 1 . Here, H q denotes the qth Hermite polynomial given by (2.5).

The following result is a summary of the main finding in Breuer and Major [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF].

Theorem 5.1. If k∈Z |r(k)| q < ∞ then, as n → ∞, S q,n √ n f.d.d. → a q B,
where B is a standard Brownian motion and a q = q! k∈Z r(k) q 1/2 .

Assume further that the covariance function r has the form

r(k) = k -D L(k), k 1 
, with D > 0 and L : (0, ∞) → (0, ∞) a function which is slowly varying at infinity and bounded away from 0 and infinity on every compact subset of [0, ∞). The following result is due to Taqqu [START_REF] Taqqu | Weak Convergence to Fractional Brownian Motion and to the Rosenblatt Process[END_REF].

Theorem 5.2. If 0 < D < 1 2 then, as n → ∞, S 2,n n 1-D L(n) f.d.d. → b D R 1-D , where b D = [(1 -D)(1 -2D)] -1/2 and R H is a Rosenblatt process of parameter H = 1-D, defined as R H (t) = c H I 2 (f H (t, •)) , t 0, with f H (t, x, y) = t 0 (s -x) H 2 -1 + (s -y) H 2 -1 + ds, t 0, x, y ∈ R, c H > 0 an explicit constant such that E[R H (1) 2 ] = 1,
and the double Wiener-Itô integral I 2 is with respect to a two-sided Brownian motion B.

Let q

3 be an integer. The following result is a consequence of Corollary 4.8 and Theorems 5.1 and 5.2. It gives the asymptotic behavior (after proper renormalization of each coordinate) of the pair (S q,n , S 2,n ) when D

∈ 1 q , 1 2 ∪ 1 2 , ∞).
Since what follows is just mean to be an illustration, we will not consider the remaining case, that is, when D ∈ 0, 1 q ; it is an interesting problem, but to answer it would be out of the scope of the present paper. Proposition 5.3. Let q 3 be an integer, and let the constants a p and b D be given by Theorems 5.1 and 5.2, respectively.

(

) If D ∈ ( 1 2 , ∞) then S q,n √ n , S 2,n √ n f.d.d. → (a q B 1 , a 2 B 2 ) , where (B 1 , B 2 ) is a standard Brownian motion in R 2 . (2) If D ∈ 1 q , 1 2 then S q,n √ n , S 2,n n 1-D L(n) f.d.d. → (a q B, b D R 1-D ) , 1 
where B is a Brownian motion independent of the Rosenblatt process R 1-D of parameter 1 -D.

Proof: Let us first introduce a specific realization of the sequence {G k } k 1 that will allow one to use the results of this paper. The space

H := span{G 1 , G 2 , . . .} L 2 (Ω)
being a real separable Hilbert space, it is isometrically isomorphic to either R N (for some finite N 1) or L 2 (R + ). Let us assume that H ≃ L 2 (R + ), the case where H ≃ R N being easier to handle. Let Φ : H → L 2 (R + ) be an isometry. Set e k = Φ(G k ) for each k 1. We have

r(k -l) = E[G k G l ] = ∞ 0 e k (x)e l (x)dx, k, l 1.
(5.33)

If B = (B t ) t∈R + denotes a standard Brownian motion, we deduce that

{G k } k 1 law = ∞ 0 e k (t)dB t k 1
, these two sequences being indeed centered, Gaussian and having the same covariance structure. Using (2.6) we deduce that S q,n has the same distribution than I q n k=1 e ⊗q k (with I q the q-tuple Wiener-Itô integral associated to B).

