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Introduction

This report provides an insight into the mathematical methods developed to model the speed
regulation problem in Air Traffic Flow Management (ATFM). The speed regulation problem aims
at optimizing aircraft speeds along their flights in order to smooth the air traffic flow. To ensure
safe flight conditions, Air Traffic Controllers (ATCos) solve every day a great amount of potential
air conflicts. An air conflict occurs if two or more aircraft are flying too close to each other.
By predicting flights trajectories, ATCos anticipate potential conflicts and provide clearances to
pilots for solving the potential conflicts. The ultimate objective of speed regulation is to deliver
an enhanced traffic to ATCos. This can be achieved in the light of the En-Route Air traffic
Soft Management Ultimate System (ERASMUS) project [2, 3]. The techniques presented in this
report aim at contributing to Conflict Detection and Resolution (CD&R) methods in Air Traffic
Management (ATM). The reader can find more information on existing CD&R methods in ATM, in
a complete review written by Kuchar and Yang in 2000 [4]. The document is divided into sections
that focus on different parts of the speed regulation problem modelling. Although a chronological
structure has been respected, each section can be read independently. We chose to develop a linear
framework for the speed regulation problem therefore most of the techniques presented aim at
providing a linear formulation of the model. In a first section, (1), some information about potential
conflicts detection is provided and in a second section, (1), modelling choices are discussed. Sections
(3)and (4) are dedicated to specific sub-models depending on the geometric configuration of the
potential conflicts. A complete formulation of the model is then presented in (5).

1 Potential Air Conflicts

Air conflicts are defined according to the ICAO separation norms [6] which require that no aircraft
should enter the protection zone of another. The protection zone consists of an horizontal separation
of 5 Nautical Miles (NM) and 1000 feet, hence it can visualized as a cylinder centered on every
aircraft (see figure 1). When two cylinders are predicted to intersect in the future, aircraft are in a
potential conflict. If the loss of separation occurs, we say that both aircraft are in a conflict. Two
types of potential conflicts can be identified according flights trajectories: if their trajectories are
not parallel, we say aircraft are in a potential crossing conflict. When two flights share the same
route, i.e. their trajectories overlap, we say aircraft are in a potential trailing conflict (see figure 2).
When optimizing the air traffic flow, potential conflicts detection is a critical step of the process as
it should accurately estimate aircraft 4-dimensional trajectories in the near future. This prediction
is then used to perform the optimization process.

Figure 1: Separation norm
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Figure 2: Conflict Types

2 Modelling Choices

Modelling potential conflicts can be achieved in several ways depending on the targeted framework.
We believe that all potential conflicts are not equivalent for ATCos. More precisely, we believe
that the severity of potential conflicts can be related to their duration: the longer the potential
conflict is predicted to last, the greater is ATCos’ potential workload increase. In order to model
this dependency we propose to turn spatial separation into time separation. Using the equations
describing the motion of flights, we can convert their relative distance into a time interval which
can be improved to provide the required separation between aircraft. This projection onto the time
domain lead us to use crossing times of flights, i.e the time a flight flies over a given point of space,
as decision variables in the model. By estimating potential conflict duration, we can estimate
the global potential conflict duration and seek to minimize this quantity by moderately adjust
aircraft speeds. In the next section the general case where aircraft trajectories are not parallel is
investigated.

3 Crossing Conflicts

3.1 A geometric approach

Suppose aircraft are moving at constant speed in a 2-dimensional Euclidean plane. Assume flight
f crosses point i at time zero and its trajectory coincides with the x-axis. Without any loss of
generality, their cinematic equations in the plane formed by their trajectories can be expressed as:



















xf (t) = vf t

yf (t) = 0

xf ′(t) = vf ′(t−∆T i
ff ′) cos θ

yf ′(t) = ±vf ′(t−∆T i
ff ′) sin θ

(1)

where θ is the confluence angle between flights trajectories and ∆T i
ff ′ is the absolute value

of the crossing time difference between aircraft f and f ′ at point i: ∆T i
ff ′ = |tif − tif ′ |. Note

that if θ ≡ 0(π), that is aircraft trajectories overlap, the problem can be simplified. This case is
investigated in section 4. Therefore suppose θ 6≡ 0(π), the Euclidean distance between flights f and
f ′ at time t is:

