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Abstract 

Flexibility has long been recognized as a 
manufacturing capability that has the potential to impact 
mainly the competitive position of an organization. The 
entropy approach, which was extended from information 
theory, fell in handling problems with incomplete and 
uncertain data, because it depicts only the stochastic 
aspects included with measured observations. In order to 
get a global view, this work proposes a new approach 
based on fuzzy entropy concept. The development of the 
fuzzy model results in a set of nonlinear constrained 
problems to be solved using a metaheuristics method. 
The applicability of our approach is illustrated through 
a flexible manufacturing cell. By adopting such 
framework, both dimensions of uncertainty in system 
modeling, expressed by stochastic variability and 
imprecision, can be taken into consideration. 

1. Introduction 

There is no doubt among academicians and 
practitioners that the pressure of global economic crisis 
will continue to affect decision making process at 
different levels of a firm [1, 2]. Most managers agree 
that cost and quality are considered as basic competitive 
arenas. However, both parameters are not enough to 
compete effectively in the marketplace. Flexibility will 
be essential if a firm is to succeed in this increasingly 
global marketplace [3]. Firms must deliver the best out 
of their limited resources, they must develop strategies 
and tactics that ensure their survival and growth. 
Industrial markets have been tremendously subject to 
frequent changes concerning many constraints such as 
product volume [4]. However, in most cases, customers 
do not accept paying higher prices or waiting longer for 
products fitting to new constraints. For many operations, 

the challenge is how to make a compromise between 
flexibility and one of the following factors: cost, quality, 
or delivery performance [5].  

In a comprehensive survey of the literature, it’s 
reported that more than 50 terms exist for the various 
types of flexibilities studied. In addition, it’s found that 
several terms refer to the same flexibility type in many 
cases, and that definitions for flexibility types are often 
imprecise and contradictory, even for similar terms [6]. 
To remedy the situation, unified frameworks for 
classifying flexibility types are a mandatory requirement. 
Using such frameworks, flexibility types can be defined 
in a common manner, even if they have been derived 
based upon different models and assumptions [7, 8].  

One metric that has been proposed to measure 
flexibility in a more mathematical way is entropy, which 
is based on the premise that flexibility should be a 
function of the number of available options, and the 
relative freedoms at which these options can be selected 
[9]. Although the dominating concept to describe 
flexibility in entropy based models is stochastic 
approaches, probabilistic models are not suitable to 
describe all kinds of uncertainty, but only randomness. 
The imprecision of data, which is for example as a result 
of the limited precision of measuring, is not statistical in 
nature and cannot be described by using probability [10]. 
The quantification of a scalar quantity introduced into 
flexibility approaches is likely to be modeled by using 
fuzzy numbers, which are seen as an extension of 
ordinary real numbers [11]. 

Our aim in this work is to propose an approach for 
modeling of single machine flexibility by using an 
entropy based  measure together with fuzzy set theory to 
represent both stochastic variability and imprecision. In 
this approach, the productivity parameter is represented 
by a triangular fuzzy number. By using the fuzzified 
parameter and the extension principle, the fuzzy measure 



for single machine flexibility is obtained. Despite that 
entropy based measures and fuzzy logic have been 
independently used in modeling and analysis of various 
types of flexibility in production systems [12-15], the 
interesting contribution of this paper consists in the 
suggestion of the use of fuzzy set theory together with an 
entropy criterion in the modeling of single machine 
flexibility. 

The structure of the paper is as follows: First we have 
a literature review on entropy and its use as a measure of 
various types of flexibility. Then, we present the 
mathematical development of our proposed approach 
based on the introduction of triangular fuzzy numbers. A 
numerical example is used to illustrate the application of 
the approach where obtained results provide a more 
general framework for decision making compared to the 
crisp case. Finally some concluding remarks are given. 
Our proposed approach can be enriched in order to be 
employed for more complicated situations such as that of 
aggregate machine system with fuzzy parameters. 

