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Diagnosis of Three-Phase Electrical Machines Using
Multidimensional Demodulation Techniques

Vincent Choqueuse, Member, IEEE, Mohamed El Hachemi Benbouzid, Senior Member, IEEE,
Yassine Amirat, and Sylvie Turri

Abstract—This paper deals with the diagnosis of three-phase
electrical machines and focuses on failures that lead to sta-
tor-current modulation. To detect a failure, we propose a new
method based on stator-current demodulation. By exploiting the
configuration of three-phase machines, we demonstrate that the
demodulation can be efficiently performed with low-complexity
multidimensional transforms such as the Concordia transform
(CT) or the principal component analysis (PCA). From a practical
point of view, we also prove that PCA-based demodulation is
more attractive than CT. After demodulation, we propose two
statistical criteria aiming at measuring the failure severity from
the demodulated signals. Simulations and experimental results
highlight the good performance of the proposed approach for
condition monitoring.

Index Terms—Condition monitoring, electrical machines, prin-
cipal component analysis (PCA), signal processing.

I. INTRODUCTION

THREE-PHASE electrical machines such as induction mo-
tors or generators are used in a wide variety of applica-

tions. To increase the productivity and to reduce maintenance
costs of these systems, condition monitoring and diagnosis
are often desired. A wide variety of condition monitoring
techniques have been introduced over the last decade. Among
them, motor current signature analysis (MCSA) [1] has several
advantages since it is usually cheaper and easier to implement
than other techniques. In steady-state configurations, MCSA
based on stationary spectral analysis techniques is commonly
used (fast Fourier transform (FFT) and multiple-signal clas-
sification [2]). However, in practice, the steady-state assump-
tion is often violated due to nonconstant-supply-frequency or
adjustable-speed drives. In these situations, several authors
have investigated the use of nonstationary techniques such as
time–frequency representations [1], [3]–[6], time-scale analysis
[7]–[10], and polynomial-phase transform [11] (see [12] for a
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more complete review). The main drawback of these methods
relies on their computational complexity. Furthermore, these
representations usually suffer from poor resolution and/or ar-
tifact (cross terms, aliasing, etc.), which can lead to misleading
interpretations.

Other investigations on machine modeling have recently
demonstrated that many types of failure lead to stator-current
modulation with a modulation index which is directly pro-
portional to the failure severity [5], [13]–[17]. In particular,
it has been proved that load torque oscillations lead to stator-
current phase modulation (PM) [9], [13]–[15], whereas air-gap
eccentricity and rotor asymmetry lead to stator-current ampli-
tude modulation (AM) [5], [14]. Therefore, a straightforward
technique to monitor the behavior of an electrical machine is
based on stator-current demodulation.

Classical demodulation techniques include the square-law
demodulator, the Hilbert transform (HT) [18], the energy sep-
aration algorithm [19], and other approaches. Applications to
failure detection are available in [7], [14], and [20]–[27]. Inter-
estingly, for a balanced system, it has been shown in [14], [21],
[22], [24], and [28] that the Concordia transform (CT), which
has been used for failure detection purposes in [14], [21]–
[24], and [28]–[38], can also be interpreted as a demodulating
tool. As compared to classical demodulation tools, CT exhibits
interesting properties such as lower complexity and lack of end
effect problems or other artifacts [28]. However, in practice, this
approach can lead to poor performance since a real machine
usually presents a small degree of imbalance [22].

Once the demodulation has been performed, demodulated
signals must be further analyzed to measure failure severity.
In the literature, many criteria and/or techniques have been
proposed to perform this task. In [14], [21], [22], [24], [25],
and [29], failure severity is measured through statistical criteria.
However, these criteria require knowledge of the fault frequen-
cies, which also depend on other parameters (speed or slip
information). To overcome this problem, more sophisticated
approaches have been proposed for failure detection. These
include neural networks [31], [36], [39], Bayesian classifiers
[23], fuzzy logic classifiers [33], [36], genetic algorithms [38],
and other classifiers [34]. However, these approaches are com-
putationally demanding, and their performances highly depend
on the representativeness of the training set.

