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)). This is the first paper studying Poisson approximations on configuration spaces by combining the Malliavin calculus of variations and the Chen-Stein method.

Introduction and motivation

The aim of this paper is to combine two powerful probabilistic techniques, namely the Chen-Stein method (see e.g. [START_REF] Barbour | Poisson approximation[END_REF][START_REF] Erhardsson | Stein's method for Poisson and compound Poisson approximation[END_REF]) and the Malliavin calculus of variations (see e.g. [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF][START_REF] Privault | Stochastic analysis in discrete and continuous settings with normal martingales[END_REF]), in order to study Poisson approximations for functionals of general Poisson random measures. One of our principal achievements is a general inequality on the Poisson space (see Theorem 3.1), assessing the distance in total variation between the law of a Poisson random variable and the law of a (sufficiently regular) integer-valued Poisson functional. As discussed below, a strong motivation comes from applications in stochastic geometry: in particular, our results allow to generalize, explain and refine some recent findings by Lachièze-Rey and Peccati [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF], dealing with the asymptotic behavior of general random graphs on an Euclidean space. Another remarkable application provided in the paper is a Poisson convergence result for sequences of 'perturbed multiple integrals' (see Theorem 4.10), extending several existing central limit theorems (CLTs) for multiple Wiener-Itô integrals (see e.g. [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF][START_REF] Peccati | Multi-dimensional Gaussian fluctuations on the Poisson space[END_REF] and [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], respectively, for statements in the Poisson and in the Gaussian frameworks).

Historically, the work [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] has been the first paper combining Stein's method for normal approximations (see [START_REF] Chen | Normal Approximation by Stein's Method[END_REF]) with Malliavin calculus on a Gaussian space. This reference has been the seed of many generalizations and applications, for instance to fractional processes, density estimates and harmonic analysis of Gaussian-subordinated fields on homogenous spaces. See e.g. [START_REF] Nourdin | Normal approximations using Malliavin calculus: from Stein's method to universality[END_REF] for a presentation of the general theory, and [START_REF] Marinucci | Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications[END_REF] for several applications to the statistical analysis of spherical random fields.

The present work is a natural continuation of the findings contained in [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF], where the authors combined Stein's method with a version of the Malliavin calculus on the Poisson space (due to Nualart and Vives [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF]) in order to compute explicit bounds for CLTs involving functionals of general Poisson measures; see also [START_REF] Peccati | Multi-dimensional Gaussian fluctuations on the Poisson space[END_REF] for analogous statements in a multi-dimensional setting. The two works [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF][START_REF] Peccati | Multi-dimensional Gaussian fluctuations on the Poisson space[END_REF] have recently triggered many applications in stochastic geometry. The most notable papers in this respect are the following: reference [START_REF] Reitzner | Central Limit Theorems for U -Statistics of Poisson Point Processes[END_REF] lays the foundations of a general asymptotic theory for geometric U -statistics; reference [START_REF] Schulte | A Central Limit Theorem for the Poisson-Voronoi Approximation[END_REF] deals with CLTs for Poisson-Voronoi approximations; reference [START_REF] Schulte | Exact and asymptotic results for intrinsic volumes of Poisson k-flat processes[END_REF] focuses on intrinsic volumes of Poisson k-flat processes; reference [START_REF] Decreusefond | Simplicial Homology of Random Configurations[END_REF] provides an analysis of statistics associated with geometric random graphs on a torus; finally, reference [START_REF] Minh | Malliavin-Stein method for multi-dimensional U-statistics of Poisson point processes[END_REF] proves several multidimensional generalizations.

In [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF], the analysis started in [START_REF] Reitzner | Central Limit Theorems for U -Statistics of Poisson Point Processes[END_REF] has been extended in order to prove several necessary and sufficient criteria for the normal approximation of random variables having a finite chaotic expansion (based on the use of contraction operators -see Section 4.1 below), as well as to deduce an exhaustive asymptotic characterization of the edge-counting statistics associated with general stationary graphs. In the next subsection, we shall present an overview of the results established in [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF] that have provided the impetus for the analysis developed in the present paper.

Remark 1.1 Other references related to the content of this paper are [START_REF] Kemp | Wigner chaos and the fourth moment[END_REF] and [START_REF] Nourdin | Poisson approximations on the free Wigner chaos[END_REF], dealing respectively with the semicircular and the Marchenko-Pastur convergence in the setting of free probability. Note that the Marchenko-Pastur distribution is the free analogous of the Poisson law in classical probability theory. See also [START_REF] Deya | Convergence of Wigner integrals to the tetilla law[END_REF] for some non-standard free limit theorems, as well as a striking connection with the spanish cheese industry.

Motivation: edge counting in random geometric graphs

Consider an integer d 1, and fix the following notation: -H λ is a symmetric subset of Z × Z such that: (i) ℓ 2 (H λ ) < ∞, and (ii) there exist

W := - 1 2 , 1 2 d , Ŵ := [-1, 1] d , W := - 1 4 , 1 
H λ ⊂ Z such that 0 / ∈ H λ and H λ = {(x, y) ∈ Z × Z : x -y ∈ H λ }.
-

F λ = x,y∈η λ ∩W 1 H λ (x, y), F ⋆ λ := 1 2 F λ and Fλ := (F λ -E[F λ ])/ Var(F λ ).
Note that the random variable F ⋆ λ equals the number of edges in the random graph obtained by taking as vertices the points of the support of η λ contained in W , and then by connecting two vertices x, y if and only if (x, y) ∈ H λ . Since H λ does not contain 0, the graph obtained in this way has no loops, that is, no vertices of the type {x, x}. Since H λ is symmetric, one has necessarily that H λ = -H λ .