D(t) =

√

(

xf (t)− xf ′(t)
)2

+
(

yf (t)− yf ′(t)
)2

(2)
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Squarring equation 2 gives:

D2(t) =
(

vf t− vf ′(t−∆T i
ff ′) cos θ

)2
+
(

∓ vf ′(t−∆T i
ff ′) sin θ

)2
(3)

= v2f t
2 + v2f ′(t−∆T i

ff ′)2 cos2 θ − 2vfvf ′t(t−∆T i
ff ′) cos θ + v2f ′(t−∆T i

ff ′)2 sin2 θ (4)

= v2f t
2 + v2f ′t2 cos2 θ + v2f ′(∆T i

ff ′)2 cos2 θ − 2v2f ′t∆T i
ff ′ cos2 θ − 2vfvf ′t2 cos θ

+ 2vfvf ′t∆T i
ff ′ cos θ + v2f ′t2 sin2 θ + v2f ′(∆T i

ff ′)2 sin2 θ − 2v2f ′t∆T i
ff ′ sin2 θ (5)

= t2(v2f + v2f ′ − 2vfvf ′ cos θ)− t(2v2f ′∆T i
ff ′ + 2vfvf ′∆T i

ff ′ cos θ) + v2f ′(∆T i
ff ′)2 (6)

In order to determine potential conflict duration, we need to solve equation: D(t) = D, where
D is the radius of the protection zone projected on the plane where aircraft trajectories belong.
This can be resumed to solve the following quadratic equation:

At2 +Bt+ C = 0 (7)

with:














A = v2f + v2f ′ − 2vfvf ′ cos θ

B = −2v2f ′∆T i
ff ′ − 2vfvf ′∆T i

ff ′ cos θ

C = v2f ′(∆T i
ff ′)2 −D2

(8)

Let α = cos θ, computing the discriminant value gives:

∆1 = B2 − 4AC (9)

= (2vfvf ′∆T i
ff ′α− 2v2f ′∆T i

ff ′)2 − 4(v2f + v2f ′ − 2vfvf ′α)(v2f ′(∆T i
ff ′)2 −D2) (10)

= 4α2v2fv
2
f ′(∆T i

ff ′)2 + 4v4f ′(∆T i
ff ′)2 − 8αvfv

3
f ′(∆T i

ff ′)2

− 4(v2fv
2
f ′(∆T i

ff ′)2 − v2fD
2 − 2αvfv

3
f ′(∆T i

ff ′)2 + 2αvfvf ′D2 + v4f ′(∆T i
ff ′)4 − v2f ′D2) (11)

= 4α2v2fv
2
f ′(∆T i

ff ′)2 + 4v4f ′(∆T i
ff ′)2 − 8αvfv

3
f ′(∆T i

ff ′)2

− 4v2fv
2
f ′(∆T i

ff ′)2 − 4v2fD
2 + 8αvfv

3
f ′(∆T i

ff ′)2 − 8αvfvf ′D2 − 4v4f ′(∆T i
ff ′)4 + 4v2f ′D2 (12)

= 4α2v2fv
2
f ′(∆T i

ff ′)2 − 4v2fv
2
f ′(∆T i

ff ′)2 + 4v2fD
2 − 8αvfvf ′D2 + 4v2f ′D2 (13)

= 4v2fv
2
f ′(∆T i

ff ′)2(α2 − 1) + 4D2(v2f − 2αvfvf ′ + v2f ′) (14)

There is a potential conflict at i if ∆1 > 0, which is equivalent to:

∆T i
ff ′ < D

√

√

√

√

v2f − 2αvfvf ′ + v2f ′

v2fv
2
f ′(1− α2)

= Γ(vf , vf ′) (15)

The right-hand side of equation 15 depends on aircraft speeds and on the geometric configuration
of intersection i, namely the confluence angle θ. Note that if θ tends to zero, Γ(vf , vf ′) tends to
infinity, this case is investigated in section 4. Clearly Γ(vf , vf ′) is a non-linear function with respect
to aircraft speeds. To overcome this issue we propose to assign constants values to aircraft speeds.
To do so, we have to establish a policy for no potential conflict underestimation to occur. Therefore
we chose to focus on a worst-case scenario framework. Γ(vf , vf ′) represents the potential conflict
duration when flights cross intersection point i at the same time. Our objective is to overestimate
potential conflict duration, that is to maximize Γ(vf , vf ′) with respect to vf and vf ′ (see appendix B
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for a numerical approach). For all flight f ∈ F , we have vf ∈ [vf , vf ]. Bounds on vf are calculated
by considering aircraft aerodynamics and the speed regulation range applied to the fleet. Without
any loss of generality, let r = vf/vf ′ be the aircraft speed ratio. We can express Γ(vf , vf ′) as:

Γ(vf , r) =
D

vf | sin θ|
√

r2 − 2rα+ 1 (16)

A fonction is convex if and only if its hessian matrix is semi-definite positive [1]. To determine
whether Γ(vf , r) is convex or not, we have to determine its hessian matrix. The first order partial
derivatives of Γ(vf , r) are:

∂Γ(vf , r)

∂vf
=

−D
v2f | sin θ|

√

r2 − 2rα+ 1 (17)

∂Γ(vf , r)

∂r
=

D

vfvf ′ | sin θ|
r − α√

r2 − 2rα+ 1
(18)

The second order partial are derivates are then:

∂2Γ(vf , r)

∂v2f
=

2D

v3f | sin θ|
√

r2 − 2rα+ 1 (19)

∂2Γ(vf , r)

∂vf∂r
=

−D
v2fvf ′ | sin θ|

r − α√
r2 − 2rα+ 1

(20)

∂2Γ(vf , r)

∂r2
=

D

vfv
2
f ′ | sin θ|

1− α2

(r2 − 2rα+ 1)3/2
(21)

and the hessian matrix H of function Γ(vf , r) is:

H =







∂2Γ(vf ,r)

∂v2f

∂2Γ(vf ,r)
∂vf∂r

∂2Γ(vf ,r)
∂vf∂r

∂2Γ(vf ,r)

∂r2






=







2D
v3f | sin θ|

√
r2 − 2rα+ 1 −D

v2fvf ′ | sin θ|
r−α√

r2−2rα+1

−D
v2fvf ′ | sin θ|

r−α√
r2−2rα+1

D
vfv

2

f ′
| sin θ|

1−α2

(r2−2rα+1)3/2







A symmetric matrix is positive semidefinite if and only if its minors are positive. Since
∂2Γ(vf ,r)

∂v2f
≥ 0, we need to compute the determinant of H, that is:

|H| = ∂2Γ(vf , r)

∂v2f
· ∂

2Γ(vf , r)

∂r2
−
(

∂2Γ(vf , r)

∂vf∂r

)2

=
D2

v4fv
2
f ′ | sin θ|2

(

2− 2α2 − (r − α)2

r2 − 2rα+ 1

)

(22)

The sign of |H| depends on: 2−2α2−(r−α)2

r2−2rα+1
. Solving the quadratic equation at the denominator

r2 − 2rα+ 1 = 0, we have:
∆2 = 4α2 − 4 = 4(α2 − 1) < 0 (23)

Thus r2 − 2rα + 1 > 0 and the sign of |H| depends on the numerator: 2 − 2α2 − (r − α)2 =
−r2 + 2αr − 3α2 + 2. Solving equation −r2 + 2αr − 3α2 + 2 = 0 we have:

∆3 = 4α2 − 4(3α2 − 2) = 8(1− α2) > 0 (24)
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Therefore H is not semi-definite positive and hence Γ(vf , r) is not convex. Let ϕ(r) be the function
r 7→

√
r2 − 2rα+ 1. Clearly ϕ(r) is convex, therefore maximum values of ϕ(r) are achieved for

minimum and maximum values of r, that is r = vf/vf ′ and r = vf/vf ′ . Let ϕ ∈ R be:

ϕ = max
r∈[r,r]

ϕ(r) = max
(

ϕ(r), ϕ(r)
)

(25)

In order to set an upper bound on potential conflict duration, we can turn vf into a decision
variable of the model. Indeed, speeds of flights can be converted into travel time using crossing

times at two consecutive waypoints and the corresponding distance. Let t
prec(i)
f (resp. t

prec(i)
f ′ ) be

the crossing time of flight f (resp. f ′) at the predecessor of waypoint i on the path of flight f (resp.
f ′), the distance between i and its previous waypoint on can be denoted: dif (resp. dif ′). We can

now define Γi
ff ′ ∈ R, as follows:

Γi
ff ′ = max

(

(

tif − t
prec(i)
f

) Dϕ

dif | sin θ|
,
(

tif ′ − t
prec(i)
f ′

) Dϕ

dif ′ | sin θ|

)

(26)

= max

(

(

tif − t
prec(i)
f

)

Gi
ff ′ ,

(

tif ′ − t
prec(i)
f ′

)

Gi
f ′f

)

(27)

where Gi
ff ′ =

Dϕ
dif | sin θ| and Gi

f ′f = Dϕ
di
f ′
| sin θ| are real constants. Here the max function is used

to prevent the model from giving priority to a specific aircraft speed while solving the potential
conflict. Γi

ff ′ represents the potential conflict duration if aircraft are due to cross simultaneously
intersection point i and it is an upper bound on Γ(vf , vf ′), that is:

∀vf ∈ [vf , vf ], vf ′ ∈ [vf ′ , vf ′ ], Γ(vf , vf ′) ≤ Γi
ff ′ (28)

Since we now have an upper bound on the potential conflict duration, we can estimate the
potential duration according to the crossing time difference at intersection point i. Let ωi

ff ′ ∈ R

be an over-estimation of the potential conflict duration between flights f and f ′ at i, ωi
ff ′ can be

defined as:

ωi
ff ′ = (Γi

ff ′ −∆T i
ff ′)+ = (Γi

ff ′ − |tif − tif ′ |)+ (29)

where (X)+ = max(X, 0). To linearize equation 29, we need to linearize the max function as
well as the expression of Γi

ff ′ and the crossing time difference: ∆T i
ff ′ = |tif −tif ′ |. This last quantity

depends on the order in which the flights arrive at this particular point.

Remark 1 Using a max function to approximate the value of Γi
ff ′ is not the best approximation

possible. Indeed, using a min yields a lower upper bound on the potential conflict duration when
flights cross intersection point i simultaneously. However, when minimizing the potential conflict
duration, that is ωi

ff ′, it is difficult to express linearly Γi
ff ′ as a minimum of two values.

3.2 Modelling aircraft crossing order

Let Pc be the set of all potential crossing conflicts, for all (f, f ′, i) ∈ Pc, let y
i
ff ′ ∈ {0, 1} be a

binary decision variable defined as:

yiff ′ =

{

1 if tif < tif ′

0 otherwise.
(30)
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Note that for all triplet (f, f ′, i) ∈ Pc decision variables yiff ′ and yif ′f are complementary:

yiff ′ + yif ′f = 1 (31)

We can express the crossing times (decision variables) according to the crossing order of flights:

tif ′ ≤ tif + (t
i
f ′ − tif ) · yiff ′ (32)

When yiff ′ = 0, constraint 32 becomes tif ′ ≤ tif , modelling the constraint on flights crossing

times. If yiff ′ = 1, then constraint 32 becomes redundant for it is always satisfied. If one exchanges
the roles of indices f and f ′ in constraint (32), the reciprocal constraint is obtained thus completing
the modellization. In order to define ∆T i

ff ′ as a continuous decision variable in the model, we can
linearize its expression using the next constraints:

∆T i
ff ′ ≤ tif − tif ′ + 2(t

i
f ′ − tif ) · yiff ′ (33)

∆T i
ff ′ ≥ tif − tif ′ (34)

Note that exchanging the roles of indices f and f ′ in constraints 33 and 34, and adding the
constraint:

∆T i
ff ′ = ∆T i

f ′f (35)

to the model yields the exact value of the crossing time difference: ∆T i
ff ′ = |tif − tif ′ |. Hence we can

express the potential conflict duration ωi
ff ′ using the expression of Γi

ff ′ . The objective function 29

can be linearized using lower bounds on quantity ωi
ff ′ :

ωi
ff ′ ≥

(

tif − t
prec(i)
f

)

·Gi
ff ′ −∆T i

ff ′ (36)

ωi
ff ′ ≥ 0 (37)

Once again, if one exchanges the roles of indices f and f ′ in the above constraints, we must
beware of counting twice every potential conflict duration. Therefore we introduce another equality
constraint in the model:

ωi
ff ′ = ωi

f ′f (38)

and we add a 1/2 factor in front of every term in the objective function. The model aiming at
minimizing potential conflicts duration can then be expressed as:
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Model 1 (Crossing Conflicts Model)

min
∑

(f,f ′,i)∈Pc

1

2
ωi
ff ′

∀(f, i) ∈ P :