In this paper, we address the condition monitoring problem
from a signal processing point of view. As failure severity is
proportional to the modulation index, we propose to use the
modulation-index estimate as a failure severity indicator. The
proposed approach is composed of two steps: a stator-current
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Fig. 1. Block diagram of the proposed technique. Symbols ik(t) (k =
1, 2, 3) correspond to the stator currents, |a(t)| and f(t) correspond to the
instantaneous amplitude and frequency, and m̂ corresponds to the modulation-
index estimate.

amplitude/frequency demodulation followed by a modulation-
index estimation. These steps are described in Fig. 1. To
perform demodulation, we propose to exploit the multidimen-
sional nature of three-phase systems through low-complexity
linear transforms. Then, we propose to estimate the modula-
tion indexes from the demodulated signals with two original
estimators.

This paper is organized as follows. Section II describes the
signal model of the stator current under healthy and faulty
conditions. Section III investigates the use of CT and princi-
pal component analysis (PCA) to perform multidimensional
current demodulation, and Section IV describes the proposed
failure severity criteria. Finally, Section V reports on the per-
formance of the proposed approach with synthetic and experi-
mental signals.

II. SIGNAL MODEL

In the presence of a fault, it has been shown in [5], [13],
[14], and [16] that the stator current is amplitude modulated
and/or phase modulated. For AM and/or PM, the instantaneous
amplitude a(t) and phase φ(t) can be expressed respectively as

a(t) = α (1 + ma cos(2πfat)) (1)

φ(t) = 2πf0t + mφ sin(2πfφt) (2)

where α is a scaling coefficient, f0 is the supply current
frequency, and fa (fφ) is the AM (PM) modulating frequency.
The scalars ma and mφ correspond to the AM and PM indexes,
respectively. For a faulty system, the modulation indexes are
directly proportional to the failure severity. In particular, with-
out any fault, the instantaneous amplitude and frequency do not
vary with time, i.e., ma = mφ = 0.

Let us consider a three-phase system. In the presence of a
fault, all three line currents i1(t), i2(t), and i3(t) are simulta-
neously modulated, and the currents can be expressed as

i1(t) = a(t) cos (φ(t)) (3a)

i2(t) = a(t) cos (φ(t) − 2π/3) (3b)

i3(t) = a(t) cos (φ(t) + 2π/3) . (3c)

In the literature, most studies assume a perfect balance
configuration. However, healthy electrical systems are rarely
perfectly balanced. Furthermore, the balance assumption usu-
ally does not hold when a failure introduces some asymmetry.
In this study, balanced and unbalanced three-phase systems are
considered. Let us denote s(t) = [s1(t), s2(t), s3(t)]T the 3 ×
1 vector which contains the stator currents, where (·)T corre-

sponds to the matrix transposition. In this paper, we investigate
the two following systems.

1) A balanced three-phase system, where the stator currents
are given by

s(t) = i(t) = [i1(t), i2(t), i3(t)]
T . (4)

In particular, by using (3), one can easily verify that
s1(t) + s2(t) + s3(t) = 0.

2) A three-phase system with unbalanced currents, where
the stator currents are given by

s(t) = Di(t) = [α1i1(t), α2i2(t), α3i3(t)]
T (5)

where D is a nonscalar 3 × 3 diagonal matrix which
contains the “nonequal” diagonal entries α1, α2, and α3.
Without loss of generality,1 we assume that the overall
energy of the system is conserved, i.e.,

∑3
k=1 α2

k = 3.

In this study, the modulation indexes are employed as failure
severity indicators. From a signal processing viewpoint, the
condition monitoring problem is therefore translated into an
estimation problem. One should note that the estimation of the
modulation indexes can be simplified by using a demodulation
preprocessing step. In the following, the demodulation is
performed by using a linear transformation of the stator
currents s(t).

III. AM/FM DEMODULATION USING

MULTIDIMENSIONAL TRANSFORM

In this section, we prove that the use of the three-phase
current can expedite the demodulation step. In particular, we
show that the CT and the PCA can be considered as low-
complexity techniques for current demodulation. Furthermore,
we demonstrate that the PCA has a larger domain of validity
than the CT.

A. CT

CT is a linear transform which converts the three-component
s(t) into a simplified system composed of two components.