-The three occupation coefficients introduced in [11, formulae (4.37)-(4.39)]:

ψ(λ) := ℓ(H λ ∩ W ), ψ(λ) := ℓ(H λ ∩ Ŵ ), ψ(λ) := ℓ(H λ ∩ W ). Remark 1.2
1. This class of geometric models contains the so-called Gilbert graphs, obtained by taking

H λ = {(x, y) ∈ R d × R d : 0 < x -y R d < δ λ },
where λ → δ λ is a suitable mapping with values in R + . Graphs corresponding to the cases d = 1 and d = 2 are called, respectively, interval graphs and disk graphs. See e.g. [START_REF] Clark | Unit disk graphs[END_REF][START_REF] Decreusefond | Simplicial Homology of Random Configurations[END_REF][START_REF] Penrose | Random Geometric Graphs[END_REF].

2. Since H λ can be represented in terms of the set H λ , we say that the random graph described above is stationary -see again [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF].

The following result is one of the main findings of [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF]: it provides an exhaustive description of the asymptotic fluctuations of the family {F λ }, under an additional regularity assumption on the occupation coefficients ψ, ψ.

Theorem 1.3 (See Theorems 4.9-4.11 in [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF]) Assume that ψ(λ) ≍ ψ(λ), and consider a standard Gaussian random variable X ∼ N (0, 1). The following three properties are in order as λ → ∞:

(i) If λψ(λ) → ∞ or λψ(λ) ≍ 1, then there exists a finite constant K > 0 (independent of λ) such that d W ( Fλ , X) Kλ -1/2
, where d W ( Fλ , X) indicates the Wasserstein distance between the laws of Fλ and X, so that Fλ converges to X in distribution.

(ii) If λψ(λ) → 0, then Var(F λ ) ≍ λ 2 ψ(λ). If in addition λ 2 ψ(λ) → ∞, then there exists a constant K > 0 such that d W ( Fλ , X) K λ ψ(λ) -1
, and consequently Fλ converges to X in distribution.

(iii) Assume that λψ(λ) → 0 (so that Var(F λ ) ≍ λ 2 ψ(λ)), and that the mapping λ → λ 2 ψ(λ) is bounded. If there exists a finite constant c > 0 such that 2. If the constant c at Point (iii) of the previous statement is equal to zero, then one can prove by a direct argument that Fλ → 0 in L 1 .

Var(F λ ) → 2c, then E[F ⋆ λ ] → c/
3. For every λ > 0, the following equality in law holds:

F λ Law = x,y∈η∩Q λ ,x =y 1 x-y∈G λ , λ > 0, (1.1) 
where η is a random Poisson measure with Lebesgue intensity, and G λ is a measurable subset of R d defined by the relation

H λ = λ -1/d G λ . (1.2) 
Point (iii) in Theorem 1.3 was proved in [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF] by the method of moments, and no information was given about the associated rate of convergence towards the limiting Poisson distribution. In Section 5, we will apply the main estimates established in this paper in order to compute an explicit upper bound for the quantity d T V (F ⋆ λ , Po(c/2)), where d T V indicates the total variation distance between the laws of F ⋆ λ and Po(c/2). The remainder of the paper is organized as follows. Section 2 contains some preliminary results concerning stochastic analysis on the Poisson space. Section 3 deals with the main estimates proved in the paper. Section 4 contains an application to the Poisson approximation of multiple Wiener-Itô integrals. Finally, in Section 5 an explicit bound for Point (iii) of Theorem 1.3 is computed.

Acknowledgment. I am grateful to Raphaël Lachièze-Rey for many fundamental conversations about the topics studied in this paper.

Framework

In what follows, the triple (Z, Z , µ) indicates a measure space such that Z is a Borel space, Z is the associated Borel σ-field, and µ is a non-atomic σ-finite Borel measure. We define Z µ := {B ∈ Z : µ(B) < ∞}. Throughout the paper, we write η = {η(B) : B ∈ Z µ } to indicate a Poisson measure on (Z, Z ) with control µ. This means that η is a collection of random variables defined on some probability space (Ω, F , P ), indexed by the elements of Z µ and such that: (a) for every B, C ∈ Z µ such that B ∩ C = ∅, the random variables η(B) and η(C) are independent, and (b) for every B ∈ Z µ , η(B) has a Poisson distribution with mean µ(B). We shall often write η(B) = η(B)-µ(B), B ∈ Z µ , and η = {η(B) : B ∈ Z µ }. The reader is referred e.g. to [START_REF] Peccati | Wiener chaos: moments, cumulants and diagrams[END_REF] for a general introduction to random measures of the Poisson type. By a slight abuse of notation, we shall sometimes write x ∈ η in order to indicate that the point x ∈ Z is charged by the random measure η(•).

Remark 2.1 By virtue of the specific structure of the space (Z, Z , µ), we can assume throughout the paper that (Ω, F , P ) and η are such that

Ω =    ω = n j=1 δ z j , n ∈ N ∪ {∞}, z j ∈ Z    ,
where δ z denotes the Dirac mass at z, and η is defined as the canonical mapping:

(ω, B) → η(B)(ω) = ω(B), B ∈ Z µ , ω ∈ Ω.
Finally, the σ-field F will be always supposed to be the P -completion of the σ-field generated by η.

Chaos and Malliavin calculus

Given a real p ∈ [1, ∞), the symbol L p (µ) is shorthand for L p (Z, Z , µ). For an integer q 2, we shall write L p (µ q ) := L p (Z q , Z ⊗q , µ q ), whereas L p s (µ q ) stands for the subspace of L p (µ q ) composed of functions that are µ q -almost everywhere symmetric. We also adopt the convention

L p (µ) = L p s (µ) = L p (µ 1 ) = L p s (µ 1
) and use the following notation: for every q 1 and every

f, g ∈ L 2 (µ q ), f, g L 2 (µ q ) = Z q f (z 1 , ..., z q )g(z 1 , ..., z q )µ q (dz 1 , ..., dz q ), f L 2 (µ q ) = f, f 1/2 L 2 (µ q ) .
For every f ∈ L 2 (µ q ), we denote by f the canonical symmetrization of f . Plainly,

f L 2 (µ q ) f L 2 (µ q ) .
Definition 2.2 For every deterministic function h ∈ L 2 (µ), we write

I 1 (h) = η(h) = Z h(z)η(dz)
to indicate the Wiener-Itô integral of h with respect to η. For every q 2 and every f ∈ L 2 s (µ q ), we denote by I q (f ) the multiple Wiener-Itô integral, of order q, of f with respect to η. We also set I q (f ) = I q ( f ), for every f ∈ L 2 (µ q ) (not necessarily symmetric), and I 0 (b) = b for every real constant b.

