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Sharp bounds for thg-torsion of convex planar domains
llaria FRAGALA - Filippo GAZZOLA - Jimmy LAMBOLEY

Abstract

We obtain some sharp estimates for gheorsion of convex planar domains in terms of their area,
perimeter, and inradius. The approach we adopt relies amstef web functiond.g. functions depending
only on the distance from the boundary), and on the behawidhe inner parallel sets of convex polygons.
As an application of our isoperimetric inequalities, we sider the shape optimization problem which
consists in maximizing thg-torsion among polygons having a given number of verticesaagiven area.

A long-standing conjecture by Polya-Szegd states ttastution is the regular polygon. We show that
such conjecture is true within the subclass of polygons fictva suitable notion of “asymmetry measure”
exceeds a critical threshold.

2000MSC 49K30, 52A10, 49Q10.
Keywords. isoperimetric inequalities, shape optimization, webctions, convex shapes.

1 Introduction

Let Q c IR? be an open bounded domain andget (1, +o00). Consider the boundary value problem

—Apu=1 in Q
1)
u =0 onof,

whereA,u = div(|VulP~2Vu) denotes the-Laplacian. The-torsionof (2 is defined by

= [ [Vl = [ . @

beingu, the unique solution to (1) iM/&’p(Q). Notice that the second equality in (2) is obtained by testin
(1) by u, and integrating by parts. Since (1) is the Euler-Lagrangeaton of the variational problem

1
min  J,(u), WhereJu:/ —|Vulf —u), 3
i o) = | (Ve ~u) ®)
there holds »

()= —— min Jy(u).

§@) = o5, min ()
A further characterization of thg-torsion is provided by the equality, () = S(Q)Y/®~1 whereS(Q) is
the best constant for the Sobolev inequajl|ity|§1(m < S(Q)||Vu\|§p(m on Wy P(Q).
The purpose of this paper is to provide some sharp bounds, @), holding for a convex planar domat,
in terms of its area, perimeter, and inradius (in the seqerbtéd respectively by|, 02|, and Rg). The



original motivation for studying this kind of shape optimion problem draws its origins in the following
long-standing conjecture by Polya and Szego:

Among polygons with a given area andvertices, the regularv-gon maximizes, . 4)

A similar conjecture is stated by the same Authors also fergtincipal frequency and for the logarithmic
capacity, see [13]. FaV = 3 and N = 4 these conjectures were proved by Pblya and Szegt thessddls,

p. 158]. ForN > 5, to the best of our knowledge, the unique solved case is theblogarithmic capacity,
see the beautiful paper [14] by Solynin and Zalgaller; treesaf torsion and principal frequency are currently
open. In fact let us remind that, fd¥y > 5, the classical tool of Steiner symmetrization fails beeatisnay
increase the number of sides, see [9, Section 3.3].

The approach we adopt in order to provide upper and lower d®for thep-torsion in terms of geometric
quantities, is based on the idea of considering a propemscb3V,(2) of Wol’p(Q) and to address the
minimization problem for the functional, on W, (£2). More precisely, we consider the subspace of functions
depending only on the distandéx) = dist(z, 92) from the boundary:

Wo() = {u € WyP(Q) : u(z) = u(d(z))} .

Functions inW,(€2) have the same level lines dsnamely the boundaries of the so-calleder parallel sets
Q :={x € Q : d(z) > t}, which were first used in variational problems by Polya arndd® [13, Section
1.29]. Later, in [8], the elements o¥,(12) were calledveb functionsbecause in case of planar polygons the
level lines ofd recall the pattern of a spider web. We refer to [5, 6] for sos@n®ates on the minimizing
properties of these functions, and to the subsequent p@ped§ for their application in the study of the
generalized torsion problem. Actually, the papers [3, 4ldéth the problem of estimating how efficiently
7,(€2) can be approximated by tlveeb p-torsion defined as

wp(Q) = L min JIp(u) .