2. Entropy as a measurement criterion  

Entropy was introduced as an additional state variable 
in the second law of thermodynamics by Rudolf 
Clausiuis. This law allows the definition of an absolute 
scale of temperature, that is, one which is independent of 
the properties of any substance or class of substances 
[16]. From the fact of commonly today observations, the 
formulation of the second law was elaborated as: the 
entropy of the universe tends to a maximum.  

The change in entropy dS can be defined empirically 
in a differential form by [17]: 

dT
dQdS =      (1) 

where dQ is the quantity of heat flowing from a higher to 
a lower temperature (dT).  

Statistical mechanics has succeeded in providing 
equations for the calculation of entropy as well as 
justification for equating entropy with a degree of 
disorder, where the equilibrium state of a system 
including a large number of particles is the one with 
maximum entropy thermodynamically and the most 
probable state statistically [18].  

In information theory, the concept of entropy is used 
to measure uncertainty in a probability distribution. The 
well-known Shannon’s theorem shows that if we 
suppose that there is a measure S of the uncertainty and 
moreover it satisfies the following desirable conditions 
[19]: 
• S is a continuous function of the pi. 
• If all the pi happen to be equal, then S increases with 

n. Qualitatively, this means that if there are more 
possibilities, we are more uncertain. 

• S is additive. 
then S must have the following expression: 

∑
=

−=
n

i
ii ppS

1

log     (2) 

The uncertainty characterizing the competitive 
environment makes flexibility a valuable weapon for all 
firms to survive [20]. The development of flexibility 
measure models using the entropy approach has been 
widely used to describe various kinds of flexibility in 
manufacturing systems, particularly routing flexibility, 
operation flexibility, volume flexibility and expansion 
flexibility [21-23]. Despite the widespread use of such 
information based entropy criterion for the measure of 
flexibility, it shows some limitations due to the lack of 
considering a weighting factor in the analytical 
expression of entropy. This factor was defined in terms 
of many parameters such as: time and/or cost, reliability 
and efficiency, as indicated in many studies [24-26]. The 
revised entropy approach obtained by incorporating the 
efficiency element into the model seems to reflect better 
the description of the manufacturing flexibility. The 
revised entropy formula is given by [27]: 

∑
=

−=
n

i
ijijijj eS

1

log ρρ      (3)  

where eij is the efficiency factor and ijρ  represents the 

selection of the various options, reflecting the freedom 
of the population. All these ijρ s are fractions or shares, 

are positive, 10 ≤≤ ijρ and can be normalized such that 

they add up to unity, ∑
=

=
n

i
i

1

1ρ , and could be considered 

as probabilities. In general, the larger the number of 
available options, the larger the flexibility. 

3. Fuzzy entropy based approach   

Among the earliest attempt at making probability and 
fuzzy set theory work in concert to deduce a fuzzy 
entropy measure was made by Zadeh [28], who 
suggested that the entropy of a fuzzy subset, A, of the 
finite set { }nxx ,..,1 with respect to a probability 
distribution { }nppP ,..,1= be defined as follows: 

( )∑
=

−=
n

i
iiiA ppxS

1

logμ     (4) 

with ( )iA xμ the membership function of A. 
Fuzzy entropy concept emerged later basically in 

pattern recognition field [29], where many extensions 
and applications were developed and adopted in order to 
remedy the many drawbacks related to various aspects of 
image processing, clustering approaches and cluster 
validity [30, 31].  

The flexibility measure formulas of manufacturing 
systems are too complex to be expressed quantitatively 
for real cases [32]. Such situation can be reduced by 
adopting fuzzy set theory based frameworks which 
resemble human reasoning in order to support 



approximate information. However, a complete 
depiction of flexibility requires the inclusion of both 
uncertainty and imprecision in the same framework [33]. 
In our approach, this process of integration of both 
sources of ambiguity in flexibility evaluation is achieved 
through the employment of triangular fuzzy numbers to 
model uncertainty in parameters which can be 
considered as probabilities. It’s to note that in contrast 
there is no uncertainty that there is a probability 
distribution over the space generated by these 
normalized parameters and the constraint that the 
probabilities must add to one remains valid [34]. 