Hence, to reach the conclusion of point 1 it suffices to combine Corollary 4.8 with Theorem 5.1. For point 2, just use Corollary 4.8 and Theorem 5.2, together with the fact that the distribution of R H (t) is determined by its moments (as is the case for any double Wiener-Itô integral). put W (0) = X. Fix s ≥ 1 and write for k = 1, 2 and n ≥ 1, is dropped (observe that this notation bears no ambiguity: indeed, since a k,n vanishes on diagonals, each string i 1 , . . . , i q k contributing to the definition of V k,n,s contains the symbol s exactly once). For each s and k, note that U k,n,s and V k,n,s are independent of the variables X s and G s , and that

U k,n,s = i 1 ,...,iq k i 1 =s,...,iq k =s a k,n (i 1 , . . . , i q k )W (s) i 1 . . . W (s) iq k , V k,n,s = i 1 ,...,iq k ∃j: i j =s a k,n (i 1 , . . . , i q k )W (s) i 1 . . . W (s) s . . . W (s) iq k = q k ∞ i 2 ,...,iq k =1 a k,n (s, i 2 , . . . , i q k )W (s) i 2 . . . W ( 
Q k,n (W (s-1) ) = U k,n,s + X s V k,n,s and Q k,n (W (s) ) = U k,n,s + G s V k,n,s .
By the binomial formula, using the independence of X s from U k,n,s and V k,n,s , we have

E[Q 1,n (W (s-1) ) M Q 2,n (W (s-1) ) N ] = M i=0 N j=0 M i N j E[U M -i 1,n,s U N -j 2,n,s V i 1,n,s V j 2,n,s ]E[X i+j s ].
Similarly,

E[Q 1,n (W (s) ) M Q 2,n (W (s) ) N ] = M i=0 N j=0 M i N j E[U M -i 1,n,s U N -j 2,n,s V i 1,n,s V j 2,n,s ]E[G i+j s ].
Therefore

E[Q 1,n (W (s-1) ) M Q 2,n (W (s-1) ) N ] -E[Q 1,n (W (s) ) M Q 2,n (W (s) ) N ] = i+j≥3 M i N j E[U M -i 1,n,s U N -j 2,n,s V i 1,n,s V j 2,n,s ] E[X i+j s ] -E[G i+j s ] .
Now, observe that Propositions 3.11, 3.12 and 3.16 of [START_REF] Mossel | Noise stability of functions with low influences: invariance and optimality[END_REF] imply that both (U a k,n (s, i 2 , . . . , i q k ) 2 , where lim n→∞ ǫ n = 0 and C is independent of n, s. We conclude that

E[Q 1,n (W (s-1) ) M Q 2,n (W (s-1) ) N ] -E[Q 1,n (W (s) ) M Q 2,n (W (s) ) N ] ≤ Cǫ n 2 k=1 ∞ i 2 ,...,iq k =1
a k,n (s, i 2 , . . . , i q k ) 2 , where C does not depend on n, s. Since, for fixed k, n, Q k,n (W (s) ) → Q k,n (G) in L 2 (Ω) as s → ∞, by Propositions 3.11, 3.12 and 3.16 of [START_REF] Mossel | Noise stability of functions with low influences: invariance and optimality[END_REF], the convergence holds in all L p (Ω).

Hence

E[Q 1,n (X) M Q 2,n (X) N ] -E[Q 1,n (G) M Q 2,n (G) N ] ≤ ∞ s=1 E[Q 1,n (W (s-1) ) M Q 2,n (W (s-1) ) N ] -E[Q 1,n (W (s) ) M Q 2,n (W (s) ) N ] ≤ Cǫ n 2 k=1 ∞ i 1 ,...,iq k =1
a k,n (i 1 , i 2 , . . . , i q k ) 2 = C (q 1 !) -1 + (q 2 !) -1 ǫ n .

This proves (5.38).

Step 2. We show that n → ∞,

E[Q 1,n (X) M ] -E[Q 1,n (G) M ] → 0 and E[Q 2,n (X) N ] -E[Q 2,n (G) N ] → 0.
(5.40)

The proof is similar to Step 1 (and easier). Thus, we omit it.