1 —puew,(Q)

While the value ofr,,(€2) is in general not known (because the solution to problemghhot be determined
except for some special geometries)f the value ofw, (€2) admits the following explicit expression in terms

of the parallel set§);:
zum—/% o (5)
HA IO
whereq = Z% is the conjugate exponent pf and R, is the inradius of (see [4]).
Clearly, sinceW,(2) C Wol’p(Q), wp(€2) boundsr, (2) from below. On the other hand, whéhis convex,

7,(£2) can be bounded from above by a constant multiplevg(f(2), for some constant which tends tcas
p — +oo. Infact, in [4] it is proved that, for any € (1, +00), the following estimates hold and are sharp:

a+1

v Q
<G 24 TP(Q)

<1 (6)

whereC denotes the class of planar bounded convex domains; mordmweight inequality holds as an
equality if and only ifQ2 is a disk. Note that, ip — +oo, theng — 1 and the constant in the left hand side of
(6) tends tal.

In this paper, we prove some geometric estimates,fa) in the classC, which have some implications in
the conjecture (4). More precisely, we consider the follayshape functionals:

@I ()

Q .
TR REIQ

()



Let us remark that the above quotients are invariant undatiatis and that convex sets which agree up to
rigid motions (translations and rotations) are systeraliyicdentified throughout the paper.

Our main results are Theorems 1 and 6, which give sharp bdiandke functionals (7) whe® varies in

C. We also exhibit minimizing and maximizing sequences. €Hssunds are obtained by combining sharp
bounds for the welp-torsion (see Theorem 2 and the second part of Theorem 6)@)ittAs a consequence
of our results we obtain the validity of some weak forms ofyRé5zegd conjecture (4). On the claBsof
convex polygons we introduce a sort of “asymmetry measweh ss

00
VQEP, 4(Q):= ||m@i|

€ [1,400),

whereQ® denotes the regular polygon with the same area and the samtgenof vertices a€. Then, if the
p-torsionT,(Q2) is replaced by the wep-torsionw,(£2), (4) holds in the following refined form:

VQEP, wy() < y(Q) 9w, (QF). 8)

Consequently, on the clagdy of convex polygons withV vertices, conjecture (4) holds true for thage
which are sufficiently “far” fromQ)®, meaning that/(Q2) exceeds a threshold dependingrandp:

VQEPN : v(Q) > Ty 7p(0) < 7p(Q9). 9)

The value of the thresholdy , can be explicitly characterized (see Corollary 4) and teéadsasp — +oc.

The paper is organized as follows. Section 2 contains thersent of our results, which are proved in Section
4 after giving in Section 3 some preliminary material of getric nature. Section 5 is devoted to some related
open questions and perspectives.

2 Results

We introduce the following classes of convex planar domains
C = the class of bounded convex domaingRg;

C, = the subclass af given by tangential bodies to a disk;

‘P = the class of convex polygons;

Pn = the class of convex polygons havidgvertices (V > 3).

Tangential bodies to a disk are domafns= C such that, for some disk), through each point of<) there
exists a tangent line tQ which is also tangent t&. Domains inP NC, are circumscribed polygons, whereas
domains inC, \ P can be obtained by removing from a circumscribed polygonesoamnected components
of the complement (in the polygon itself) of the inscribedkdiln particular, the disk itself belongs @g.

Ouir first results are the following sharp bounds for gh®rsion of convex planar domains. We recall that, for
any givenp € (1, +00), ¢ := % denotes its conjugate exponent.

Theorem 1. For anyp € (1, +o0), it holds

1 7,(0)]09]7 2a+1
qg+1 Qe+t (q+2)(g+1)°

vQ e, (10)
Moreover,

o the left inequality holds asymptotically with equalityrsigr any sequence of thinning rectangles;

e the right inequality holds asymptotically with equalitgsifor any sequence of thinning isosceles triangles.



By sequence of thinning rectangles or triangles, we meanthigaratio between their minimal width and
diameter tends to 0. We point out that, in the particular casenp = 2, the statement of Theorem 1 is
already known. Indeed, the left inequality in (10) holdsetfar any simply connected setiR? as discovered
by Polya [12]; the right inequality in (10) for convex sessdue to Makai [11], though its method of proof,
which is different from ours, does not allow to obtain #tdct inequality.