SM =
{

tif ≤ tif ≤ t
i
f

∀(f, f ′, i) ∈ Pc :

CM =











































































ωi
ff ′ ≥

(

tif − t
prec(i)
f

)

·Gi
ff ′ −∆T i

ff ′

ωi
ff ′ ≥ 0

ωi
ff ′ = ωi

f ′f

∆T i
ff ′ ≤ tif − tif ′ + 2(t

i
f ′ − tif ) · yiff ′

∆T i
ff ′ ≥ tif − tif ′

∆T i
ff ′ = ∆T i

f ′f

tif ′ ≤ tif + (t
i
f ′ − tif ) · yiff ′

yiff ′ + yif ′f = 1

(tif ,∆T
i
ff ′ , ωi

ff ′) ∈ R, yiff ′ ∈ {0, 1}.

Remark 2 Values of yiff ′ can be settled by the instance properties: if speed regulation is not strong
enough to permute aircraft crossing order at a given intersection point, then only one configuration
holds and yiff ′ is fixed. This property can considerably diminish the number of remaining binary
decision variables, thus improving the optimization algorithm performances.

In the next section, we consider the special case where aircraft trajectories are parallel, i.e
aircraft are moving on the same track. This research was motivated by the existence of airways,
where flights are due to follow the same route over long distances.

4 Trailing Conflicts

4.1 Time Segments Modelling

Long distance flights are often merged with airways in order to provide an enhanced control envi-
ronment. Indeed, when sharing long flights segments, aircraft are redirected toward air corridors
thus enabling ATCos to focus on specific routes. However, when flights trajectories are parallel,
Γ(vf , vf ′) in formula 15 fails to provide the required crossing time difference for its denominator
tends to zero. In order to solve potential conflicts occurring on airways an adapted framework is
required. In this section we focus on the resolution of potential trailing conflicts through speed
regulation. As speed regulation is a restricted conflict resolution method, all potential conflicts
may not be solvable using this technique. Aircraft takeovers are naturally prohibited in a speed
regulation context, therefore an intuitive policy to implement a speed regulation oriented conflict
resolution method is to focus on a First In First Out (FIFO) discipline. To do so, we start by esti-
mating the potential conflict duration on an infinite segment. In a second time a FIFO discipline
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is added to the modellization aiming at representing real air navigation conditions. We discard the
case where aircraft are facing each other for such situation should not occur in a real air traffic
scenario and moreover this case is not solvable using speed regulation methods only. Assume both
aircraft are flying in the same direction, we can express the motion of two objects on a common
segment using their cinematic equations:

{

xf (t) = vf t

xf ′(t) = vf ′(t−∆T i
ff ′)

(40)

Recall that ∆T i
ff ′ is the crossing time difference at intersection point i, which can here be

assimilated to the segment initial extremity or the airway entry point. To determine the beginning
and the end of the loss of separation between flights f and f ′ we have to solve the equation
D(t) = D, that is:

|xf (t)− xf ′(t)| = D (41)

Assume flights speeds are different, vf 6= vf ′ , if xf (t) ≥ xf ′(t) then we have:

vf t− vf ′(t−∆T i
ff ′) = D (42)

t(vf − vf ′) + vf ′∆T i
ff ′ = D (43)

t =
D − vf ′∆T i

ff ′

vf − vf ′

=
−D + vf ′∆T i

ff ′

vf ′ − vf
(44)

Similarly if xf (t) ≤ xf ′(t) we obtain:

t =
D + vf ′∆T i

ff ′

vf ′ − vf
(45)

Therefore the roots of equation (41) are
±D+vf ′∆T i

ff ′

vf ′−vf
. The time corresponding to the beginning

of the conflict tb is the lowest root and the time corresponding to the end of the conflict te is the
highest one. The conflict duration on an infinite segment T∞ is then:

T∞ = te − tb =
2D

|vf − vf ′ | (46)

Note that if vf = vf ′ conflict times are not well defined. In that case the distance between
aircraft is constant and conflict duration depends on the relative positions of flights at the segment
entry point. Let us suppose vf 6= vf ′ ; to compute the conflict duration on segment [i, j] we define
the times ti and tj corresponding to the presence of both aircraft on the shared segment:

{

ti = max(tif , t
i
f ′)

tj = min(tjf , t
j
f ′)