By denoting y(c)(t) = [y(c)
1 (t), y(c)

2 (t)]
T

the two Concordia
components, CT can be expressed into a matrix form as

y(c)(t) =
[
y
(c)
1 (t)

y
(c)
2 (t)

]
=

√
2
3
Cs(t) (6)

where C is the 2 × 3 Concordia matrix which is equal to

C =

[ √
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

]
. (7)

One can verify that the Concordia matrix is an orthogonal
matrix since it satisfies CCT = I2, where I2 is a 2 × 2 identity
matrix.

1One should note that the overall energy can be absorbed into the coefficient
α in (1).
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By using (3), (4), and (6), it can be demonstrated that the
Concordia components of a balanced system are equal to

y
(c)
1 (t) = a(t) cos (φ(t)) a (8a)

y
(c)
2 (t) = a(t) sin (φ(t)) a. (8b)

These components y
(c)
1 (t) and y

(c)
2 (t) are called in-phase and

quadrature components in the signal processing community.
Let us define the complex signal z(c)(t) as

z(c)(t) = y
(c)
1 (t) + jy

(c)
2 (t). (9)

By using (8) and (9), one can verify that z(c)(t) is the ana-
lytical signal of s1(t), i.e., z(c)(t) = a(t)ejφ(t). Therefore, the
instantaneous amplitude and frequency can be obtained from
the modulus and the derivative of the argument of z(c)(t),
respectively, i.e.,

a(t) =
∣∣∣z(c)(t)

∣∣∣ (10a)

f(t) =
1
2π

d arg
[
z(c)(t)

]
dt

(10b)

where | · | and arg[·] correspond to the modulus and the argu-
ment, respectively. It is important to note that (10) only holds
for a balanced system, i.e., for s(t) = i(t).

B. PCA

PCA is a statistical tool that transforms a number of corre-
lated signals into a smaller number of principal components. In
[40], PCA is employed after a CT to detect a failure; however,
no mathematical analysis has been performed to give a physical
interpretation to the principal components. In [41], the PCA is
applied on the three-phase stator currents directly, but only two
principal components are extracted, without any mathematical
justification. In this section, we give a deep theoretical analy-
sis of PCA for balanced and (static) unbalanced three-phase
systems. We show why the PCA can be applied on the stator-
current signals directly. Furthermore, we demonstrate why the
PCA can only extract two principal components and why prin-
cipal components are strongly linked to in-phase and quadrature
components. Finally, as opposed to CT, we prove that the PCA
can be employed for signal demodulation whatever the balance
assumption.

Let us define the 3 × 3 covariance matrix as

Rs = E
[
s(t)sT(t)

]
(11)

where E[·] denotes the mathematical expectation. Using (3), one
can remark that i3(t)=−i1(t)−i2(t). Therefore, each compo-
nent of s(t) can be rewritten as a linear combination of the two
components i1(t) and i2(t) whatever the balance assumption.2

Using an eigenvalue decomposition, it follows that the 3 × 3
symmetric matrix Rx contains one zero eigenvalue. Therefore,
Rx can be decomposed under the following form:

Rs = UΛUT (12)

2For unbalanced systems, one can verify that s1(t) = α1i1(t), s2(t) =
α2i2(t), and s3(t) = −α3(i1(t) + i2(t)).

where U is a 3 × 2 orthogonal matrix (UTU = I2) containing
the two eigenvectors and Λ = diag(λ1, λ2) is a diagonal matrix
containing the two nonzero associated eigenvalues λ1 and λ2.
The two principal components of s(t), denoted y(p)(t) =

[y(p)
1 (t), y(p)

2 (t)]
T

, are given by

y(p)(t) =
[
y
(p)
1 (t)

y
(p)
2 (t)

]
= βsΛ− 1

2 UTs(t) (13)

where βs is a scaling term which is equal to

βs =

√
trace[Rs]

3
(14)

with trace[·] being the sum of the diagonal elements. Using
(12) and (13), one can verify that the PCA components are
uncorrelated.