The reader is referred for instance to [START_REF] Peccati | Wiener chaos: moments, cumulants and diagrams[END_REF]Chapter 5] for an exhaustive discussion of multiple Wiener-Itô integrals and their properties (including the forthcoming Proposition 2.3 and Proposition 2.4).

Proposition 2.3

The following equalities hold for every q, m 1, every f ∈ L 2 s (µ q ) and every g ∈ L 2

s (µ m ):

1. E[I q (f )] = 0, 2. E[I q (f )I m (g)] = q! f, g L 2 (µ q ) 1 (q=m) (isometric property).
The Hilbert space composed of the random variables with the form I q (f ), where q 1 and f ∈ L 2 s (µ q ), is called the qth Wiener chaos associated with the Poisson measure η. The following well-known chaotic representation property is an fundamental feature of Poisson random measures. Recall that F is assumed to be generated by η.

Proposition 2.4 (Wiener-Itô chaotic decomposition) Every random variable

F ∈ L 2 (Ω, F , P ) := L 2 (P )
admits a (unique) chaotic decomposition of the type

F = E[F ] + ∞ i=1 I i (f i ), (2.3) 
where the series converges in L 2 (P ) and, for each i 1, the kernel

f i is an element of L 2 s (µ i ).
For the rest of the paper, we shall use definitions and results associated with the Malliavintype operators defined on the space of functionals of the Poisson measure η. Our formalism coincides with the one introduced by Nualart and Vives in [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF]. A more recent introduction to the Malliavin calculus on the Poisson space can be found in Privault's monograph [START_REF] Privault | Stochastic analysis in discrete and continuous settings with normal martingales[END_REF]; for the convenience of the reader, some basic definitions and results are presented in the Appendix (see Section 6). In particular, we shall denote by D, δ, L and L -1 , respectively, the Malliavin derivative, the divergence operator, the Ornstein-Uhlenbeck generator and its pseudo-inverse. The domains of D, δ and L are written dom D, dom δ and dom L. The domain of L -1 is given by the subclass of L 2 (P ) composed of centered random variables. Given a not necessarily centered F ∈ L 2 (P ), one sets by convention

L -1 F = L -1 (F -E(F )), so that LL -1 F = F -E(F )
for every F ∈ L 2 (P ). Since the underlying probability space Ω is assumed to be the collection of discrete measures described in Remark 2.1, one can meaningfully define the random variable ω → F z (ω) = F (ω + δ z ), ω ∈ Ω, for every given random variable F and every z ∈ Z, where δ z is the Dirac mass at z. One therefore has the following neat representation of D as a difference operator:

Lemma 2.5 For each F ∈ domD, D z F (ω) = F z (ω) -F (ω), a.s.-P (dω), a.e.

-µ(dz).

A proof of Lemma 2.5 is given in [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF].

A general inequality on the Poisson space

The following result is the main finding of the paper. As anticipated in the Introduction, the proof makes use of the so-called Chen-Stein method for Poisson approximations. A classic reference on the subject is the book by Barbour et al. [START_REF] Barbour | Poisson approximation[END_REF]; more recent references are the two surveys [START_REF] Chatterjee | Exchangeable pairs and Poisson approximation[END_REF][START_REF] Erhardsson | Stein's method for Poisson and compound Poisson approximation[END_REF]. Recall that the total variation distance between the laws of two random variables X, Y with values in Z + := {0, 1, 2, ...} is given by

d T V (X, Y ) = sup A⊂Z + |P (X ∈ A) -P (Y ∈ A)| = 1 2 k 0 |P (X = k) -P (Y = k)|. (3.4)
Of course, the topology induced by d T V on the class of all probability laws on Z + is strictly stronger than the topology induced by convergence in distribution. Given a function f : Z + → R, we denote by ∆f the forward difference given by ∆f (k) := f (k + 1) -f (k), k = 0, 1, 2, ... ; we also use the symbol ∆ 2 f = ∆(∆f ). Finally, we write 

f ∞ = sup k∈Z + |f (k)|.
d T V (F, Po(c)) 1 -e -c c E c -DF, -DL -1 F L 2 (µ) (3.5) + 1 -e -c c 2 E Z D z F (D z F -1) D z L -1 F µ(dz) (3.6) 1 -e -c c E c -DF, -DL -1 F L 2 (µ) 2 (3.7) 
+ 1 -e -c c 2 E Z D z F (D z F -1) D z L -1 F µ(dz) . Remark 3.2 1.
Let F be a centered element of dom D such that E(F 2 ) = 1, and let Z ∼ N (0, 1) be a standard Gaussian random variable. In [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF]Theorem 3.1], it is proved that

d W (F, Z) E 1 -DF, -DL -1 F L 2 (µ) (3.8) +E Z (D z F ) 2 D z L -1 F µ(dz) , (3.9) 
where d W denotes the Wasserstein distance between the laws of two random variables.

2. If F = η(A), where µ(A) = c, then one has that D z F = -D z L -1 F = 1 A (z), and therefore c -DF, -DL -1 F L 2 (µ) = Z D z F (D z F -1) D z L -1 F µ(dz) = 0, as expected. 3. Let c, c ′ > 0. Standard computations (see e.g. [1, Corollary 3.1]) yield that d T V (Po(c), Po(c ′ )) |c -c ′ |. (3.10)
It follows that the content of Theorem 3.1 can be extended to a random variable F with arbitrary positive expectation E(F ) = c ′ by using the triangular inequality:

d T V (F, Po(c)) d T V (Po(c ′ ), Po(c)) + d T V (F, Po(c ′ )) |c -c ′ | + d T V (F, Po(c ′ )).