Our approach to prove Theorem 1 employs as a major ingretlierfollowing sharp estimates for the web
p-torsion of convex domains, which may have their own interes

Theorem 2. For anyp € (1,+400), it holds

q
1w (@[99 _ 2

Q .
virec, +1 ‘Q’qul ~g+2

(11)

Moreover,
o the left inequality holds asymptotically with equalityrsigr any sequence of thinning rectangles;
e the right inequality holds with equality sign fér € C,.

Let us now discuss the implications of the above resultsérstiape optimization problem which consists in
maximizingr, in the class of convex polygons with a given area and a givenbeu of vertices:

maX{Tp(Q) : QePn, Q= m} . (12)

We recall that, for any2 € P, Q® denotes the regular polygon with the same area and the samigenwf
vertices ag$2. Moreover, we set

o0
VQeP, ~(Q):= —‘l’)Q@B“ :

notice that by the isoperimetric inequality for polygoneg#$roposition 7)y(Q2) € [1, +oc) andvy(€2) > 1 if
Q # Q%. With this notation, it is straightforward to deduce fromebinem 2 the following

Corollary 3. The regular polygon is the unique maximizengfover polygons if® with a given area and a
given number of vertices. More precisely, the followingnedi isoperimetric inequality holds:

VQeP, wy(Q) <~(Q) 9w, (Q¥) . (13)

As a consequence, using (6), we obtain some informationestiape optimization problem (12):

®Y\ 1
Corollary 4. LetT'y, := <:Up((g®))) fa T +21)1/q. Then,
p

VQePn, 10 < I’?\,’pw(Q)qup(Q@a) .

In particular, thep-torsion of the regularV-gon is larger than the-torsion of any polygon itPy having the
same area and an asymmetry measure larger than the threshgjd

VQePn, () >Tny = 17(Q) <7p(27). (14)

Some comments on Corollary 4 are gathered in the next remark.
Remarkb. (i) Using again (6) we infer

1<I'ny < . <2 VN,p, lim I'y,=1.

2
(q + 1)1/ p—r+o00
Hence, asymptotically with respectjipthe conditiony(2) > I'y, appearing in (14) becomes not restrictive.
Moreover, ifp = 2, we havel'y » < 2/4/3 ~ 1.15 and the dependence 0¥ of I'y » can be enlightened by
using the numerical values given in [6]:



N 3 4 5 6 7 8 9 10 20

I'vo~ | 1.054| 1.089| 1.108| 1.121| 1.129| 1.135| 1.138| 1.141| 1.149

(i) Though the validity of (4) is known for triangles, in cedto give an idea of the efficiency of Corollary 4,
consider the cas® = 3 andp = 2. The equilateral triangle

@ Ly Iy
I :=3 (r,y) €R* y>0, —= + <z <z }
{( y) 4 2 \/§ 2 \/§

satisfie§T®| = @ and|0T®| = 3. The solution to (1) is explicitly given by
V3 4 4
u(z,y) = —— (y ——y? + -yt - 4:62y>

8 N
so thatr,(T®) = +/3/640. Moreover, by (27) below we find»(7%) = +/3/768 and, in turn, thal's , =
V10/3 ~ 1.054.

Consider now the isosceles trianglBshaving the basis of length > 0 and the two equal sides of length

[ 3 k2 /3 V3 o
l, =1/ — +— sothat 07| =k — 4+ k2 and |T}| = — =1|T%
k 72 T |0T}| + 12 + |T| 4 |

(notice thatl}; = T®). Therefore,

)

NA
+
Tles
+
T

V(Tk) =

and~(Ty) > T3 if and only if 2v/10 k% — 10%% + 3
(0.760, 1.301).

We conclude this section with a variant of Theorems 1 and 2.