Under the assumptions that φ(t) is uniformly distributed in
[0 2π[3 and that a(t) and φ(t) are independent, it is demon-
strated in the Appendix that the PCA components are equal to

y
(p)
1 (t) = a(t) cos (φ(t) − θ) (15a)

y
(p)
2 (t) = a(t) sin (φ(t) − θ) (15b)

where θ ∈ Z whatever the balance assumption.
Let us define the complex signal z(p)(t) as

z(p)(t) = y
(p)
1 (t) + jy

(p)
2 (t). (16)

By using (15) and (16), one can verify that z(p)(t) is a ro-
tated version of the analytical signal of s1(t), i.e., z(p)(t) =
a(t)ejφ(t)−θ. Therefore, the instantaneous amplitude and fre-
quency can be obtained from the modulus and the derivative of
the argument of z(p)(t), respectively, i.e.,

a(t) =
∣∣∣z(p)(t)

∣∣∣ (17a)

f(t) =
1
2π

d arg
[
z(p)(t)

]
dt

. (17b)

As opposed to (10), it is interesting to note that (17) holds
whatever the balance assumption. Therefore, the PCA-based
demodulation is less restrictive than the Concordia one.

IV. MODULATION-INDEX ESTIMATION

After demodulation, the analytical signal and the instanta-
neous amplitude and/or frequency must be properly analyzed
to assess failure severity. Many papers propose to monitor the
deviation of the analytical signal z(t) from a circle in the com-
plex plane [29]–[32], [34]–[37], [40]. This solution is perfectly
valid if the failure leads to stator-current AM since the radius
|a(t)| varies with time. However, if the failure leads to PM,
this solution is no longer correct since the failure only affects
the rotational speed in the complex plane. In this section, we
propose to estimate the AM and PM indexes to assess the failure
severity. Using the demodulated signals, two original estimators

3From a decision viewpoint, the uniform probability density function (pdf)
for the phase represents the most ignorance that can be exhibited by the fault
detector. This is called the least favorable pdf for φ(t) [42].
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of the modulation indexes are provided. These estimators are
based on the method-of-moments (MoM) technique. Although
the MoM estimation technique has no optimal properties, it
produces an estimator that is easy to determine and simple to
implement [43].

A. Estimation of ma

Let us consider the AM signal model in (1). Under the
assumption that 2πfat(mod 2π) is uniformly distributed in
[0 2π[, it is demonstrated in the Appendix that the variance of
the instantaneous amplitude is given by

σ2
a = E

[
(a(t) − µa)2

]
=

µ2
am2

a

2
(18)

where µa = E[a(t)] is the statistical average of f(t). Therefore

ma =
σa

√
2

µa
. (19)

The corresponding MoM estimator, denoted m̂a, is obtained by
replacing the theoretical moments µa and σa by their natural
estimators.

B. Estimation of mφ

Let us consider the PM signal model in (2). Taking the
derivative of φ(t) leads to the instantaneous frequency, which
is equal to

f(t) =
1
2π

dφ(t)
dt

= f0 + mφfφ cos(2πfφt). (20)

Under the assumption that 2πfφt(mod 2π) is uniformly distrib-
uted in [0 2π[, it can be demonstrated that the variance of the in-
stantaneous frequency is (see the Appendix for a similar proof)

σ2
f = E

[
(f(t) − µf )2

]
=

m2
φf2

φ

2
(21)

where µf = E[f(t)] is the statistical average of f(t). Therefore

mφ =
σf

√
2

fφ
. (22)

The corresponding MoM estimator m̂φ is obtained by replacing
the theoretical moments by their natural estimators. One should
note that the criterion mφ depends on the modulating frequency
fφ. If this frequency is unknown, it can be replaced by its
estimate f̂φ. This estimate can be obtained, for example, by
maximizing the periodogram of f(t) [44], [45].

V. PERFORMANCES

This section reports on the performances of the proposed ap-
proaches. Experiments were performed with a supply frequency
equal to f0 = 50 Hz. Signals were sampled with a sampling
period of Ts = 10−4 s, and the proposed technique was ap-
plied offline in Matlab. For discrete signals, a straightforward
adaptation of the proposed techniques is given by Algorithms 1
and 2, respectively. As compared to the continuous case, s(t) is
replaced by its discrete counterpart s[n] = s(nTs), where Ts is

the sampling period and n = 0, 1, . . . , N − 1. Furthermore, the
instantaneous frequency is approximated by replacing the phase
derivative with a two-sample difference,4 and the statistical
moments are replaced by their natural estimators. In particular,
f(n), Rs, ma, mf , σ2

a, and σ2
f are respectively given by

f(n) =
arg [z(n)] − arg [z(n − 1)]

2πTs
(23)

R̂s =
1
N

N−1∑
n=0

s[n]sT[n] (24)

µ̂a =
1
N

N−1∑
n=0

a[n] (25)

µ̂f =
1
N

N−1∑
n=0

f [n] (26)

σ̂2
a =

1
N

N−1∑
n=0

(a[n] − µ̂a)2 (27)

σ̂2
f =

1
N

N−1∑
n=0

(f [n] − µ̂f )2 . (28)

The next sections present the performances of the proposed al-
gorithms with synthetic and experimental signals, respectively.