Integrating by parts, one sees that

E[ DF, -DL -1 F L 2 (µ) ] = Var(F ).
Proof of Theorem 3.1. For every A ⊂ Z + , we denote by f A : Z + → R the unique solution to the Chen-Stein equation

1 A (k) -P (Po(c) ∈ A) = cf (k + 1) -kf (k), k = 0, 1, ...,
verifying the boundary condition ∆ 2 f (0) = 0. Combining e.g. [9, Theorem 2.3] with [6, Theorem 1.3 and pp. 583-584], we immediately deduce the estimates

f A ∞ min 1, 2 ce , ∆f A ∞ 1 -e -c c , and 
∆ 2 f A ∞ 2 -2e -c c 2 . (3.11)
Using the relation δD = -L one infers that

P (Po(c) ∈ A) -P (F ∈ A) = E[F f A (F ) -cf A (F + 1)] = E[(F -c)f A (F ) -c∆f A (F )] = E[δ(-DL -1 F )f A (F ) -c∆f A (F )].
Integrating by parts yields

E[δ(-DL -1 F )f A (F )] = E[ Df A (F ), -DL -1 F L 2 (µ) ],
where, by virtue of Lemma 2.5,

D z f A (F ) = f A (F + D z F ) -f A (F ).
Observe that Lemma 2.5 implies that, since F takes values in Z + , then one can always choose a version of D z F with values in Z, in such a way that F + D z F = F z takes values in Z + . Now, for every f : Z + → R and every k, a ∈ Z + such that k > a, one has that

f (k) = f (a) + ∆f (a)(k -a) + k-1 j=a ∆ 2 f (j)(k -1 -j);
on the other hand, when k, a ∈ Z + are such that k < a,

f (k) = f (a) + ∆f (a)(k -a) + a-1 j=k ∆ 2 f (j)(j + 1 -k).
These two relations yield that, for every k, a ∈ Z + ,

|f (k) -f (a) -∆f (a)(k -a)| ∆ 2 f ∞ 2 |(k -a)(k -a -1)| .
Taking a = F and k = F z , one therefore deduces that

D z f A (F ) = ∆f A (F )D z F + R z ,
where R z is a residual random function verifying

|R z | ∆ 2 f A ∞ 2 |D z F (D z F -1)| , z ∈ Z.
As a consequence,

P (Po(c) ∈ A) -P (F ∈ A) = E[ Df A (F ), -DL -1 F L 2 (µ) -c∆f A (F )] = E ∆f A (F )( DF, -DL -1 F L 2 (µ) -c) -E Z (R z × D z L -1 F ) µ(dz),
and the desired conclusion follows by taking absolute values on both sides, as well as by applying the estimates (3.11). Inequality (3.7) follows the Cauchy-Schwarz inequality.

2

The following statement is an immediate consequence of Theorem 3.1.

Proposition 3.3 (Poisson limit theorems) Fix c > 0. Let {F n : n 1} ⊂ dom D be a sequence of random variables with values in Z + such that E[F n ] → c, as n → ∞. Assume that, as n → ∞, 1. E c -DF n , -DL -1 F n L 2 (µ) → 0, and 
2. E Z D z F n (D z F n -1) D z L -1 F n µ(dz) → 0.
Then, lim n→∞ d T V (F n , Po(c)) → 0 and F n converges in distribution to Po(c).

Remark 3.4 It is well known that the Poisson distribution is determined by its moments (see e.g. [21, p. 42-43]). It follows that, in order to prove that a given sequence

{F n } converges in distribution to Po(c), it is sufficient to prove that E[F k n ] → E[Po(c) k ],
for every integer k 1. This is the so called 'method of moments', requiring a determination of all moments associated with each F n . Although popular in a Gaussian setting (see [START_REF] Peccati | Wiener chaos: moments, cumulants and diagrams[END_REF] for an overview), such a technique is extremely demanding (and very little used) in the framework of Poisson measures. This is mainly due to the fact that the combinatorial structures involved in the socalled 'diagram formulae' (that are mnemonic devices used to compute moments by means of combinatorial enumerations -see [START_REF] Peccati | Wiener chaos: moments, cumulants and diagrams[END_REF]Chapter 4]) become quickly too complex to be effectively put into use. One should compare this situation with the statement of Proposition 3.3, which only involves two sequences of mathematical expectations. In the forthcoming Sections 4-5 we will see that, in many applications, in order to check Points 1 and 2 in Proposition 3.3 one is naturally led to assess and control expressions that are only related to the second, third and fourth moments of the sequence {F n }.

Applications to multiple Wiener-Itô integrals

In this section, we use Theorem 3.1 in order to establish Poisson convergence results for general sequences of Z + -valued random variables of the type

F n = x n + B n + I q (f n ), n 1, (4.12) 
where: (i) {x n : n 1} is a sequence of positive real numbers, (ii) q 2 is an integer independent of n, (iii) I q indicates a multiple Wiener-Itô integral of order q, with respect to the compensated measure η, where η is a Poisson measure on the Borel space (Z, Z ) with σ-finite and non-atomic control measure µ, (iv) f n ∈ L 2 s (µ q ), and (v) {B n : n 1} is a smooth vanishing perturbation, in the sense of the forthcoming Definition 4.2.

Remark 4.1

1. In the statement of the forthcoming Theorem 4.10, we shall implicitly allow that the underlying Poisson measure η also changes with n. In particular, one can assume that the associated control measure µ = µ n explicitly depends on n. As discussed in Section 5, this general framework is useful for geometric applications.

2. We consider perturbed sequences of multiple integrals because, in general, it is not clear whether a non-trivial random variable of the type x + I q (f ), where x ∈ R + and q 2, can take values in Z + , and therefore whether Theorem 3.1 can be directly applied. However, as seen e.g. in Section 5, in applications one often encounters sequences of integer-valued random variables whose chaotic decomposition is such that all terms except one vanish asymptotically.