(47)

For all t ∈ [ti, tj ] both aircraft are moving on segment [i, j]. The loss of separation with respect
to segment [i, j] depends on the relative position of [tb, te] and [ti, tj ]. Therefore, conflict duration
ρ on the time segment [ti, tj ] is obtained by truncating T∞, as follows:

ρ =
(

T∞ − (ti − tb)
+ − (te − tj)

+
)+

(48)
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In order to integrate a FIFO policy in the model we have to estimate potential conflict duration
assuming no takeovers between aircraft occurs. Let vl be the speed of the leading aircraft, vp be
the speed of the follower and let ρS be the conflict duration on segment S = [i, j] assuming a FIFO
discipline. We can distinguish three different situations:

1. Aircraft fly at the same speed: vl − vp = 0. If D/vp ≥ ∆T i
ff ′ , then aircraft are already in

a potential conflict at segment entry point i and potential conflict duration is as long as the
time segment [ti, tj ]:

ρS = tj − ti

2. The leader is faster: vl − vp > 0. Then tb < ti and the potential conflict beginning time, if it
occurs on [ti, tj ], is ti. Using equation 48 we have:

ρS =
(

te − tb − ti + tb − (te − tj)
+
)+

=
(

te − ti − (te − tj)
+
)+

which is equivalent to:
ρS =

(

min(te − ti, tj − ti)
)+

(49)

3. The follower is faster: vl − vp < 0. Then the FIFO constraint imposes the potential conflict,
if it occurs on [ti, tj ], to end at tj , thus te > tj . Using equation 48 we have:

ρS =
(

te − tb − (ti − tb)
+ − te + tj

)+
=
(

tj − tb − (ti − tb)
+
)+

which is equivalent to:
ρS =

(

min(tj − tb, tj − ti)
)+

(50)

The analytical expressions of times tb and te are not linear with respect to the reciprocal of
aircraft speeds. We already assumed aircraft speed were constants on shared segments, hence we
need to decide which value to assign to each flight speed. In the FIFO paradigm, the worst-case
scenario is achieved when the leader is flying at its minimum speed and the follower at its maximum
one, therefore we can reformulate conflict beginning and ending times tb and te: let τ bf , τ

e
f (resp.

τ bf ′ , τ ef ′) be the worst-case conflict beginning and ending dates when f (resp. f ′) is the leader, we
have:

if f is the leader:















τ bf = min

(

−D+vf ′ (t
i
f ′
−tif )

vf ′−vf
,
+D+vf ′ (t

i
f ′
−tif )

vf ′−vf

)

τ ef = max

(

−D+vf ′ (t
i
f ′
−tif )

vf ′−vf
,
+D+vf ′ (t

i
f ′
−tif )

vf ′−vf

) (51)

if f ′ is the leader:















τ bf ′ = min

(

−D+vf ′ (t
i
f−ti

f ′
)

vf ′−vf
,
+D+vf ′ (t

i
f−ti

f ′
)

vf ′−vf

)

τ ef ′ = max

(

−D+vf ′ (t
i
f−ti

f ′
)

vf ′−vf
,
+D+vf ′ (t

i
f−ti

f ′
)

vf ′−vf

) (52)

where τ bf , τ
b
f ′ are the lowest of these times and τ ef , τ

e
f ′ are the greatest ones. Recall that yiff ′ is a

binary decision variable which value is 1 if flight f flies over point i before flight f ′. Let (τb, τe) ∈ R

be defined as:

τb =

{

τ bf if f is the leader

τ bf ′ otherwise
τe =

{

τ ef if f is the leader

τ bf ′ otherwise
(53)

To decide which potential conflict duration formula we must use according to flight speeds, we
must consider the worst-case speed scenario as well, that is:
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1. if vl = vp ⇒ ρS =

{

tj − ti if D/vp ≥ ∆T i
ff ′

0 otherwise

2. if vl > vp ⇒ ρS =
(

min(τe − ti, tj − ti)
)+

3. if vl < vp ⇒ ρS =
(

min(tj − τb, tj − ti)
)+

The next step is to express the potential trailing conflict duration in linear terms with respect
to decision variables tif , t

i
f ′ , t

j
f , t

j
f ′ and yiff ′ . We start by investigating case 1, where vl = vp, in

section 4.2. Cases 2 and 3 are then treated together in section 4.3.

