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We address domain adaptation (DA) for binary classification in the challenging case where no target
label is available. We propose an original approach that stands in a recent framework of Balcan et
al. [1] allowing to learn linear classifiers in an explicit projection space based on good similarity
functions that may be not symmetric and not positive semi-definite (PSD). Following the DA frame-
work of Ben-David et al. [2], our method looks for a relevant projection space where the source and
target distributions tend to be close. This objective is achieved by the use of an additional regularizer
motivated by the notion of algorithmic robustness proposed by Xu and Mannor [3]. Our approach is
formulated as a linear program with a 1-norm regularization leading to sparse models. We provide
a theoretical analysis of this sparsity and a generalization bound. From a practical standpoint, to
improve the efficiency of the method we propose an iterative version based on a reweighting scheme
of the similarities to move closer the distributions in a new projection space. Hyperparameters and
reweighting quality are controlled by a reverse validation process. The evaluation of our approach
on a synthetic problem and real image annotation tasks shows good adaptation performances.

This work will appear in “IEEE International Conference on Data Mining (ICDM) 2011” [4].

Notations

Let X ⊆ Rd be the input space of dimension d and Y = {−1,+1} the label set. A domain is a
probability distribution overX×Y . In a DA framework [2, 5], we have a source domain represented
by a distribution PS and a target domain represented by a somewhat different distribution PT . DS

and DT are the respective marginal distributions over X . A learning algorithm is provided with a
Labeled Source sample LS = {(xi, yi)}dli=1 drawn i.i.d. from PS , and an unlabeled Target Sample
TS={xj}dtj=1 drawn i.i.d. from DT . Let h :X→Y be an hypothesis function. The expected source
error of h over PS is the probability that h commits an error: errS(h) = E(x,y)∼PSL01

(
h,(x, y)

)
,

where L01(h,(x, y))=1 if h(x) 6= y and zero otherwise, it is the 0-1 loss function. The target error
errT over PT is defined in a similar way. êrrS and êrrT are the empirical errors. An hypothesis
classH is a set of hypothesis. The DA objective is then to find a low target error hypothesis.

Domain Adaptation Framework

We consider the DA framework proposed by Ben-David et al. [2] allowing us to upper bound the
target error errT according to the source error and the divergence between the domain distributions,

∀h ∈ H, errT (h) ≤ errS(h) +
1

2
dH∆H(DS , DT ) + ν. (1)

The last term ν can be seen as a kind of adaptation ability measure of H for the DA prob-
lem considered and corresponds to the error of the best joint hypothesis over the two domains:
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ν = argminh∈H errS(h) + errT (h). The second term dH∆H(DS , DT ) is called the H∆H-distance
between the two domain marginal distributions. This measure is actually related to H and an inter-
esting point is that when the VC-dimension ofH is finite, we can estimate dH∆H from finite samples
by looking for the best classifier able to separate LS from TS. This bound suggests that one possible
solution for a good DA is to look for a relevant data projection space where both theH∆H-distance
and the source error of a classifier are low (two aspects a priori necessary for a good DA [6]).

Learning with Good Similarity Functions

Instead of working on the implicit high dimensional projection space induced by classical SVM’s
kernels (that may be strongly limited by symmetry and PSD requirements), we investigate a more
flexible and intuitive similarity-based representation proposed recently by Balcan et al. [1] for learn-
ing with a good similarity function fulfilling the following definition.
Definition 1 ([1]). A similarity function is any pairwise function K : X×X → [−1, 1]. K is an
(ε,γ,τ )-good similarity function for a learning problem P if there exists a (random) indicator
function R(x) defining a set of reasonable points such that the following conditions hold:
(i) A 1− ε probability mass of examples (x, y) satisfy E(x′,y′)∼P

[
yy′K(x,x′)|R(x′)=1

]
≥ γ,

(ii) Prx′ [R(x′)=1] ≥ τ .

Def.1 requires that a large proportion of examples is on average more similar, w.r.t the margin γ, to
the reasonable points of the same class than to the reasonable points of the opposite class. It includes
all valid kernels as well as some non-PSD similarities and is thus a generalization of kernels [1].
Given K an (ε,γ,τ )-good similarity function, LS a sample of dl labeled points and R a set of -
enough - du potential reasonable points (landmarks), the conditions of Balcan et al. are sufficient to
learn a low-error linear binary classifier (a SF classifier) in a φR-space defined by the mapping φR,
which projects a point in the explicit space of the similarities to the landmarks in R such that,

φR :

{
X → Rdu
x 7→ 〈K(x,x′1), . . . ,K(x,x′du)〉.

