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Sparse Domain Adaptation in a Good Similarity-Based Projection Space *

We address domain adaptation (DA) for binary classification in the challenging case where no target label is available. We propose an original approach that stands in a recent framework of Balcan et al. [START_REF] Balcan | Improved guarantees for learning via similarity functions[END_REF] allowing to learn linear classifiers in an explicit projection space based on good similarity functions that may be not symmetric and not positive semi-definite (PSD). Following the DA framework of Ben-David et al. [START_REF] Ben-David | A theory of learning from different domains[END_REF], our method looks for a relevant projection space where the source and target distributions tend to be close. This objective is achieved by the use of an additional regularizer motivated by the notion of algorithmic robustness proposed by Xu and Mannor [START_REF] Xu | Robustness and generalization[END_REF]. Our approach is formulated as a linear program with a 1-norm regularization leading to sparse models. We provide a theoretical analysis of this sparsity and a generalization bound. From a practical standpoint, to improve the efficiency of the method we propose an iterative version based on a reweighting scheme of the similarities to move closer the distributions in a new projection space. Hyperparameters and reweighting quality are controlled by a reverse validation process. The evaluation of our approach on a synthetic problem and real image annotation tasks shows good adaptation performances. This work will appear in "IEEE International Conference on Data Mining (ICDM) 2011" [START_REF] Morvant | Sparse domain adaptation in projection spaces based on good similarity functions[END_REF].

Notations

Let X ⊆ R d be the input space of dimension d and Y = {-1, +1} the label set. A domain is a probability distribution over X×Y . In a DA framework [START_REF] Ben-David | A theory of learning from different domains[END_REF][START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF], we have a source domain represented by a distribution P S and a target domain represented by a somewhat different distribution P T . D S and D T are the respective marginal distributions over X. A learning algorithm is provided with a Labeled Source sample LS = {(x i , y i )} d l i=1 drawn i.i.d. from P S , and an unlabeled Target Sample T S = {x j } dt j=1 drawn i.i.d. from D T . Let h : X → Y be an hypothesis function. The expected source error of h over P S is the probability that h commits an error: err S (h) = E (x,y)∼P S L 01 h,(x, y) , where L 01 (h,(x, y))=1 if h(x) = y and zero otherwise, it is the 0-1 loss function. The target error err T over P T is defined in a similar way. ê rr S and ê rr T are the empirical errors. An hypothesis class H is a set of hypothesis. The DA objective is then to find a low target error hypothesis.

Domain Adaptation Framework

We consider the DA framework proposed by Ben-David et al. [START_REF] Ben-David | A theory of learning from different domains[END_REF] allowing us to upper bound the target error err T according to the source error and the divergence between the domain distributions,

∀h ∈ H, err T (h) ≤ err S (h) + 1 2 d H∆H (D S , D T ) + ν. (1) 
The last term ν can be seen as a kind of adaptation ability measure of H for the DA problem considered and corresponds to the error of the best joint hypothesis over the two domains: ν = argmin h∈H err S (h) + err T (h). The second term d H∆H (D S , D T ) is called the H∆H-distance between the two domain marginal distributions. This measure is actually related to H and an interesting point is that when the VC-dimension of H is finite, we can estimate d H∆H from finite samples by looking for the best classifier able to separate LS from T S. This bound suggests that one possible solution for a good DA is to look for a relevant data projection space where both the H∆H-distance and the source error of a classifier are low (two aspects a priori necessary for a good DA [START_REF] Ben-David | Impossibility theorems for domain adaptation[END_REF]).

Learning with Good Similarity Functions

Instead of working on the implicit high dimensional projection space induced by classical SVM's kernels (that may be strongly limited by symmetry and PSD requirements), we investigate a more flexible and intuitive similarity-based representation proposed recently by Balcan et al. [START_REF] Balcan | Improved guarantees for learning via similarity functions[END_REF] for learning with a good similarity function fulfilling the following definition.

Definition 1 ([1]). A similarity function is any pairwise function

K : X × X → [-1, 1]. K is an ( ,γ,τ
)-good similarity function for a learning problem P if there exists a (random) indicator function R(x) defining a set of reasonable points such that the following conditions hold:

(i) A 1 -probability mass of examples (x, y) satisfy E (x ,y )∼P yy K(x, x )|R(x ) = 1 ≥ γ, (ii) Pr x [R(x ) = 1] ≥ τ .
Def.1 requires that a large proportion of examples is on average more similar, w.r.t the margin γ, to the reasonable points of the same class than to the reasonable points of the opposite class. It includes all valid kernels as well as some non-PSD similarities and is thus a generalization of kernels [START_REF] Balcan | Improved guarantees for learning via similarity functions[END_REF].