Some basic concepts are needed before presenting the 
analytical expressions describing our approach, a rich 
literature about fuzzy set theory is available for more 
detailed information; see for example [35-36]. 

Definition 3.1. A triangular shaped fuzzy number 
noted N~ is a normal, convex fuzzy set, on the real line, 
with a piecewise continuous membership function such 
that there are three points γβα ≤≤ with the following 
properties: 

• ( ) 0~ =xN  for every [ ] [ ]+∞∞−∈ ,, γα ∪x , 

• N~  is increasing on [ ]βα , and decreasing on [ ]γβ , , 

• ( ) ( ) 0~~ == γα NN and ( ) 1=xμ for every β=x . 

Definition 3.2. Alpha-cuts are slices through a fuzzy 
set producing regular (non-fuzzy) sets. If N~ is a fuzzy 
subset of some set Ω , then an α -cut of N~ , written 

[ ]αN~  is defined as:  

[ ] ( ){ }αα ≥Ω∈= xNxN ~~
    (5) 

for all α , 10 ≤α≺ . The 0=α cut is the base of the 
fuzzy number [ ] [ ]γα ,0~ =N . 

Definition 3.3. If we have a set of n independent 
variables, then let ( )ni xxxhz ,..,..,1=  for [ ]iii bax ,∈ . We 
extend h to as: 

( ) ( ) ( )( ) ( ){ }zxxxhxXxXxXMinSupZ ninnii
xi

== ,..,..,~,..,~,..,~~
111 (6) 

for Xi a triangular or trapezoidal fuzzy number in [ai, bi]  
For α -cuts of Z~ , assuming h is continuous, we have: 

( ) ( ) [ ]{ }
( ) ( ) [ ]{ }⎪

⎩

⎪
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⎧

∈=
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+

−

αα

αα
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x

iinix

XxxxxhMaxz
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i

i ~,..,..,

~,..,..,

1

1
  (7) 

The first step towards the elaboration of our fuzzy 
entropy measure for the evaluation of single machine 
flexibility consists in the adoption of productive 
performance of different machines as the initial basic 
parameter. The elements of the productive matrix Oij 
represents the productive performance of machine j on 
performing operation i. they can be defined as the 
outputs of operation i per hour performed by machine j.  
Since imprecise parameters are treated as imprecise 
values instead of precise ones, the modeling process will 
be more powerful and its results more credible as 
indicated by many real life applications [37]. So, and in 
order to reach this goal, we substitute 

( )321 ,,~
ijijijij OOOO = a triangular fuzzy number, for 

each ijO . The α -cut notation can be deduced from the 

triangular representation by the following 
transformation: 

( ) ( )[ ] ( ) ( )[ ]332112 ,, ijijijijijijijij OOOOOOOO +−+−=+− αααα  (8) 

The fuzzy efficiency of machine j on performing 
operation i noted ije~ , requires a ranking method for the 
elements of the productive matrix. In general, for 
triangular or trapezoidal (shaped) well separated fuzzy 
numbers, the ordering methodology reduces to the 
comparison of their cores. For more complicated 
situations (such as overlapping), a wide range of 
dedicated approaches is available [38-39].  

Therefore, the fuzzy efficiency is obtained by 
comparing the fuzzy output of a fixed machine j on 
performing the operation i to the maximum fuzzy output 
(which depends on the ordering methodology) of the 
machine that can produce the same operation i in the 
system, and ije~  is given for all α , 10 ≤≤ α , in α -cut 
notation by: 

[ ] [ ]
[ ] ( ) ( )[ ] ( ) ( )⎥

⎥
⎦

⎤

⎢
⎢
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⎡
== −∗+∗
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α
α
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ij OO

OO
O
O

e 1,1,~
~
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where [ ] [ ]αα ijJjij OMaxO ~~
∈

∗ =  and J is the set of machines 

in the system. In addition, the condition that 
[ ] 10:~ ≤≤∈∀ ijijij eee α  should be also satisfied.  