AV

0, which approximatively corresponds to ¢

Theorem 6. For everyp € (1, +00), it holds

1 () 21
Y < P 15
€C Lo T SR 1P (13)

1 wy(2) 1
Q < =P . 16
vQ e, (q+2)2q*1—R§g\Qy<q+1 (16)

Moreover,

o the left inequality in(15) holds with equality sign for balls;

o the left inequality in(16) holds with equality sign fof2 € C,;

o the right inequality in(16) holds asymptotically with equality sign for a sequence iirtimg rectangles.

The right inequality in (15)s notsharp. In fact, fop = 2, one has the sharp inequalities

1 TQ(Q) 1
vQel, -< < =
RN AT
see [13, p. 100] for the left one, and [11] for the right one.
Using the isoperimetric inequalities (15) and (16), oneaan derive statements similar to Corollaries 3 and

4, wherey(Q2) is replaced by another “asymmetry measure” given by

_ Rge
= R

7(Q)



3 Geometric preliminaries

In this section we present some useful geometric propesfiesnvex polygons, which will be exploited to
prove Theorem 2. First, we recall an improved form of the éopetric inequality in the clas®, whose
proof can be found for instance in [3, Theorem 2]. For @ng P, we set

Cq = E cotan %, beingd; the inner angles df . (a7)
Proposition 7. For every() € P, it holds
09
Q < —r— 18

with equality sign if and only if2 € P N C,, namely whef is a circumscribed polygon.

Next, we recall that, denoting by, the inradius of any? € P, for everyt € [0, Rq], theinner parallel sets
of Q are defined by
Qp:={z e : dist(z,00) >t}

(notice in particular thaf2z,, = 0). Then we focus our attention on the behaviour of the mapCq,, on the
interval [0, R |, and on the related expression of Steiner formulae. Foyeéver P, we set
ro :=sup {t € [0, Rq] : Q4 has the same number of vertices(a$ .

Clearly, if rq < Rgq, the number of vertices d®; is strictly less than the number of vertices(offor every
t e [TQ,RQ).

Proposition 8. For everyQ2 € P andt > 0, Q, € P and the mag — Cl, is piecewise constant dfl, Rg).
Moreover, for every € [0, rq], it holds

Q| = Q| — |09t + Cqt? and 09| = |09 — 2Cqt. (19)

Finally, for everyt € [0, Rq], it holds
|0 | < 09| — 27t. (20)

Proof. Fort small enough, the sides 6f; are parallel and at distan¢drom the sides of?, and the corners
of Q; are located on the bisectors of the angle§of-q, is actually the first time when two of these bisectors
intersect at a point having distant&om at least two sides, see Figure 1.

Figure 1: Intersection of bisectors

Therefore, fort < rq, Q; has the same angles @soCq, = Cq by (17)), and we notice that the perimeter
of grey areas in Figure 2 i& cotan(6;/2), and their areas aré cotan(6;/2), which gives (19) (still valid for
t = rq by continuity).



Figure 2: How to derive Steiner formulae

Let us now show that the map— Cj, is piecewise constant df, R ), assuming that, < Rq. Once

t = rq,  still has sides parallel to the ones@fbut loses at least one of them. Aga,, is constant for

t > rq until the next value of such that another intersection of bisectors appears (wecoagider bisectors
of ©2,,). The number of discontinuities of— Cq, is finite since? has a finite number of sides, and therefore
iterating the previous argument, we get that Cq, is piecewise constant.

Finally, from (17) we infer that’q > = for any Q) € P, so that (20) follows from the concavity of the map
t — |09 on [0, Rq] (see [1, Sections 24 and 55]). O

A special role is played by polygori$ € P such thato = Rq, hamely polygon$) whose inner parallel sets
all have the same number of verticed aigself. These ar@olygonal stadiumscharacterized by the following

Definition 9. We call S the class opolygonal stadiumsnamely polygons?’ € P such that there exist a
circumscribed polygorP € P N C, having two parallel sides, and a nonnegative numbsuch that, by

choosing a coordinate system with origin in the center ofdis& inscribed inP and thex-axis directed as
two parallel sides of, P! can be written as

P (e (DU 5] (mmm)U (s ().

whereP_ (resp.P; ) denotes the set of poinfs, y) € P with z < 0 (resp.z > 0), andRp is the inradius of
P, see Figure 3.