Given K an ( ,γ,τ )-good similarity function, LS a sample of d l labeled points and R a set ofenough -d u potential reasonable points (landmarks), the conditions of Balcan et al. are sufficient to learn a low-error linear binary classifier (a SF classifier) in a φ R -space defined by the mapping φ R , which projects a point in the explicit space of the similarities to the landmarks in R such that,

φ R : X → R du x → K(x, x 1 ), . . . , K(x, x du ) .
The low-error SF classifier h can be learned by solving the following linear problem in the φ R -space,

min α 1 d l d l i=1 L g, (x i , y i ) +λ α 1 , with L g, (xi, yi) = [1-yig(x)] + and g(x) = du j=1 αjK(x, x j ), (2) 
where [1 -z] + = max(0, 1 -z) is the hinge loss. Finally, we have h(x) = sign[g(x)]. Solving (2) not only minimizes the expected source error but also defines a relevant projection space for a given problem, since landmarks associated with a null weight in the solution α will not be considered. In this work we propose to add a new regularization term on α in order to constrain the explicit φ R -space to move closer the two distributions and to tend to decrease the H∆H-distance.

Contribution for Domain Adaptation with Good Similarity Functions

The objective here is to define a regularizer that tends to make the source and target sample indistinguishable. For this purpose, we have investigated the algorithmic robustness notion proposed by Xu and Mannor [START_REF] Xu | Robustness and generalization[END_REF] based on the following property: "If a testing sample is similar to a training sample then the testing error is close to the training error". This can be formalized as follows: If for any test point close to a training point of the same class the deviation between the losses of each point is low for a learned model, then this model has some generalization guarantees (even if the robustness is true for only a subpart of the training sample). This result actually assumes that the test and train data are drawn from the same distribution and is thus not valid in a classical DA scenario.

However, we propose to adapt this principle for making the target sample similar to the source one which is coherent with the minimization of the divergence d H∆H : For any pair (x s ,x t ) of close source and target instances of the same class y, the deviation between the losses of x s and x t is low. By considering the hinge loss of (2), this leads us to the following term to minimize for such a pair: L(g, (x s , y)) -L(g, (x t , y)) 

≤ ( t φ R (x s ) -t φ R (x t )) diag(α)
      min α 1 d l d l i=1 L g, (x i , y i ) + λ α 1 + β (xs,xt)∈C ST ( t φ R (x s ) -t φ R (x t )) diag(α) 1 ,
with L g, (x i , y i ) = [1-y i g(x)] + and g(x) = du j=1 α j K(x, x j ).

(

) 3 
This problem is defined with a 1-norm regularization leading generally to very sparse models. We have in fact proved in the following lemma that the sparsity of the obtained models depends also on a quantity B R = min x j ∈R max (xs,xt)∈C ST |K(x s , x j ) -K(x t , x j )| related to the deviation between coordinates in the considered φ R -space. In other words, when the domains are far from each other, i.e. the task is hard, B R tends to be high which can increase the sparsity.

Lemma 1. For any λ > 0, β > 0, any set

C ST s.t. B R > 0, if α * is optimal, then α * 1 ≤ 1 βB R + λ .
Moreover, according to the robustness framework [START_REF] Xu | Robustness and generalization[END_REF] applied on the source domain, and from the DA bound (1), we can prove the following generalization bound for the expected target domain error.

Theorem 1. Problem (3) defines a procedure (2M η , Nη βB R +λ ) robust on the source domain, where

N η = max xa,x b ∼D S , ρ(xa,x b )≤η t φ R (x a )-t φ R (x b ) ∞ , η > 0, M η is the η-covering number of X.
Thus for every h in the SF classifiers hypothesis class, for any δ > 0, with probability at least 1-δ,

err T (h) ≤ ê rr S (h) + N η βB R + λ + 4M η ln 2 + 2 ln 1 δ d l + 1 2 d H∆H (D S , D T ) + ν.
From a practical standpoint, a critical issue is the estimation of the hyperparameters λ and β and the definition of the pair set C ST which is difficult a priori since we do not have any target label information. We propose to tackle these problems with the help of a reverse validation method.

Reverse validation and Iterative procedure

We choose the different parameters of our method by following the principle of reverse validation of Zhong et al. [START_REF] Zhong | Cross validation framework to choose amongst models and datasets for transfer learning[END_REF]. This principle is illustrated on Fig. 1 and consists in learning a so-called reverse classifier h r , from the target sample sef-labeled by a classifier h (inferred with Pb. (3)). We evaluate ê rr S (h r ) on the source sample and heuristically ê rr T (h r ) on the self-labeled target sample (both by cross-validation). We then obtain an heuristic estimate of ν (of the DA bound (1)) for h r such that ν = ê rr S (h r ) + ê rr T (h r ). We select the parameters and pair set C ST minimizing ν. In this context, ν can be seen as a quality measure of the φ R -space found: If the two domains are sufficiently close and related then the reverse classifier should perform well on the source domain ( [START_REF] Bruzzone | Domain adaptation problems: A DASVM classification technique and a circular validation strategy[END_REF]).