Algorithm 1 Concordia-based failure severity criteria

1) Extract N -data samples s[n].
2) Compute y(c)[n] with (6).
3) Compute the analytical signal z(c)[n] with (9).
4) Extract the AM demodulated signal a[n] with (10a).
5) Extract the FM demodulated signal f [n] with (23).
6) Compute m̂a with (19), (25), and (27).
7) Compute m̂φ with (22), (26), and (28).

Algorithm 2 PCA-based failure severity criteria

1) Extract N -data samples s[n].
2) Compute Rs with (24).
3) Perform eigenvalue decomposition of Rs as in (12).
4) Compute βs with (14).
5) Compute y(p)[n] with (13).
6) Compute the analytical signal z(p)[n] with (16).
7) Extract the AM demodulated signal a[n] with (17a).
8) Extract the FM demodulated signal f [n] with (23).
9) Compute m̂a with (19), (25), and (27).
10) Compute m̂φ with (22), (26), and (28).

A. Synthetic Signals

Synthetic signals s(n) were simulated by using the signal mod-
el in (3). Analysis of the algorithm performances with amplitude-
and phase-modulated signals is investigated independently.

4Before subtraction, a phase unwrapping operation must be applied to avoid
phase jumps between consecutive elements.
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Fig. 2. AM demodulated signals for a healthy (ma = 0) and a faulty (ma =
0.5) balanced system.

Fig. 3. AM demodulated signals for a healthy (ma = 0) and a faulty (ma =
0.5) unbalanced system.

1) AM: Let us consider a discrete AM signal a[n] with a
modulating frequency equal to fa = 10 Hz, i.e.,

a[n] = 1 + ma cos(20πnTs) (29)

where ma is the modulation index. Figs. 2 and 3 show the
demodulated signal â[n] obtained with the Concordia and the
PCA transform for balanced (αk = 1) and unbalanced sys-
tems (α1 = 1.323, α2 = 0.5, and α3 = 1), respectively. De-
modulated signals are displayed for ma = 0 and ma = 0.5. In
Fig. 2, one can note that both algorithms perform well since
demodulation is near perfect. However, for the unbalanced
system, PCA clearly outperforms CT since the latter exhibits
interference terms which can lead to misleading interpretations.
Table I presents the values of m̂a, m̂φ, and γ for ma = 0 and
ma = 0.5. As expected, one could observe that the CT-based
algorithm leads to a perfect modulation-index estimate for the
balanced system (m̂a = ma and m̂f = 0) but leads to incorrect
results for the unbalanced case (m̂a �= ma and m̂φ �= 0). As
opposed to the CT algorithm, the PCA algorithm leads to a
perfect estimation whatever the balance assumption.

TABLE I
FAULTY SYSTEM LEADING TO STATOR-CURRENT AM.

FAILURE SEVERITY CRITERIA m̂a AND m̂φ FOR

HEALTHY (ma = 0) AND FAULTY (ma = 0.5) SYSTEMS

Fig. 4. FM demodulated signals for a healthy (mφ = 0) and a faulty (mφ =
0.4) balanced system.

Fig. 5. FM demodulated signals for a healthy (mφ = 0) and a faulty (mφ =
0.4) unbalanced system.

2) PM: Let us consider a discrete PM signal φ[n], with a
modulating frequency equal to 10 Hz, i.e.,

φ[n] = 2πf0nTs + mφ sin(20πnTs) (30)

where mφ is the modulation index. Figs. 4 and 5 show the
instantaneous frequency f [n] extracted with the Concordia
and the PCA transform for healthy (mφ = 0) and faulty
(mφ = 0.4) systems. As expected, PCA-based demodulation
clearly outperforms the CT-based one since it gives perfect
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TABLE II
FAULTY SYSTEM LEADING TO STATOR-CURRENT PM.