Some elementary mathematical developments for the 
determination of the lower and upper bounds of the 
fuzzy efficiency give the following expressions:  
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The following normalization procedure is used to get 
a fuzzy matrix where the problem of getting a set of 
values belonging to each column add up to unity is 
feasible:  
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subject to the following constraints: 
[ ]{ αijij ee ~∈                  (12) 

Such optimization problem can be expressed in a 
more convenient form as follows: 
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subject to the same set of constraints. 
The solution of the previous set of optimization 

problems can be proved to have the form: 
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Hence, the final formula of our proposed fuzzy 
entropy is expressed by a set of optimization problems 
subject to both inequality and equality constraints, the 
upper and lower bounds of the α -cut representation of 
the fuzzy entropy is given by:  
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subject to the following constraints: 
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4. Simulation and results   

In this section, we consider a flexible manufacturing 
cell consists of four machines (M1, M2, M3 and M4), each 
of which is able to perform three operations (O1, O2 and 
O3). The corresponding matrix of the fuzzy output units 
per hour is as shown in table 1. Note that 1=α cut value 
represents the crisp output as provided in [27]. For each 
operation, the machine which has the highest rate of 
production is indicated on the same table. 

 
 
 
 

Table 1. Fuzzified output units per hour for 
the flexible manufacturing cell. 

 O1 O2 O3 
M1 (79/80/82) (79/80/81) (75/80/85) 
M2 (88/90/92) (57/60/63) (86/90/91) 
M3 (95/100/103) (68/70/72) (69/70/72) 
M4 (36/40/41) (39/40/42) (37/40/42) 

 
The passage from the triangular to the α -cut 

representation is needed because the latter is more 
friendly and easy to use for computer based simulation 
and the new representation is shown on table 2.  

Table 2. Representation of the fuzzified 
output units per hour for the flexible 
manufacturing cell using alpha-cut 
notation. 

 O1 O2 O3 
M1 [ ]αα 282;79 −+  [ ]αα −+ 81;79  [ ]αα 585;755 −+  
M2 [ ]αα 292;882 −+  [ ]αα 363;573 −+  [ ]αα −+ 91;864  
M3 [ ]αα 3103;955 −+  [ ]αα 272;682 −+  [ ]αα 272;69 −+  
M4 [ ]αα −+ 41;364  [ ]αα 242;39 −+  [ ]αα 242;373 −+  
 
The graphical representation of the fuzzy output units 

per hour for various machines with respect to the first 
operation is depicted in figure 1.  

 

 

Figure 1. Fuzzy output per hour for 
different machines according to the first 
operation. 

The elements of the efficiency matrix are obtained for 
various machines using interval arithmetic and taking 
into account the fact that the condition 

[ ] 10:~ ≤≤∈∀ ijijij eee α  should be verified. The latter 
constraint affects only the machine that produce the 
maximum fuzzy output for the same operation in the 
system as indicated in table 3. 

 
 
 



Table 4. Representation of the obtained 
fuzzy efficiency matrix for the flexible 
manufacturing cell using alpha-cut 
notation. 

 O1 O2 O3 
M1 
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The graphical representation of the fuzzy efficiency 

for various machines with respect to the second 
operation is presented in figure 2. 

 

 

Figure 2. Representation of fuzzy 
efficiency for different machines according 
to the second operation. 

The calculation of the normalized fuzzy efficiency is 
straightforward as illustrated below in the case 
of ( )αρ14
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The visualization of various fuzzy normalized 
efficiencies compared to the third operation is given in 
figure 3.  

 

 

Figure 3. Representation of calculated 
fuzzy normalized efficiencies according to 
the third operation. 

At this level of development, we have at hand all 
requirements for the elaboration of our fuzzy entropy 
measure of single machine flexibility. In order to resolve 
the associated set of nonlinear constrained problems, a 
genetic algorithm GA is used. GA combines survival of 
the fittest among string structures with a structured yet 
randomized information exchange to form a search 
algorithm with some of the innovative flair of human 
search. In every generation, a new set of artificial strings 
is created using bits and pieces of the fittest of the old; 
an occasional new part is tried for good measure [40]. In 
this work, the following values given in table 5 are 
affected to the main parameters of the algorithm. 