However, considering all the possible pairs for C ST remains clearly intractable. In practice, we select only a limited number of examples for building C ST . We compensate the possible loss of information by an heuristic iterative procedure still allowing to move closer the two distributions. Suppose that at a given iteration l, with a similarity K l , we obtain new weights α l by solving (3). Our regularization term can actually be seen as a L1-distance in a new φ R l+1 -space:

( t φ R l (x s )-t φ R l (x t )) diag(α) 1 = ( t φ R l+1 (x s ) -t φ R l+1 (x t )) 1 . φ R l+1
corresponding to the mapping defined by the similarity K l+1 obtained from K l by a conditional reweighting to each landmark: ∀x j ∈ R, K l+1 (x, x j ) = α l j K l (x, x j ) (K l+1 do not need to be PSD nor symmetric according to Def.1). We then iterate the process in the new φ R l+1 -space and we stop at iteration l when νl+1 has reached a convergence point or has increased. The main steps of the recursive approach are summarized on Algorithm 1.

Experimental evaluation

Our method DASF has been evaluated on a toy problem and on real image annotation tasks and compared with SF method of Pb (2) and SVM with no adaptation, the semi-supervised Transductive-SVM (T-SVM) [START_REF] Joachims | Transductive inference for text classification using support vector machines[END_REF] and the iterative DA algorithm DASVM [START_REF] Bruzzone | Domain adaptation problems: A DASVM classification technique and a circular validation strategy[END_REF]. We used a Gaussian kernel for the Algorithm 1 DASF (Domain Adaptation with Similarity Functions) Input: similarity function K, set R, samples LS and T S Output:

classifier h DASF h 0 (•) ← sign 1 |R| |R| j=1 K(•, x j ) ; K 1 ← K ; l ← 1;
while The stopping criterion is not verified do α l ← Solve Pb. (3) with K l , C ST and hyperparameters being selected by reverse validation; K l+1 ← Update K l according to α l ; Update R; l + +; end while return h DASF (•) = sign

x j ∈R α l j K l (•, x j ) ; last three methods and a re-normalization of this kernel as a non PSD similarity function for SF and DASF (see [START_REF] Morvant | On the usefulness of similarity based projection spaces for transfer learning[END_REF]). All the averaged results show that DASF provide better and sparser models in general. As an illustration, Tab.1 gives results for a real image annotation task, where the source images are extracted from the PascalVOC'07 corpus and the target ones from the TrecVid'07 video corpus. Moreover, the iterative procedure always tend to decrease the distribution divergence with the iterations [START_REF] Morvant | Sparse domain adaptation in projection spaces based on good similarity functions[END_REF]. Among all the possible perspectives, we notably aim to consider some few target labels to help the search of a relevant projection space. 
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 13 Figure 1: The reverse validation. 1: Learning h with (3). 2: Auto-labeling the target sample with h. 3: Learning h r on the auto-labeled target sample with (2). 4: Evaluation of r on LS.

  ST of close source-target examples, we then propose to consider this term for all the pairs as an additional regularizer on α, weighted by a parameter β, to the Problem (2) of Balcan et al. Our global optimization problem (3) can be then formulated as the following linear program, 

[START_REF] Balcan | Improved guarantees for learning via similarity functions[END_REF] 

, where t φ R (•) is the transposed vector of φ R (•) and diag(α) is the diagonal matrix with α as main diagonal. Given any pair set C

Table 1 :

 1 The results obtained on the TrecVid target domains according to the Fmeasure. AVG. corresponds to the averaged results.

	CONCEPT BOAT BUS CAR MONITOR PERSON PLANE AVG.
	SVM	0.56 0.25 0.43	0.19	0.52 0.32 0.38
	MODEL SIZE 351 476 1096	698	951	428	667
	SF	0.49 0.46 0.50	0.34	0.45 0.54 0.46
	MODEL SIZE 214 224 176	246	226	178	211
	T-SVM 0.56 0.48 0.52	0.37	0.46 0.61 0.50
	MODEL SIZE 498 535 631	741	1024 259	615
	DASVM 0.52 0.46 0.55 0.30	0.54 0.52 0.48
	MODEL SIZE 202 222 627	523	274	450	383
	DASF	0.57 0.49 0.55 0.42	0.57 0.66 0.54
	MODEL SIZE 120 130 254	151	19	7	113
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