Definition 4.2 (Smooth vanishing perturbations)

A sequence {B n : n 1} ⊂ L 2 (P ) is called a smooth vanishing perturbation if B n , L -1 B n ∈ dom D for every n 1, and the following properties hold: ), one sees that the following inequalities are always verified:

lim n→∞ E[B 2 n ] = 0 (4.13) lim n→∞ E DB n 2 L 2 (µ) = lim n→∞ E DL -1 B n 2 L 2 (µ) = 0, (4.14 
E DB n 2 L 2 (µ) E DL -1 B n 2 L 2 (µ) , E DB n 4 L 4 (µ) E DL -1 B n 4 L 4 (µ) .
Remark 4. [START_REF] Chen | Normal Approximation by Stein's Method[END_REF] The following conditions (a)-(b) are sufficient in order for a given sequence {B n } to be a smooth vanishing perturbation.

(a) There exists an integer M 1, independent of n, such that

B n = M i=1 I i (g i,n ) := M i=1 B i,n , n 1,
where g i,n ∈ L 2 s (µ i ) for every i = 1, ..., M . Note that these assumptions imply that E[B n ] = 0 and B n , B i,n ∈ dom D for every n and every i.

(b) As n → ∞, for every i = 1, ..., M , E[B 2 n ] → 0, E Z (D z B i,n ) 2 µ(dz) → 0, and E Z (D z B i,n ) 4 µ(dz) → 0. (4.16)
Explicit examples of smooth vanishing perturbations appear in Section 5 -see in particular Remark 5.2.

Digression: stars and products

In order to state and prove the main results of this section, it is now necessary to introduce contraction operators and to discuss their role in product formulae.

The kernel f ⋆ l r g on Z p+q-r-l , associated with functions f ∈ L 2 s (µ p ) and g ∈ L 2 s (µ q ), where p, q 1, r = 1, . . . , p ∧ q and l = 1, . . . , r, is defined as follows:

f ⋆ l r g(γ 1 , . . . , γ r-l , t 1 , , . . . , t p-r , s 1 , , . . . , s q-r ) (4.17)

= Z l
µ l (dz 1 , ..., dz l )f (z 1 , , . . . , z l , γ 1 , . . . , γ r-l , t 1 , , . . . , t p-r ) ×g(z 1 , , . . . , z l , γ 1 , . . . , γ r-l , s 1 , , . . . , s q-r ).

As it is evident, the operator ' ⋆ l r ' reduces the number of variables in the tensor product of f and g from p + q to p + q -r -l: this reduction is obtained by first identifying r variables in f and g, and then by integrating out l among them. To deal with the case l = 0 for r = 0, . . . , p ∧ q, we set f ⋆ 0 r g(γ 1 , . . . , γ r , t 1 , , . . . , t p-r , s 1 , , . . . , s q-r ) = f (γ 1 , . . . , γ r , t 1 , , . . . , t p-r )g(γ 1 , . . . , γ r , s 1 , , . . . , s q-r ), and f ⋆ 0 0 g(t 1 , , . . . , t p , s 1 , , . . . , s q ) = f ⊗ g(t 1 , , . . . , t p , s 1 , , . . . , s q ) = f (t 1 , , . . . , t p )g(s 1 , , . . . , s q ).

By using the Cauchy-Schwarz inequality, one sees immediately that f ⋆ r r g is square-integrable for any choice of r = 0, . . . , p ∧ q , and every f ∈ L 2 s (µ p ), g ∈ L 2 s (µ q ). Remark 4.5 For every 1 p q and every r = 1, ..., p,

Z p+q-r (f ⋆ 0 r g) 2 dµ p+q-r = Z r (f ⋆ p-r p f )(g ⋆ q-r q g)dµ r , (4.18) 
for every f ∈ L 2 s (µ p ) and every g ∈ L 2 s (µ q )

The next result is a fundamental product formula for Poisson multiple integrals (see e.g. [START_REF] Peccati | Wiener chaos: moments, cumulants and diagrams[END_REF] for a proof). Proposition 4.6 (Product formula) Let f ∈ L 2 s (µ p ) and g ∈ L 2 s (µ q ), p, q 1, and suppose moreover that f ⋆ l r g ∈ L 2 (µ p+q-r-l ) for every r = 1, . . . , p ∧ q and l = 1, . . . , r such that l = r. Then, with the tilde ∼ indicating a symmetrization.

I p (f )I q (g) =
In order to be able to directly apply the computations contained in [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF]Proof of Theorem 4.2], in what follows we shall always work under the following technical assumption. Assumption 4.7 (Assumption on integrands) Every random variable of the type Y = I q (f ), where q 2 and f ∈ L 2 s (µ q ), considered in the sequel of this paper is such that the following properties (i)-(iii) are verified.

(i) For every r = 1, ...q, the kernel

f i ⋆ q-r q f i is an element of L 2 (µ r ). (ii) Every contraction of the type (z 1 , ..., z 2q-r-l ) → |f i | ⋆ l r |f i |(z 1 , ..., z 2q-r-l
) is well-defined and finite for every r = 1, ..., q, every l = 1, ..., r and every (z 1 , ..., z 2q-r-l ) ∈ Z 2q-r-l .

(iii) For every k = 1, ..., 2q -2 and every (r, l)

verifying k = 2q -2 -r -l, Z Z k (f (z, •) ⋆ l r f (z, •)) 2 dµ k µ(dz) < ∞,
where, for every fixed z ∈ Z, the symbol f (z, •) denotes the mapping (z 1 , ..., z q-1 ) → f (z, z 1 , ..., z q-1 ).

Remark 4.8 According to the discussion contained in [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF], Point (i) in Assumption 4.7 implies that the following properties (a)-(c) are verified:

(a) for every r = 1, ..., q and every l = 1, ..., r, the contraction f ⋆ l r f is a well-defined element of L 2 (µ q i +q j -r-l );

(b) for every r = 1, ..., q, f ⋆ 0 r f is an element of L 2 (µ 2q-r );

(c) for every r = 1, ..., q, and every l = 1, ..., r ∧ (q -1), the kernel f ⋆ l r f is a well-defined element of L 2 (µ 2q-r-l ).

In particular, the multiplication formula (4.19) implies that every random variable Y verifying Assumption 4.7 is such that Y 2 ∈ L 2 (P ), yielding in turn that E[Y 4 ] < ∞. Analogously, one can also show that, under Assumption 4.7, the random variable DY, -DL -1 Y L 2 (µ) is square-integrable (and not merely an element of L 1 (P )).