FAILURE SEVERITY CRITERIA m̂a AND m̂φ FOR

HEALTHY (mφ = 0) AND FAULTY (mφ = 0.4) SYSTEMS

Fig. 6. Mechanical part of the experimental setup. Faulty machines are
simulated with artificially deteriorated bearings [36].

demodulation whatever the amount of current imbalance.
Table II presents the values of the modulation-index estimates.
For the balanced system, one can observe that the two
techniques give perfect results since m̂φ = 0.4. However, for
the unbalanced case, Table II shows that the CT-based approach
leads to incorrect results and makes the fault detection more
difficult.

B. Experimental Signals

The experimental setup is composed of a tachogenerator, a
three-phase squirrel-cage induction motor, and a car alternator
(see Fig. 6). The parameters of the induction motor are as fol-
lows: 0.75 kW, 220/380 V, 1.95/3.4 A, 2780 r/min, 50 Hz, and
two poles. The tested motor has two 6204.2ZR-type bearings.
The outside bearing diameter is 47 mm, and the inside one is
20 mm. Assuming the same thickness for the inner and the
outer races leads to a pitch diameter equal to DP = 31.85 mm.
The bearing has eight balls (N = 8) with a diameter equal to
DB = 12 mm. The experimental tests have been performed
with healthy and faulty bearings (inner race deterioration) under
different motor load conditions [36].

As the faulty bearing introduces PM [15], the instantaneous
frequency contains most of the information about the fault.
Fig. 7 shows f [n] for healthy and faulty machines at a 300-W
load condition. Additional processings show that the fault fre-
quency is equal to fφ = 300 Hz whatever the load condition.
Table III presents the values of the proposed criteria m̂a and m̂f

when the motor operates under different motor load conditions.
From Table III, one can observe that the faulty bearings both
increase m̂a and m̂φ. One can also note that m̂a �= 0 for the
healthy and faulty bearings. Indeed, signal s[n] is not perfectly
sinusoidal and is composed of a small amount of AM even for
the healthy bearing.

Comparing Algorithms 1 and 2, one can easily verify that
the PCA-based criteria outperform the Concordia-based ones

Fig. 7. FM demodulated signals for the healthy and faulty machines (bearing
fault) with 300-W load.

TABLE III
EXPERIMENTAL RESULTS WITH THE HEALTHY AND FAULTY BEARINGS.

DEMODULATION USING THE CONCORDIA OR THE PCA TRANSFORM

whatever the motor load. Indeed, in all experiments, healthy
and faulty bearings are easier to distinguish with the PCA-based
criteria. In particular, at a 200-W load motor condition, a faulty
bearing leads to an increase in m̂φ of 286% for Algorithm 1
and 340% for Algorithm 2. These results come from the fact
that experimental signals contain a small amount of current
imbalance, which makes PCA better suited than CT for current
demodulation.

To compare the proposed approach with a conventional
demodulation technique, Table IV presents the values of m̂a

and m̂φ obtained with an HT. The comparison of Table IV
with Table III shows that the bearing fault is easier to detect
with the criterion m̂φ presented in Table III. Therefore, in our
context, the multidimensional demodulation techniques seem to
be better suited than the conventional HT. The differences can
be explained by the intrinsic limitations of the HT: First, the do-
main of validity of this transform is restricted by the Bedrosian
theorem [28]; then, the instantaneous amplitude and frequency
obtained with HT can present overshoots at both ends [26].
Another advantage of the CT and PCA techniques over HT
lies in the computational complexity. CT and PCA are linear
transforms; therefore, they are simpler to implement than HT,
which involves FFT and inverse FFT computations.
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TABLE IV
EXPERIMENTAL RESULTS WITH HEALTHY AND FAULTY

BEARINGS. DEMODULATION USING HT

VI. DISCUSSION

A standard approach for signal demodulation is based on
the extraction of the analytical signal. An analytical signal is
usually extracted from the HT for a monodimensional signal. In
the case of balanced three-phase systems, the previous sections
have shown that the analytical signal can be efficiently extracted
with the CT or PCA. These transformations have several advan-
tages over HT: First, they are simpler to implement; then, they
are free from signal artifacts (overshoots).