Step 3. Without loss of generality we may and do assume that G k = B k -B k-1 , where B is a standard Brownian motion. For k = 1, 2 and n 1, due to the multiplication formula (2.10), Q k,n (G) is a multiple Wiener-Itô integral of order q k with respect to B:

Q k,n (G) = I q k   ∞ i 1 ,...,iq k =1 a k,n (i 1 , . . . , i q k )1 [i 1 -1,i 1 ]×...×[iq k -1,iq k ]   .
In this setting, condition (5.36) coincides with condition (γ) of Theorem 3.1 (or (c) of Theorem 3.4). Therefore,

E[Q 1,n (G) M Q 2,n (G) N ] -E[Q 1,n (G) M ]E[Q 2,n (G) N ] → 0.
(5.41)

Combining (5.38), (5.40) and (5.41) we get the desired conclusion (5.37).

Remark 5.5. The conclusion of Theorem 5.4 may fail if either (5.35) or (5.36) are not satisfied. It follows from Step 3 above that the theorem fails when (5.36) does not hold and X is Gaussian. Theorem 5.4 also fails when (5.35) is not satisfied, (5.36) holds, and X is a Rademacher sequence, as we can see from the following counterexample. Consider q 1 = q 2 = 2, and set a 1,n (i, j) = 1 4 1 {1} (i)1 {2} (j) + 1 {2} (i)1 {1} (j) + 1 {1} (i)1 {3} (j) + 1 {3} (i)1 {1} (j) a 2,n (i, j) = 1 4 1 {2} (i)1 {4} (j) + 1 {4} (i)1 {2} (j) -1 {3} (i)1 {4} (j) -1 {4} (i)1 {3} (j) .

Then Q 1,n (X) = 1 2 X 1 (X 2 + X 3 ) and Q 2,n (X) = 1 2 X 4 (X 2 -X 3 ), where X i are i.i.d. with P (X i = 1) = P (X i = -1) = 1/2. It is straightforward to check that (5.36) holds and obviously (5.35) is not satisfied. Since Q 1,n (X)Q 2,n (X) = 0, we get

0 = E[Q 1,n (X) 2 Q 2,n (X) 2 ] = E[Q 1,n (X) 2 ]E[Q 2,n (X) 2 ],
implying in particular that Q 1,n (X) and Q 2,n (X) are (asymptotically) moment-dependent.

  otherwise the inductive step follows immediately. Let δ denote the divergence operator in the sense of Malliavin calculus and let D be the Malliavin derivative, see [10, Ch. 1.2-1.3]. Using the duality relation [10, Def. 1.3.1(ii)] and the product rule for the Malliavin derivative [3, Theorem 3.4] we get

and then choose b 3 ⊂

 3 [M] such that |b 3 | = q j and |b 3 ∩ (b 1 ∪ b 2 )| = r. It follows that b 1 ∪ b 2 ∪ b 3 = [M] and b 1 ∩ b 2 ∩ b 3 = ∅. Therefore, each element of [M] belongs exactly to one or two b i 's. Let J = {j ∈ [M] : j belongs to two sets b i } and put

Remark 3 . 5 .

 35 Condition (b) of Theorem 3.4 is equivalent to (b') for every 1≤ k = l ≤ d lim n→∞ Cov( (F i,n ) i∈I k 2 , (F i,n ) i∈I l 2 ) = 0,where • denotes the Euclidean norms in R |I k | and R |I l | respectively.Proof. Indeed, condition (b) of Theorem 3.4 implies (b') and the converse follows from

  d are independent; (iii) condition (b) or (c) of Theorem 3.4 holds [equivalently, (β) or (γ) of Theorem 3.1 when all I k are singletons]; (iv) L(U i ) is determined by its moments for each i ∈ I.

4 . Applications 4 . 1 .

 441 The fourth moment theorem ofNualart-Peccati. 

3 4 . 4 .

 344 are i.i.d. standard exponential random variables. Bivariate convergence.

  t 1 , . . . , t p )g(t p+1 , . . . , t p+q ) Card{σ ∈ S p+q : {1, . . . , p} ∩ {σ(p + 1), . . . , σ(p + q)} = r}.