Figure 3: A circumscribed polygof and a polygonal stadiuri*

Proposition 10. Let() € P. There holdsq = Rq, ifand only ifQ2 € S.

Proof. We use the same notation as in Definition 9. Assumefhat P* € S. Then the bisectors of the
angles ofQ2 intersect either a(t—%, 0) or at(g, 0), which are at distanc&g, from the boundary, see Figure 4.
In particular, if§2 is circumscribed to a disk, namelyff= 0, then the bisectors of the angles(®fll intersect
at the center of the disk. Therefofe; has the same number of sidesta ¢t < Rq.



Figure 4: Parallel sets of a polygonal staditith

Conversely, assume th&, = rq. The sef{z € Q : d(x) = Rq} is convex with empty interior, so either it

is a point, or a segment. If it is a point, then its distanceatheside is the same, and therefore the disk having
this point as a center and radig, is tangent to every side 61, so that() is circumscribed to a disk. Ifitis a
segment, we choose coordinates such that this segmdntis0) ; (£,0)] for some positive numbet Every
point of this segment is at distané&, from the boundary, sf contains the rectangl@%, %) X (—Rgq, Rq).

Considering , , , ,
p=(anfrz =)+ (G0)U(n {2 5+ (-50))
we have thafP is circumscribed an€ = P*. d

Remarkll. Thanks to Proposition 10, for any polygonal stadiff the validity of the Steiner formulae (19)
extends fort ranging over the whole intervéd, R »¢]. Moreover, the value of the coefficieri8’|, |0P¢| and
C'pe appearing therein, can be expressed only in term&pfRp, and/ (see Section 4). It is enough to use
the following elementary equalities deriving from decorsition (21)

|PY| = |P| + 2¢Rp , |oPY =|0P|+2¢, Cpe=Cp, Rpi=Rp,
and the following identities holding for evedy € P N C,

_ 2|P]
0P| = 2 (22)

_ 1P

Cp = L
P R%_—,,

Finally, we show that the parallel sets of any convex polygaare polygonal stadiums fersufficiently close
to Rq:

Proposition 12. For every) € P, there exist$ € [0, Rg) such that the parallel sef3; belong toS for every
tc [f, RQ).

Proof. We definet as the last timé¢ < Rq such that() loses a side (we may have= 0). Therefore
vVt € [f, RQ] , ¢ has a constant number of sides, and so is in the ddgsProposition 10. O

4 Proofs

4.1 Proof of Theorem 2

We first prove Theorem 2 fdr € P, then we prove it for alf2 € C.

8



e Step 1: comparison with inner parallel sefor a giverf2 € P, we wish to compare the value of the energy
% with the one of its parallel sé?. for smalle. To that aim, we use the representation formula (5)
for w,(£2), and Steiner’s formulae (19). In applying them we recalt,ths Proposition 8 the map— Cg,

is piecewise constant fare [0, Rg), and in particular it equal€’, on [0, rq]. Taking also into account that

(Qe)r = Qeyyr, ase — 0 we have

Ro—e _[(Qe)e]
wp ()00 fO ’ Ewdt’aga‘q (23)
QT T Q[T
ol = IS phifec] (001~ 200t
- o(e),
(9] — 99 €]
_ oo ol Co 09|
- ‘Q’!H-l wp(Q) ‘aQ‘q—lg 1 2q’89’€ 1+ (Q+1) ‘Q’ € +0(€)7
wp(§)|094 0Qe 09| Cow,(€)|00Qa~!
|Q[at1 (¢+1) GEE wy(2) — 0] —2q Q] e+ o(e),
so that
wp(Q2e)[0Q T wp ()]0 _ |09 o], Cawp()|09Q[
|Q.|a+! Qe ( ) DGE wp( 0] 2q Q] e+o(e). (24)

As we shall see in the next steps, formula (24) will enableougach a contradiction if (11) fails.

e Step 2: if (11) fails for some convex polygon then it also fails for a polygstadium.Let2 € P\ S, and
assume that (11) fails. We have to distinguish two cases.