The main drawback of CT relies on its domain of validity.
Indeed, for an unbalanced system, this transform cannot be
employed for current demodulation. On the contrary, the PCA
transform, which is a data-driven approach, is well suited for
an unbalanced system. Another interesting property of PCA
relies on the fact that it can easily measure the amount of static
imbalance. Indeed, (40) shows that the eigenvalues of Rs are
equal for balanced systems, i.e., λ1 = λ2. For unbalanced sys-
tems, this property does not hold, and λ1 �= λ2. Therefore, an
equality test can be employed to distinguish between balanced
and unbalanced systems. This strategy has been previously
employed to detect stator winding faults in [41], and an
ad hoc criterion has been proposed to perform the equality
test. Interestingly, this equality test is well known in the signal
processing community and refers to a “sphericity test” [46].

In the field of multidimensional signal processing, another
popular technique is the independent component analysis (ICA)
[47]. Whereas PCA focuses on correlation (i.e., second-order
statistics), the ICA focuses on statistical independence, a
stronger property, which is usually measured through higher
order statistics. Therefore, it can be tempting to use ICA to
improve the performance of the proposed method. However, in
our study, it can be proved that the ICA is useless. Indeed, most
of the ICA algorithms are composed of two steps: a PCA pre-
processing step followed by a demixing step. After the PCA, the
demixing step searches for an orthogonal matrix that maximizes
the statistical independence of the PCA components. Neverthe-
less, in our context,5 multiplying yp(t) with a 2 × 2 orthogonal
matrix only modifies the value of θ in (15). As θ does not affect
a[n] and f [n], the demixing step is useless, and the algorithm
can therefore be limited to a PCA transform for demodulation.

5The formal proof can be derived from (42) and (43).

VII. CONCLUSION

This paper has focused on condition monitoring of three-
phase electrical systems. A new method based on the amplitude
and phase demodulation of the three-phase stator current with
linear transforms has been proposed. The performances of two
linear transforms have been investigated: the CT and the PCA.
Based on a deep theoretical analysis, it has been proved that the
PCA has a larger domain of validity than CT since it can deal
with unbalanced currents.

Then, two original criteria have been described to assess
the failure severity from the demodulated current. The per-
formances of the proposed criteria have been corroborated by
means of simulations with synthetic and experimental signals.
In particular, the results have shown that the PCA-based de-
modulation outperforms the Concordia-based one since it can
be employed for unbalanced stator currents.

APPENDIX

Let us compute the correlation matrix Ri = E[i(t)iT(t)] for
a balanced system. Using (3) and under the assumption that a(t)
and φ(t) are independent variables, one gets for all u = 1, 2, 3
and v = 1, 2, 3

E [iu(t)iv(t)] = E
[
a2(t)

]
Euv (31)

where

Euv = E [cos (φ(t) + ψu) cos (φ(t) + ψv)] (32)

with ψ1 = 0, ψ2 = −2π/3, and ψ3 = 2π/3. Let us assume that
the random variable x = φ(t) is distributed in [0, 2π[ according
to a uniform pdf, i.e., f(x) = 1/2π if x ∈ [0, 2π[ and f(x) = 0
if elsewhere. It follows that

Euv =E [cos (φ(t) + ψu) cos (φ(t) + ψv)]

=

+∞∫
−∞

cos(x + ψu) cos(x + ψv)f(x) dx

=
1
2π

2π∫
0

cos(x + ψu) cos(x + ψv) dx. (33)

Using trigonometric identities and some simplifications, one
can verify that

Euv =
1
2

cos(ψu − ψv). (34)

Therefore, it follows that

E [iu(t)iv(t)] =

(
E

[
a2(t)

]
2

)
cos(ψu − ψv). (35)

Finally, one gets

Ri =
E

[
a2(t)

]
2

 1 − 1
2 − 1

2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

 . (36)

One can also verify that

β2
i = trace[Ri]/3 = E

[
a2(t)

]
/2. (37)
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Using these equations and the definition of the Concordia
matrix in (7), one can verify that

Ri =
3
2
β2

i C
TC. (38)

Next, using an eigenvalue decomposition, Ri can also be
decomposed as

Ri = UΛUT (39)

where U is a 3 × 2 orthogonal matrix (UTU = I2) containing
the two eigenvectors and Λ = diag(λ1, λ2) is a diagonal matrix
containing the two nonzero associated eigenvalues λ1 and λ2.