	×f (t σ(1) , . . . , t σ(p) )g(t σ(p+1) , . . . , t σ(p+q) )dµ(t 1 ) . . . dµ(t p+q ) f ⊗ r g 2 and (2.14) follows. = p∧q 1 (p + q)! r=0

  1,n,s ) n,s≥1 and (U 2,n,s ) n,s≥1 are uniformly bounded in all L p (Ω) spaces. It also implies that, for any p 3,k = 1, 2 and n, s ≥ 1, E[|V k,n,s | p ] 1/p C p E[V 2 k,n,s ] 1/2, where C p depends only on p. Hence, for 0 ≤ i ≤ M, 0 ≤ j ≤ N, i + j ≥ 3, we haveE[U M -i 1,n,s U N -j 2,n,s V i 1,n,s V j 2,n,s ] ≤ C E[V 2 1,n,s ] i/2 E[V 2 2,n,s ] j/2 ,(5.39)where C does not depend on n, s≥ 1. Since E[X i ] = E[G i ] = 0 and E[X 2 i ] = E[G 2 i ] = 1, we get E[V 2 k,n,s ] = q k q k ! ∞ i 2 ,...,iq k =1 a k,n (s, i 2 , . . . , i q k ) 2 . ,...,iq 1 =1 a 1,n (i, i 2 , . . . , i q 1 ) 2 ,...,iq 1 =1 a 1,n (s, i 2 , . . . , i q 1 ) 2 ,where C does not depend on n, s ≥ 1, and we get a similar bound when j ≥ 3. If i = 2, then j ≥ 1 (i + j ≥ 3), so (5.39) isz bounded from above by ,...,iq 2 =1 a 2,n (i, i 2 , . . . , i q 2 ) 2 ,...,iq 1 =1 a 1,n (s, i 2 , . . . , i q 1 ) 2 , and we have a similar bound when j = 2. Taking into account assumption (5.35) we infer that the upper-bound for (5.39) is of the form

	When i ≥ 3, then (5.39) is bounded from above by C   sup i≥1 ∞  (i-2)/2 i 2  i 2 C   sup i≥1 ∞  j/2 i 2  i 2 Cǫ n 2 ∞	∞ ∞
	k=1	i

2 ,...,iq k =1
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Moment-independence for discrete homogeneous chaos.

To develop the next application we will need the following basic ingredients: (i) A sequence X = (X 1 , X 2 , . . .) of i.i.d. random variables, with mean 0, variance 1 and all moments finite. (ii) Two positive integers q 1 , q 2 as well as two sequences a k,n : N q k → R, n 1 of real-valued functions satisfying for all i 1 , . . . , i q k ≥ 1 and k = 1, 2, (a) [symmetry] a k,n (i 1 , . . . , i q k ) = a k,n (i σ(1) , . . . , i σ(q k ) ) for every permutation σ;

(5.34)

We have the following result.

Theorem 5.4. As n → ∞, assume that the contribution of each

and that, for any r = 1, . . . , q 1 ∧ q 2 , ∞ i 1 ,...,i q 1 +q 2 -2r =1 ∞ l 1 ,...,lr=1 a 1,n (l 1 , . . . , l r , i 1 , . . . , i q 1 -r )a 2,n (l 1 , . . . , l r , i q 1 -r+1 , . . . , i q 1 +q 2 -2r ) 2 → 0.

(5.36) Then Q 1,n (X) and Q 2,n (X) are asymptotically moment-independent.

Proof: Fix M, N 1. We want to prove that, as n → ∞,

(5.37)

The proof is divided into three steps.

Step 1. In this step we show that

Following the approach of Mossel, O'Donnel and Oleszkiewicz [START_REF] Mossel | Noise stability of functions with low influences: invariance and optimality[END_REF], we will use the Lindeberg replacement trick. Let G = (G 1 , G 2 , . . .) be a sequence of i.i.d. N(0, 1) random variables independent of X. For a positive integer s, set W (s) = (G 1 , . . . , G s , X s+1 , X s+2 , . . .), and