Remark 4.9 For instance, Assumption 4.7 is verified whenever f is a bounded function with support in a rectangle of the type B × • • • × B, where µ(B) < ∞.

Poisson limit theorems

The following statement contains the main result of the section. Theorem 4.10 (Poisson limit theorems on a perturbed chaos) Fix c > 0 and let Po(c) be a Poisson random variable with mean c. For a fixed q 2, let {F n : n 1} be a Z + -valued sequence as in (4.12), such that x n → c and E[I q (f n ) 2 ] → c. Assume moreover that the following three conditions hold:

(i) For every n 1, the kernel f n verifies Assumption 4.7.

(ii) For every r = 1, ..., q, and every l = 1, ..., r∧(q -1), f n ⋆ l r f n L 2 (µ 2q-r-l ) → 0 (as n → ∞).

(iii) The relation sup n f n L 4 (µ q ) < ∞ holds and, as n → ∞,

Z q f 2 n + q! 2 f 4 n -2q!f 3 n dµ q -→ 0. (4.20) 
Then, d T V (F n , Po(c)) → 0, as n → ∞.

Remark 4.11 1. Condition (4.20) is trivially verified whenever

f n (z 1 , ..., z q ) = 1 q! 1 Hn (z 1 , ..., z q ),
where H n is some measurable symmetric subset of Z q .

2. When q = 2, Conditions (ii) and (iii) in the statement of Theorem 4.10 boil down to the following asymptotic relations

f n ⋆ 1 1 f n L 2 (µ 2 ) → 0, f n ⋆ 1 2 f n L 2 (µ) → 0, and 
Z 2 f 2 n + 4f 4 n -4f 3 n dµ 2 -→ 0.
Theorem 4.10 should be compared with the following central limit result, first proved in [22, Theorem 4.2]. Theorem 4.12 (CLTs on a fixed chaos, see [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF]) Let X ∼ N (0, 1). Fix q 2, and let F n = I q (f n ), n 1, be a sequence of multiple stochastic Wiener-Itô integrals of order q. Suppose that, as n → ∞, E(F 2 n ) → 1. Assume in addition that the following conditions are verified:

(i) For every n 1, the kernel f n verifies Assumption 4.7.

(ii) For every r = 1, ..., q, and every l = 1, ..., r∧(q -1),

f n ⋆ l r f n L 2 (µ 2q-r-l ) → 0 (as n → ∞). (iii) As n → ∞, Z q f 4 n dµ q -→ 0. (4.21) 
Then, F n converges in distribution to X, as n → ∞, in the sense of the Wasserstein distance.

Proof of Theorem 4.10. We have to prove that, if (i)-(iii) are verified, then Point 1 and Point 2 in the statement of Proposition 3.3 hold. The proof is divided into three steps.

Step 1: Computations related to DI q (f n ). One has that D z I q (f n ) = qI q-1 (f n (z, •) and

DI q (f n ), -DL -1 I q (f n ) L 2 (µ) = 1 q DI q (f n ) L 2 (µ) .
Using the computations contained in [22, p. 464], one sees that

{D z I q (f n ) 2 } = q 2 2q-2 p=0 I p (G q-1 p f (z, •)), (4.22) 
where

G q-1 p f (z, •)(z 1 , ..., z p ) = q-1 r=0 r l=0 1 {2q-2-r-l=p} r! q -1 r 2 r l f (z, •) ⋆ l r f (z, •)(z 1 , ..., z p ), (4.23) 
and the stochastic integrals are set equal to zero on the exceptional set composed of those z such that f (z, •) ⋆ l r f (z, •) is not an element of L 2 (µ 2q-2-r-l ) for some r, l. Combining the triangular and Cauchy-Schwarz inequalities with the estimates in [START_REF] Peccati | Stein's method and normal approximation of Poisson functionals[END_REF]Theorem 4.2] (see also [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF]Theorem 3.5] for a more compact statement), one deduces that there exists a constant K, depending uniquely on c and q, such that, writing

E[I q (f n ) 2 ] := y n , E[|c -q -1 DI q (f n ) 2 L 2 (µ) |] |c -y n | + K × max r=1,.
..,q l=1,...,r∧(q-1)

f n ⋆ l r f n L 2 (µ 2q-r-l ) (4.24) E[ DI q (f n ) 4 L 4 (µ) ] K  
 max r=1,...,q l=1,...,r∧(q-1)

f n ⋆ l r f n L 2 (µ 2q-r-l ) + f n 2 L 4 (µ)    . (4.25)
In particular, these relations imply that the sequence n

→ E[ DI q (f n ) k L k (µ) ] is bounded for k = 2, 3, 4.
Step 2: Dealing with B n . Since {B n } is a smooth vanishing perturbation, using the Cauchy-Schwarz inequality and the results from Step 1, one deduces immediately that the sequence

DF n , -DL -1 F n L 2 (µ) -DI q (f n ), -DL -1 I q (f n ) L 2 (µ) = DF n , -DL -1 F n L 2 (µ) - 1 q DI q (f n ) 2 L 2 (µ) = DI q (f n ), -DL -1 B n L 2 (µ) + DB n , -DL -1 I q (f n ) L 2 (µ) + DB n , -DL -1 B n L 2 (µ)
converges to zero in L 1 (P ). Exploiting in a similar way the fact that {B n } is a smooth vanishing perturbation together with the bounded character of E[ DI q (f n ) 2 L 2 (µ) ] and E[ DI q (f n ) 4 L 4 (µ) ], one also deduces that

E Z D z F n (D z F n -1) D z L -1 F n µ(dz) - Z D z I q (f n ) (D z I q (f n ) -1) D z L -1 I q (f n ) µ(dz) → 0.
Now observe that, thanks to (4.24) and Assumption (ii) in the statement,

E[|c -q -1 DI q (f n ) 2 L 2 (µ) |] → 0, n → ∞.
It follows that the proof is concluded once we prove that, as n → ∞,

E Z D z I q (f n ) (D z I q (f n ) -1) D z L -1 I q (f n ) µ(dz) = q -1 E Z (D z I q (f n )) 2 |D z I q (f n ) -1|µ(dz) → 0. (4.26)
This is the object of the forthcoming Step 3.