By identifying (38) and (39), one gets

U = (WC)T (40a)

Λ =
3β2

i

2
I2 (40b)

where W is a 2 × 2 orthogonal matrix, i.e., WTW =
WWT = I2. This orthogonal matrix comes from the fact that
the eigenvalue decomposition is not unique.

Using (40) in (13), one gets

y(p)(t) =βiΛ− 1
2 UTi(t)

=W

(√
2
3
Ci(t)

)
= Wy(c)(t). (41)

As W is a 2 × 2 orthogonal matrix, W = {W1(θ),W2(θ)},
where θ ∈ R and

W1(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(42a)

W2(θ) =
[

cos(θ) sin(θ)
sin(θ) − cos(θ)

]
. (42b)

As y(c)(t) = [a(t) cos(φ(t)), a(t) sin(φ(t))]T, it can be shown,
using trigonometric identities, that

W1(θ)y(c)(t) =
[
a(t) cos (φ(t) + θ)
a(t) sin (φ(t) + θ)

]
(43a)

W2(θ)y(c)(t) =
[
a(t) cos (φ(t) − θ)
a(t) sin (φ(t) − θ)

]
. (43b)

Therefore, without loss of generality, the PCA components can
be expressed as

y
(p)
2 (t) = a(t) cos (φ(t) − θ) (44a)

y
(p)
1 (t) = a(t) sin (φ(t) − θ) . (44b)

Let us consider an unbalanced system whose components are
given by s(t) = Di(t). Using an eigenvalue decomposition, the
covariance matrix, denoted Rs = E[s(t)sT(t)], can be decom-
posed as

Rs = E
[
s(t)sT(t)

]
= UdΛdUT

d (45)

where Ud is a 3 × 2 orthogonal matrix and Λd is a 2 × 2 diag-
onal matrix. Using (5) and (39), Rs can also be expressed as

Rs =DRiD
=DUΛUTD (46)

where Ri = UΛUT is the covariance matrix for a balanced
system. By identifying (45) and (46), one gets

UdΛ
1
2
d = DUΛ

1
2 VT (47)

where V is a 2 × 2 orthogonal matrix. This matrix comes from
the fact that the equality UdΛdUT

d = DUΛUTD is satisfied
for any orthogonal matrix V. Taking the inverse of the previous
equation leads to

Λ− 1
2

d UT
d = VΛ− 1

2 UTD−1. (48)

Using these equations and (13), the PCA components of the
unbalanced system, denoted gd(t), can be expressed

y(p)(t) =βsΛ
− 1

2
d UT

d s(t) (49)

=βsVΛ− 1
2 UT

(
D−1s(t)

)
(50)

=V
(
βsΛ− 1

2 UTi(t)
)

. (51)

Let us express βs with respect to βi. By using (5), (35), and the
normalization assumption (

∑3
k=1 α2

k = 3), one gets

βs = trace[Rs]/3

=
3∑

k=1

α2
kE

[
i2k(t)

]
3

=
E

[
a2(t)

]
2

(
1
3

3∑
k=1

α2
k

)
= βi. (52)

By using (41), (51), and (52), one can conclude that

y(p)(t) = V
(
βiΛ− 1

2 UTi(t)
)

= VWy(c)(t). (53)

As V and W are orthogonal matrices, it follows that VW is
also an orthogonal matrix. Therefore,y(p)(t) can be expressed as

y(p)(t) = Wdy(c)(t) (54)

where Wd = VW is a 2 × 2 orthogonal matrix. As (54) is sim-
ilar to (41), a similar development as in this Appendix leads to

y
(p)
2 (t) = a(t) cos (φ(t) − θ) (55a)

y
(p)
1 (t) = a(t) sin (φ(t) − θ) . (55b)

Let us consider the AM signal in (1). Let us also assume that
the random variable x = 2πfat(mod 2π) is distributed in [0 2π[
according to a uniform pdf, i.e., f(x) = 1/2π if x ∈ [0, 2π[ and
f(x) = 0 is elsewhere. Under this assumption, one gets

µa =E [a(t)]

=

2π∫
0

α (1 + ma cos(x)) f(x) dx

=α. (56)

Therefore, it follows that

σ2
a = E

[
(a(t) − µa)2

]
= µ2

am2
aE

[
cos2(x)

]
. (57)

Using (32) and (34), one gets E[cos2(x)] = 1/2. It follows that

σ2
a =

µ2
am2

a

2
. (58)
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