The low-error SF classifier h can be learned by solving the following linear problem in the φR-space,

min
α

1

dl

dl∑
i=1

L
(
g, (xi, yi)

)
+λ‖α‖1,with L

(
g, (xi, yi)

)
=[1−yig(x)]+ and g(x)=

du∑
j=1

αjK(x,x′j), (2)

where [1− z]+=max(0, 1− z) is the hinge loss. Finally, we have h(x) = sign[g(x)].
Solving (2) not only minimizes the expected source error but also defines a relevant projection space
for a given problem, since landmarks associated with a null weight in the solution α will not be
considered. In this work we propose to add a new regularization term on α in order to constrain the
explicit φR-space to move closer the two distributions and to tend to decrease theH∆H-distance.

Contribution for Domain Adaptation with Good Similarity Functions

The objective here is to define a regularizer that tends to make the source and target sample indistin-
guishable. For this purpose, we have investigated the algorithmic robustness notion proposed by Xu
and Mannor [3] based on the following property: “If a testing sample is similar to a training sample
then the testing error is close to the training error”. This can be formalized as follows: If for any
test point close to a training point of the same class the deviation between the losses of each point is
low for a learned model, then this model has some generalization guarantees (even if the robustness
is true for only a subpart of the training sample). This result actually assumes that the test and train
data are drawn from the same distribution and is thus not valid in a classical DA scenario.

However, we propose to adapt this principle for making the target sample similar to the source one
which is coherent with the minimization of the divergence dH∆H: For any pair (xs,xt) of close
source and target instances of the same class y, the deviation between the losses of xs and xt is low.
By considering the hinge loss of (2), this leads us to the following term to minimize for such a pair:∣∣L(g, (xs, y))−L(g, (xt, y))

∣∣≤∥∥(tφR(xs)− tφR(xt)) diag(α)
∥∥

1
, where tφR(·) is the transposed

vector of φR(·) and diag(α) is the diagonal matrix with α as main diagonal. Given any pair set
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CST of close source-target examples, we then propose to consider this term for all the pairs as an
additional regularizer on α, weighted by a parameter β, to the Problem (2) of Balcan et al. Our
global optimization problem (3) can be then formulated as the following linear program,

min
α

1

dl

dl∑
i=1

L
(
g, (xi, yi)

)
+ λ‖α‖1 + β

∑
(xs,xt)∈CST

‖(tφR(xs)−tφR(xt)) diag(α)‖1,

with L
(
g, (xi, yi)

)
=[1−yig(x)]+ and g(x)=

∑du
j=1 αjK(x,x′j).

(3)

This problem is defined with a 1-norm regularization leading generally to very sparse models. We
have in fact proved in the following lemma that the sparsity of the obtained models depends also
on a quantity BR = minx′

j∈R
{

max(xs,xt)∈CST |K(xs,x
′
j) − K(xt,x

′
j)|
}

related to the deviation
between coordinates in the considered φR-space. In other words, when the domains are far from
each other, i.e. the task is hard, BR tends to be high which can increase the sparsity.

Lemma 1. For any λ>0, β>0, any set CST s.t. BR>0, if α∗ is optimal, then ‖α∗‖1 ≤
1

βBR + λ
.

Moreover, according to the robustness framework [3] applied on the source domain, and from the
DA bound (1), we can prove the following generalization bound for the expected target domain error.

Theorem 1. Problem (3) defines a procedure (2Mη,
Nη

βBR+λ ) robust on the source domain, where
Nη = max

xa,xb∼DS ,
ρ(xa,xb)≤η

‖tφR(xa)−tφR(xb)‖∞, η>0, Mη is the η-covering number of X . Thus for every

h in the SF classifiers hypothesis class, for any δ>0, with probability at least 1−δ,

errT (h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
+

1

2
dH∆H(DS , DT ) + ν.

From a practical standpoint, a critical issue is the estimation of the hyperparameters λ and β and
the definition of the pair set CST which is difficult a priori since we do not have any target label
information. We propose to tackle these problems with the help of a reverse validation method.

Reverse validation and Iterative procedure

We choose the different parameters of our method by following the principle of reverse validation
of Zhong et al. [7]. This principle is illustrated on Fig. 1 and consists in learning a so-called reverse
classifier hr, from the target sample sef-labeled by a classifier h (inferred with Pb. (3)). We evaluate
êrrS(hr) on the source sample and heuristically êrrT (hr) on the self-labeled target sample (both by
cross-validation). We then obtain an heuristic estimate of ν (of the DA bound (1)) for hr such that
ν̂=êrrS(hr) + êrrT (hr). We select the parameters and pair set CST minimizing ν̂. In this context,
ν̂ can be seen as a quality measure of the φR-space found: If the two domains are sufficiently close
and related then the reverse classifier should perform well on the source domain ([8]).