Step 3: Proving (4.26). Using the Cauchy-Schwarz inequality, we infer that

E Z (D z I q (f n )) 2 |D z I q (f n ) -1|µ(dz) E[ DI q (f n ) 4 L 4 (µ) ] × Z E [(D z I q (f n )) 2 (D z I q (f n ) -1) 2 ] µ(dz)
Also, recall that q 2 G q-1 0 f n (z, •) = qq! Z q-1 f (z, •) 2 dµ q-1 , and consequently

E[ DI q (f n ) 2 L 2 (µ) ] = qq! f n 2 L 2 (µ q )
. From (4.22), we infer that

E (D z I q (f n )) 2 (D z I q (f n ) -1) 2 = (1 + q 2 G q-1 0 f n (z, •)) × q 2 G q-1 0 f n (z, •) +q 4 2q-2 p=1,...,2q-2 p =q-1 p! G q-1 p f (z, •)) 2 L 2 (µ p ) +q 4 (q -1)! Z G q-1 q-1 f n (z, •) G q-1 q-1 f n (z, •) -2q -1 f (z, •) dµ q-1 .
Integrating and simplifying the RHS of the previous equality by reasoning as in [22, p. 467], one deduces from Assumption (ii) in the statement that

Z E (D z I q (f n )) 2 (D z I q (f n ) -1) 2 µ(dz) = o(1) + Z q qq!f 2 n + qq! 3 f 4 n -2qq! 2 f 3 n dµ q ,
where o(1) indicates a sequence converging to 0, as n → ∞. The conclusion follows by applying relation (4.20). 2

An application to geometric random graphs

The following statement provides the announced refinement of Theorem 1.3.

Theorem 5.1 Let the notation and assumptions of Theorem 1.3-(iii) prevail. Then, there exists a finite constant K, independent of λ, such that

d T V (F ⋆ λ , Po(c/2)) |E[F ⋆ λ ] -c/2| + K λψ(λ).
(5.27)

Proof. Using e.g. [26, Theorem 3.1], one sees that F ⋆ λ admits the following chaotic decomposition

F ⋆ λ = E[F ⋆ λ ] + I 1 (f 1,λ ) + I 2 (f 2,λ ),
where I 1 , I 2 indicate (multiple) Wiener-Itô integrals with respect to the compensated measure

ηλ = η -λℓ, f 1,λ (z) = λ W 1 H λ (z, x)ℓ(dx)1 W (z), and f 2,λ (z 1 , z 2 ) = 1 2 1 H λ ∩(W ×W ) (z 1 , z 2 ). Also, Campbell's Theorem (see [27, Theorem 3.1.3]) implies that E[F ⋆ λ ] = 1 2 λ 2 ℓ(H λ ).
Applying Theorem 3.1 together with Remark 3.2 and the Cauchy-Schwarz inequality yields that

d T V (F ⋆ λ , Po(c/2)) |E[F ⋆ λ ] -c/2| + 2 -2e -c/2 c Ξ 0 (λ) + 4 -4e -c/2 c 2 Ξ 1 (λ) × Ξ 2 (λ),
where

Ξ 0 (λ) := E E[F ⋆ λ ] -DF ⋆ λ , -DL -1 F ⋆ λ L 2 (λℓ) 2 Ξ 1 (λ) := λE Z (D z L -1 F ⋆ λ ) 2 ℓ(dz) , Ξ 2 (λ) := λE Z (D z F ⋆ λ ) 2 (D z F ⋆ λ -1) 2 ℓ(dz) . One has that D z F ⋆ λ = f 1,λ (z) + 2I 1 (f 2,λ (z, •)).
Using the computations contained in [22, p. 470], we infer that

DF ⋆ λ , -DL -1 F ⋆ λ L 2 (λℓ) = f 1,λ 2 L 2 (λℓ) + 2 f 2,λ 2 L 2 ((λℓ) 2 ) + 2I 1 (f 2,λ ⋆ 1 2 f 2,λ ) + 2I 2 (f 2,λ ⋆ 1 1 f 2,λ ) + 3I 1 (f 1,λ ⋆ 1 2 f 2,λ ).
Using the computations contained in [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF]Theorem 4.8] one sees that the following five relations are verified:

(

1) f 1,λ 2 L 2 (λℓ) ≍ λ 3 ψ(λ) 2 ≍ λψ(λ), ( 
) 2 f 2,λ 2 L 2 ((λℓ) 2 ) = E[F ⋆ λ ], 2 
) f 2,λ ⋆ 1 2 f 2,λ 2 L 2 (λℓ) ≍ λ 3 ψ(λ) 2 ≍ λψ(λ), (3 
) f 2,λ ⋆ 1 1 f 2,λ 2 L 2 ((λℓ) 2 ) ≍ λ 4 ψ(λ) 3 ≍ (λψ(λ)) 2 , (5) f 1,λ ⋆ 1 1 f 2,λ 2 L 2 (λℓ) ≍ λ 5 ψ(λ) 4 ≍ (λψ(λ)) 3 . (4 
This implies in particular that Ξ 0 (λ) ≍ λψ(λ). By using the explicit expression -D z L -1 F ⋆ λ = f 1,λ (z) + I 1 (f 2,λ (z, •)), it is not difficult to prove that the mapping λ → Ξ 1 (λ) is necessarily bounded, so that the statement is proved once we show that Ξ 2 (λ) ≍ λψ(λ). Using the relation

(D z F ⋆ λ ) 2 = f 1,λ (z) 2 + 4λ Z f 2,λ (z, x)ℓ(dx) +4I 1 [f 2,λ (z, •)(f 1,λ (z) + f 2,λ (z, •))] + 4I 2 (f 2,λ ⋆ 0 0 f 2,λ ),
developing the square (D z F ⋆ λ -1) 2 and integrating with respect to z yields