First case: Assume that
wp (O 2

Qe > Pt (25)
Using the isoperimetric inequality (18) and (25), one gets
|oQ|a+1 |09 Cow,(Q)|0Q11 q+21(09Q] [wy(2)]00Q? 2
1 — —2 — .
R T 1 B T A T ]

Inserting this information into (24) shows that

wp(2)|00:|? wp(€2)]00)
|2 |at Qe+t

for sufficiently smalk. In fact, more can be said. By Proposition 8 we know thagt = Co, for all ¢ € [0,7q).
By extending the above argument to all suctve obtain that, if (25) holds, then the map» % is
strictly increasing fot € [0, rq). In particular, by (25),

wp(QO%LT  wp (DO 2
[ T g

Ve € (0, ’I“Q].

So, ifQ2,, € S, we are done since it violates (11). At rq the number of sides d®; varies. If2,, ¢ S,
we repeat the previous argument to the next interval wiigreremains constant. Again, the map—
% is strictly increasing on such interval. In view of Propisit 12, this procedure enables us to
obtain some polygonal stadium such that (25) holds.
Second caseAssume that
wy (ORI _ 1
Qatt T g+ 1

(26)



Hence,

q+1 q—1
[(q+ 1)7‘(’?“%2 wp(Q) — ’fg" —~ QQCQMI)\SZEW }
B \BQ\ ]8(2]‘1 1 2q Cpr(Q)\aQ\q*2
R T [T R ey Sty s 7T <0

Inserting this into (24) and arguing as in the previous casesee that the map+— % is strictly

decreasing fot € [0, Rg). In view of Proposition 12, this proves that there exists eglygonal stadium
such that (26) holds.

e Step 3: explicit computation for a polygonal stadiutret @ = P* € S be a polygonal stadium. We are
going to derive an explicit expression for the function

_ wy(PY)[oP*|
We point out that, in the special caée= 0, 2 € P N C, (namelyQ2 is a circumscribed polygon), and it is
proven in [4, Proposition 2] that

wy(Q)OR) 2

= . 27
T e @

vQ e C,,

In particular, formula (27) shows that the upper bound ir) {8 achieved whef € C,,.

We now show that the above formula can be suitably extendedtalthe casé > 0. Our starting point is the
representation formula (5). Therein, we use the Steinenditae (19); in particular, by Propositions 8 and 10,
we know thatCy, = Cq, for everyt € [0, R). Moreover, since® € P N C,, we can exploit identities (22).
Setting for brevity

A:=|P|, R:=Rp, Ti=—,

we obtain

dt

(24 +20)° /R (A+2RC — 20t — 24t + 4¢%)°
(A+2RO)TT Jy (20 +24 — 240"

(x+2) (YA +x—at—2t412)9
(z + 1)+l /0 (x +2—2t)71

(@427 P ()
(x4 1)t /0 (x +2t)a1 dt. (¢8)

dt

Of course, takingc = 0 in (28) gives again (27); on the other hand, takihg— oo gives the asymptotic
behaviour for thinning polygonal stadiums.

e Step 4 In view of equality (28) obtained in Step 3, the estimate) (Wil be proved for any polygonal
stadium, provided we show that for glle (1, 400) one has

1 (x+2)7 ! t9(z+1) 2
dt M4 0 . 29
q+1<(x+1)q+1/0 @t 20T <q+2 z € (0,+00) (29)

With the change of variablgs= zs, the inequalities in (29) become

q+1 1/z oq q q+1
1 (x+1) / si(1+s) p 2 (z+1) Vi € (0, +00).
0

q+129t2(x 4 2)4 (1+2s)a1 y q+2 x1t2(x + 2)7

10



In turn, by puttingy = 1/, the latter inequalities become

1yt (1 4 y)att /y s9(1 + )4 J 2 yitl(1 4 y)rtt
S
0

vy € (0,+00). (30
g+l (1+2y) (14 2s)a-! g+2 (1+2y) y € (0,+00).  (30)