However, considering all the possible pairs for CST remains clearly intractable. In practice, we select
only a limited number of examples for building CST . We compensate the possible loss of information
by an heuristic iterative procedure still allowing to move closer the two distributions. Suppose that at
a given iteration l, with a similarityKl, we obtain new weights αl by solving (3). Our regularization
term can actually be seen as a L1-distance in a new φRl+1-space: ‖(tφRl (xs)−tφRl (xt)) diag(α)‖1 =

‖(tφRl+1(xs) − tφRl+1(xt))‖1. φRl+1 corresponding to the mapping defined by the similarity Kl+1

obtained fromKl by a conditional reweighting to each landmark: ∀x′j ∈R,Kl+1(x,x
′
j)=α

l
jKl(x,x

′
j)

(Kl+1 do not need to be PSD nor symmetric according to Def.1). We then iterate the process in
the new φRl+1-space and we stop at iteration l when ν̂l+1 has reached a convergence point or has
increased. The main steps of the recursive approach are summarized on Algorithm 1.

Experimental evaluation

Our method DASF has been evaluated on a toy problem and on real image annotation tasks and
compared with SF method of Pb (2) and SVM with no adaptation, the semi-supervised Transductive-
SVM (T-SVM) [9] and the iterative DA algorithm DASVM [8]. We used a Gaussian kernel for the
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Algorithm 1 DASF (Domain Adaptation with Similarity Functions)
Input: similarity function K, set R, samples LS and TS
Output: classifier hDASF
h0(·)← sign

[
1
|R|
∑|R|
j=1K(·,x′j)

]
; K1 ← K ; l← 1;

while The stopping criterion is not verified do
αl ← Solve Pb. (3) with Kl, CST and hyperparameters being selected by reverse validation;
Kl+1 ← Update Kl according to αl ; Update R; l + +;

end while
return hDASF (·) = sign

[∑
x′
j∈R

αljKl(·,x′j)
]
;

last three methods and a re-normalization of this kernel as a non PSD similarity function for SF and
DASF (see [10]). All the averaged results show that DASF provide better and sparser models in
general. As an illustration, Tab.1 gives results for a real image annotation task, where the source
images are extracted from the PascalVOC’07 corpus and the target ones from the TrecVid’07 video
corpus. Moreover, the iterative procedure always tend to decrease the distribution divergence with
the iterations [4]. Among all the possible perspectives, we notably aim to consider some few target
labels to help the search of a relevant projection space.
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Figure 1: The reverse validation. 1: Learning h
with (3). 2: Auto-labeling the target sample with h.
3: Learning hr on the auto-labeled target sample
with (2). 4: Evaluation of hr on LS.

CONCEPT BOAT BUS CAR MONITOR PERSON PLANE AVG.
SVM 0.56 0.25 0.43 0.19 0.52 0.32 0.38

MODEL SIZE 351 476 1096 698 951 428 667
SF 0.49 0.46 0.50 0.34 0.45 0.54 0.46

MODEL SIZE 214 224 176 246 226 178 211
T-SVM 0.56 0.48 0.52 0.37 0.46 0.61 0.50

MODEL SIZE 498 535 631 741 1024 259 615
DASVM 0.52 0.46 0.55 0.30 0.54 0.52 0.48

MODEL SIZE 202 222 627 523 274 450 383

DASF 0.57 0.49 0.55 0.42 0.57 0.66 0.54
MODEL SIZE 120 130 254 151 19 7 113

Table 1: The results obtained on the
TrecVid target domains according to the F-
measure. AVG. corresponds to the averaged
results.

References
[1] M.-F. Balcan, A. Blum, and N. Srebro. Improved guarantees for learning via similarity functions. In

Proceedings of COLT, 2008.

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J.W. Vaughan. A theory of learning
from different domains. Machine Learning Journal, 79(1-2):151–175, 2010.

[3] H. Xu and S. Mannor. Robustness and generalization. In Proceedings of COLT, 2010.

[4] E. Morvant, A. Habrard, and S. Ayache. Sparse domain adaptation in projection spaces based on good
similarity functions. In Proceedings of ICDM, 2011.

[5] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In
Proceedings of COLT, 2009.

[6] S. Ben-David, T. Lu, T. Luu, and D. Pal. Impossibility theorems for domain adaptation. JMLR W&CP,
9:129–136, 2010.

[7] E. Zhong, W. Fan, Q. Yang, O. Verscheure, and J. Ren. Cross validation framework to choose amongst
models and datasets for transfer learning. In Proceedings of ECML-PKDD, 2010.

[8] L. Bruzzone and M. Marconcini. Domain adaptation problems: A DASVM classification technique and
a circular validation strategy. IEEE Trans. Pattern Anal. Mach. Intell., 32(5), 2010.

[9] T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings
of ICML, 1999.

[10] E. Morvant, A. Habrard, and S. Ayache. On the usefulness of similarity based projection spaces for
transfer learning. In Proceedings of Similarity-Based Pattern Recognition workshop (SIMBAD), 2011.

4