λE Z (D z F ⋆ λ ) 2 (D z F ⋆ λ -1) 2 ℓ(dz) = λ Z (f 1,λ (z) 2 + f 1,λ (z) 4 )ℓ(dz) + 8λ 2 Z Z f 1,λ (z)f 2,λ (z, x) 2 ℓ(dx)ℓ(dz) +48λ 3 Z Z f 2,λ (z, x) 2 ℓ(dx) 2 ℓ(dz) + 4λ 2 Z Z f 2,λ (z, x) 2 ℓ(dx)ℓ(dz) +16λ 2 Z Z f 2 2,λ (z, x)(f 1,λ (z) + f 2,λ (z, x))(f 1,λ (z) + f 2,λ (z, x) -1)ℓ(dx)ℓ(dz).
Exploiting the explicit form of f 2,λ , one sees that 

Appendix: Malliavin operators on the Poisson space

We now define some Malliavin-type operators associated with a Poisson measure η, on the Borel space (Z, Z ), with non-atomic control measure µ. We follow the work by Nualart and Vives [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF].

The derivative operator D.

For every F ∈ L 2 (P ), the derivative of F , DF is defined as an element of L 2 (P ; L 2 (µ)), that is, of the space of the jointly measurable random functions u : Ω × Z → R such that E Z u 2 z µ(dz) < ∞. 

D z F = ∞ k 1 kI k-1 (f k (z, •)).
The divergence operator δ.

Thanks to the chaotic representation property of η, every random function u ∈ L 2 (P, L 2 (µ)) admits a unique representation of the type

u z = ∞ k 0 I k (f k (z, •)), z ∈ Z, (6.28) 
where the kernel f k is a function of k + 1 variables, and f k (z, •) is an element of L 2 s (µ k ). The divergence operator δ(u) maps a random function u in its domain to an element of L 2 (P ). Definition 6.2

1. The domain of the divergence operator, denoted by domδ, is the collection of all u ∈ L 2 (P, L 2 (µ)) having the above chaotic expansion (6.28) satisfied the condition: As made clear in the following statement, the operator δ is indeed the adjoint operator of D. The proof of Lemma 6.3 is detailed e.g. in [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF].

k 0 (k + 1)! f k 2 L 2 (µ ( k+1)) < ∞.
The Ornstein-Uhlenbeck generator L. Definition 6.4

1. The domain of the Ornstein-Uhlenbeck generator, denoted by domL, is the collection of all F ∈ L 2 (P ) whose chaotic representation verifies the condition:

k 1 k 2 k! f k 2 L 2 (µ k ) < ∞ 2.
The Ornstein-Uhlenbeck generator L acts on random variable F ∈ domL as follows:

LF = - k 1 kI k (f k ).
The pseudo-inverse of L. Definition 6.5

1. The domain of the pseudo-inverse of the Ornstein-Uhlenbeck generator, denoted by L -1 , is the space L 2 0 (P ) of centered random variables in L 2 (P ).

For F =

I k (f k ) ∈ L 2 0 (P ) , we set

L -1 F = - k 1 1 k I k (f k ).

4 d

 4 Given two mappings λ → a(λ), b(λ), λ > 0, we write a(λ) ≍ b(λ) if there exist two positive constants C, C ′ > 0 such that Cb(λ) a(λ) C ′ b(λ) for λ sufficiently large. For every λ > 0, we introduce the following objects and notation:η λ is a Poisson measure on (Z, Z ) := (R d , B(R d )), with control λℓ, where ℓ is the usual Lebesgue measure on R d (see Section 2 for precise definitions).

Theorem 3 . 1 (

 31 Malliavin bounds for Poisson approximations) Fix c > 0, and let Po(c) indicate a Poisson random variable with mean c. Assume that F ∈ L 2 (P ) is an element of dom D such that E(F ) = c and F takes values in Z + . Then,

) lim n→∞ E DB n 4 L 4 E DL - 1 B n 4 L 4 DB n 3 L 3 E DL - 1 B n 3 L 3 (µ) = 0 Remark 4 . 3

 4414433133043 (µ) = lim n→∞ (µ) = 0. (4.15) Note that, if (4.14)-(4.15) are verified, an application of the Cauchy-Schwarz inequality yields that lim n→∞ E (µ) = lim n→∞ Using a Mehler-type representation of the Ornstein-Uhlenbeck semigroup (such as the one stated in [25, Lemma 6.8.1]

4λ 2 Z 2 Z f 2 2 Z f 2 2 Remark 5 . 2

 22222252 f 2,λ (z, x) 2 ℓ(dx)ℓ(dz)+16λ ,λ (z, x) 4 ℓ(dx)ℓ(dz)-16λ ,λ (z, x) 3 ℓ(dx)ℓ(dz) = 0.One can now deal with the remaining terms by using once again the estimates contained in[START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs[END_REF] Theorem 4.8]: this entails the relation λEZ (D z F ⋆ λ ) 2 (D z F ⋆ λ -1) 2 ℓ(dz) ≍ λψ(λ), and consequently the desired conclusion Ξ 2 (λ) ≍ λψ(λ). By inspection of the previous proof, one sees that the mapping λ → I 1 (f 1,λ ) is a smooth vanishing perturbation, in the sense of Definition 4.2. It follows that the convergence F ⋆ λ Law → Po(c/2) can alternatively be proved by directly applying Theorem 4.10.

Definition 6.1 1 . 1 kk! f k 2 L 2

 1122 The domain of the derivative operator D, written domD, is the set of all random variables F ∈ L 2 (P ) admitting a chaotic decomposition (1) such thatk (µ k ) < ∞, 2.For any F ∈ domD, the random function z → D z F is defined by

2 .

 2 For u ∈ domδ, the random variable δ(u) is given byδ(u) = k 0 I k+1 ( fk ),where fk is the canonical symmetrization of the k + 1 variables function f k .

Lemma 6 . 3 (

 63 Integration by parts) For every G ∈ domD and u ∈ domδ, one has thatE[Gδ(u)] = E[ DG, u L 2 (µ) ].