In order to prove the right inequality in (30), consider thadtion

o (y) /y s1(1 + )1 2yl 4y)rt?
= ——ds —
Vs fo a2t @ g2 (1+2y)

y € (0,+00)

and we need to prove thét(y) < 0 for all y > 0. This is a consequence of the two following facts:

q yi(1+y)

d0)=0, Dy = T r 2042y

In order to prove the left inequality in (30), consider thadtion

Y g4(1 q 1 a+1(1 q+1
U(y) ::/ B L/ ( +8)1d5— yr (1+y)
o (14 2s) g+1 (1+2y)

y € (0,+00)

and we need to prove that(y) > 0 for all y > 0. This is a consequence of the two following facts:

2q y? 1(1 y)q !
( ) ) (y) q 1 (1 2y)q 1 >

Both inequalities in (30) are proved and (29) follows.
We point out that, in the cage= 2, some explicit computations give the stronger result thatbap

(x+2)7 [! t9(z+1)1
(x + 1)at+1 /0 (x4 2t)a~1 dt

is decreasing. We believe that this is true for anput we do not have a simple proof of this property.

e Step 5: conclusionLet 2 € P and assume for contradiction thatviolates (11). Then by Step 2 we know
that there exists a polygonal stadium which also violatd3.(This contradicts Step 4, see (29). We have so
far proved that (11) holds for &k € P. By a density argument we then infer that

1w (@)oQE 2
< < .
F1o Qe T gt2

vQed, (31)
Therefore, in order to complete the proof we need to showtkiealeft inequality in (31) is strict. Assume for
contradiction that there exist$ € C such that

wy ()00 1

- . 32
Qe T g1 (32)

Take any sequend@® € P such that2?* > Q andQ* — € in the Hausdorff topology. Similar computations
as in (23), combined with (20), enable us to obtain

k e _log k q
wy ()| 00k _ [4p(2) — [ g [1094] — 2]

|QFatt -~ (|| — |0QFk| £]4H!
wy (QF)]0QF | ok |+ By |09 muwp(QF) |90k 2
— ’Qk’q—l—l (q 1)Wwp( )— ‘Qk’ —2q ‘Qk’qﬂ €+ aeg”,
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wherea is some positive constant, dependingfdhut not onk. Therefore, sinc€F — Q, forall ¢ € [0, R,
we have

WO @000 (OO (@0
€2 |at Qe Qe |2k |at
mw, (QF) |00k |91
< |o(1) —2¢g—2= QT e+ ae? +o(1)

whereo(1) are infinitesimals (independentajfask — o0o. Hence, by letting: — oo and taking: sufficiently

small, we obtam‘% < 241, Which contradicts (31).

4.2 Proof of Theorem 1

The inequalities (10) follow directly from (11) and (6) so yust need to show that they are sharp.
For the right inequality, take a sequence of thinning islesceianglesl,. Then, by Theorem 2 we have

wy(Ti)|0T,|? 2
’Tk‘qul q+2

forall k.

On the other hand, by [4, Proposition 3] and (6) we know that

T 1
k—ro0 Tp(Tk) 24
and therefore .
i TRIOT,[ 277 '
k—oo  |Tp|rT! (¢+2)(¢g+1)

For the left inequality, we seek an upper boundrfg£?) by using the maximum principle. For dlle (0, 4o00)
let Qf = (—£,£) x (—1,1) and letu, be the unique solution to

—Ajug=1 inQ°, u =0 ondNt.
Let uo (2, y) = =2 (1 — |y[P/P=D) so that
p
~Apieo =1 inQ°, Uoo >0 0nONL.