Table 6. Values of different parameters 
used in our genetic algorithm based 
approach. 

Parameter Value 
Generation number 200 
Population size 100 
Elite candidates 5 
Crossover fraction 0.8 
Migration fraction 0.2 
Pareto fraction 0.35 
Tolerance 10-6 

 
Figure 4 shows the variation of the fitness function 

with generation in order to determine the lower bound of 
the fuzzy entropy for the largest α -cut ( 0=α ). The 
steady decrease in the best fitness value solution in each 
generation until it reaches a best possible value can be 
attributed to the selection procedure used namely 
tournament wheel selection.  
 



 

Figure 4. Variation of the objective function 
with generation for the first machine in 
case of the minimization problem and 
alpha=0.  

In the optimization procedure, the genetic algorithm 
is applied in an iterative manner to different levels of α -
cut for various machines. The maximization problems 
are converted to minimization equivalent ones then 
resolved appropriately using the same previous 
methodology. Final optimized values for the upper and 
lower bounds lead to the following graphical 
representation of fuzzy entropy for different machines as 
shown in figure 5.  

 

 

Figure 5. Visualization of the optimized 
fuzzy entropy using the final  values for the 
upper and lower bounds obtained by GA 
for all machines under study.  

The obtained fuzzy entropies are triangular shaped 
fuzzy numbers. For this reason, it’s preferably to provide 
only the main α -cut values. It’s to note that 0=α cut 
value corresponds to the largest interval of uncertainty 
whereas 1=α cut value represents the crisp value as 
illustrated by table 7. 

 

Table 8. Main alpha-cut representation of 
the final fuzzy entropies obtained by the 
genetic algorithm based optimization. 

 0=α  1=α  
M1 [0.4056; 0.4516] 0.4263 
M2 [0.3951; 0.4382] 0.4194 
M3 [ 0.3985; 0.4359] 0.4203 
M4 [ 0.1963; 0.2307] 0.2132 

 
Without a significant loss of accuracy, it’s possible to 

elaborate a triangular approximation for the obtained 
fuzzy entropies. Based on such approximation, the 
comparison of different machine flexibilities can be 
made by calculating the following ranking criterion [41] 
for each machine:   

( ) [ ]( )∫=
1

0

~~ αα dSAverageSVal jj                (18) 

where the integrated term is given by: 

[ ]( ) ( ) ( )
2

~ αα
α

+− +
= jj

j
SS

SAverage                (19) 

Obtained values of the ranking criterion used to 
characterize various machine flexibilities are 
summarized on the table below.   

Table 9. Ranking criterion obtained for 
different machines. 

 M1 M2 M3 M4 
Val(S) 0.8549 0.8361 0.8375 0.4267 

 
Obtained results show clearly that the evaluation of 

the flexibility of different machines should be using a 
more general framework built on the basis of fuzzy 
numbers. This situation demonstrates well that the crisp 
case with a single value does not enable us to have 
deductions efficient enough to handle the environment 
perturbations, where erroneous results can be obtained if 
significant uncertainties are included within the sampling 
data used for the assessment of machines flexibility in an 
industrial process. It’s to note also that despite the 
apparent simplicity of the studied example, our proposed 
approach can be expanded to more complicated cases 
such as that of routing flexibility if the number of routes 
and their associated efficiencies are both evaluated. 

5. Concluding remarks  

In this work, a fuzzy entropy based measure is 
proposed to improve the capacity of modeling and 
analysis of flexibility in manufacturing systems. The 
resulted model takes into account both dimensions of 
uncertainty which are probabilistic variability and 
fuzziness. Hence, a set of optimization problems were 
then formulated using the proposed approach where 
pertinent parameters were considered simultaneously.  



Despite that the numerical application of this 
approach was limited to single machine flexibility; our 
fuzzy entropy approach could be expanded to more 
complicated situations such as aggregate machine system 
and manufacturing systems including routing flexibility. 
It can be concluded that the proposed fuzzy entropy 
based approach is efficient in dealing with the existence 
of various simultaneous sources of uncertainty and 
reduces implicitly to the classical model when 
considering only crisp data.  
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