By the maximum principle, we infer that,, > u, in Q¢ so that

() = /W</uoo: 6/ P/ =) dy:2(p_1)g: 20
@ o 2p—1  q+1
Hence, Z Z
Q Dw,(Q
1 > liminf 0 Z)zlimjnfwzl
{—00 TP(Q) {—00 20

where the last equality follows from Theorem 2. Combinechwibeorem 2, this proves that

QhH |00t |2 1
L om@nje 1
{—00 |QZ|Q+1 q+1
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4.3 Proof of Theorem 6

Since it follows closely the proof of Theorem 1, we just skeitc We first prove the counterpart of Theorem
2 and we follow the same steps.
e Step 1.Given(2 € P and usingRq. = Rqo — € + o(e) we prove:

wplle)  wp@) e g |09 10l
Rofu]  Fal0] RO (wp(m {R_Q "ol ] - |afz|q1> +ole). (33)

e Step 2.We prove that, if (16) fails for som@ € P, then it also fails for a polygonal stadium. To that end,
we estimate the sign in (33) with the help of the followingsslizal geometric inequalities (see [1])

1 2|
vQece, S <o0l < 2=
G,RQ<| I_RQ

e Step 3.Again, explicit computations can be done for a polygonalisia, and with the same notation as in
the proof of Theorem 2, we get:

wy(P) 1 / t9(z + )" .
= dt VP e€S.
REIPT ™ w41 Jy (w+ 20 ©

e Step 4.In view of Step 3, estimate (15) is proved for any polygonatlatm, provided for aly € (1, +o0)

one has . ( )
1 1 t9(x +t)4 1
dt . 34
(q—|—2)2‘11<x—|—1/0 et U< o vz € (0, +00) (34)

With the change of variablgs= xs and puttingy = 1/z, the inequalities in (34) become

yq+2 + yq+1 Y s9(1+ s)4 yq+2 + yq+1
W o (1 T 23)‘1_1 S p T 1 Vy S (0, +OO) (35)
Some tedious but straightforward computations show that

yt qg+1 o Y4y _a+2 g
Yy € (0,
21 T g2 1? Sxoget Sgr1d TV y € (0, 400)

and (35) follows after integration ovéd, y).

e Step 5.The previous steps leads to (16) for polygons and by densitgdnvex domains. The strict right
inequality in (16) can be obtained by reproducing carefthly computations in Step 1, similarly as done in
Step 5 of Section 4.1.

Now the counterpart of Theorem 2 is proved, and we may usa @)der to get (15) from (16). Balls realize
equality in the left inequality of (15) because the are atgame time circumscribed and maximal for the
quotientw, /7.

5 Some open problems

We briefly suggest here some perspectives which might bed=mesl, in the light of our results.

Sharp bounds for the-torsion in higher dimensiondn higher dimensions the shape functiongjsandw,
can be defined in the analogous way asrfet 2. In [2], Crasta proved the following sharp bounds:

n+1  wy(N)
2n T9(Q2)

vV Q bounded convex set IR", <1.
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Therefore it seems natural to ask: what kind of isoperimetrequality can be proved fav, andr, among
convex sets ifR"™? In this direction, let us quote an inequality proven in pljtained by a strategy similar to
our approach, that is by looking at the level sets of the stgpoction:

T2(£2)]09| < To(B)|0B]

Vv Q bounded convex set IR"
S TRaaP Z TRelBP

(Bis a ball ofIR™).

Sharp bounds for the principal frequen&y.notion of “web principal frequency” can be defined (in anpasp
dimension) similarly as done for the web torsion, that is

ul?
A (Q) = inf{fﬂflziu; Cu € WQ(Q)}

Writing the optimality condition in the spadeé,(£2), one can express; (2) as

Ro 12
AF(Q) = int {% . pe HY(0,Ra), p(0) = o}, wherea(t) = |9€Y|.

0
Itis clear that\[ () > A1(92), with equality sign whe is a ball. On the other hand, the following questions
can be addressed:
e Find a sharp bound from above for the rakip(2) /A1 (£2) among bounded convex subsetdRif.
e Is it possible to apply successfully the same strategy af plaiper, that is find sharp bounds ﬂo‘lF(Q)
and then use the estimates on the rafid(2)/\;(Q), to deduce sharp bounds far(Q2)? In particular, this
approach might allow to retrieve the following known inelifigs holding for any bounded convex domain
QO c IR? (see [10, 11, 12)):

Q 2 2 2
il itl l and % < M(QRE < g2 .
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