4.2 Modelling the separation condition at the segment entry point

When vl = vp, the worst-case potential conflict duration is equal to the time segment [ti, tj ] if
flights are predicted to be under the separation norm at the segment entry point i. However if
one manages to separate flights at i, then potential conflict duration is null. In order to model
this discrete behavior, we propose to introduce a binary decision variable, ziff ′ , that vanishes when

separation at the segment entry point is achieved. Let ziff ′ be defined as:

ziff ′ =

{

1 if D/vf ′ < tif ′ − tif and if f is the leader

0 otherwise
(54)

Decision variable ziff ′ (resp. zif ′f ) is designed to model the separation of flights at point i when

flight f (resp f ′) is the leader: if the crossing time difference tif ′ − tif (resp. tif − tif ′) is greater

than the worst-case separation time interval, D/vf ′ (resp. D/vf ), then z
i
ff ′ (resp. zif ′f ) is set to

1. If the crossing time difference is not large enough to separate aircraft at point i, then decision
variables ziff ′ and zif ′f are set to 0.

Remark 3 Unlike variables yiff ′ and yif ′f , variables z
i
ff ′ and zif ′f are not complementary, i.e. their

sum is not necessarily equal to 1. This models the fact that aircraft separation at point i may occur
independently of the leadership of the potential conflict.

The role of the leadership in potential trailing conflicts requires that the optimization process
considers both scenarios. Let ρSff ′ and ρSf ′f be the potential conflict durations according to crossing
order of flights at i, that is:

ρS =

{

ρSff ′ if f is the leader

ρSf ′f if f ′ is the leader
(55)

Note that since the leadership on segment S is defined according to the value of decision variable
yiff ′ , only one potential conflict duration holds: ρSff ′ or ρSf ′f . Therefore ρ

S can naturally be defined
as the sum of these quantities. Separating aircraft at the segment entry point when flights speeds
are equal solves the potential trailing conflict over the whole shared flight segment. In order to
reproduce this discrete behavior in the model, we first introduce the following constraints:

ρSff ′ ≤ ziff ′ · ρSff ′ (56)
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where ρSff ′ = t
j
f − tif ′ is an upper bound on the potential conflict durations according to the

leadership of the conflict. Potential trailing conflict durations can be determined using the next
constraint:

ρSff ′ ≥ (tjf − tif ′)− ziff ′ · ρSff ′ (57)

When f is the leader and separation at the segment entry point is achieved, i.e. ziff ′ = 1, then

constraint 57 becomes redundant for its right-hand side becomes negative. If ziff ′ = 0, potential

conflict duration is lower bounded by tjf − tif ′ , which is the target quantity when f is the leader.

Finally, we have to introduce the separation condition at i according to ziff ′ :

tif ′ − tif ≥ (1− ziff ′) ·D/vf ′ − (t
i
f − tif ′ +D/vf ′) · (1− yiff ′) (58)

Since we chose to estimate the potential conflict duration according to the leadership of the
conflict, we need to guarantee that every constraint is symmetric with respect to the leadership.
When f is the leader, that is yiff ′ = 1, constraint 58 becomes:

tif ′ − tif ≥ (1− ziff ′) ·D/vf ′ (59)

Constraint 59 models the separation condition when f is the leader. If yiff ′ = 0, that is tif ′ ≤ tif ,
constraint 58 becomes:

tif ′ − tif − (tif ′ − t
i
f ) ≥ (1− ziff ′) ·D/vf ′ −D/vf ′ (60)

which left-hand side is positive and right-hand side is negative, thus the constraint becomes
redundant. Exchanging the roles of the indices of flights, constraint 58 can also be written as:

tif − tif ′ ≥ (1− zif ′f ) ·D/vf − (t
i
f ′ − tif +D/vf ) · yiff ′ (61)

which gives the correct constraint related to the separation condition when f ′ is the leader. The
same mechanism holds for constraints 56 and 57. Finally, in order to increase dependency between
binary decision variables, one can take advantage of the definition of decision variable ziff ′ and
include the next constraint to the model:

ziff ′ ≤ yiff ′ (62)

Indeed, if f is not the leader, then by definition, ziff ′ = 0. Moreover, constraint 56 states
that potential conflict duration vanishes if the aircraft separation is achieved at i. Since potential
trailing conflict duration depends on the leadership of the conflict, combining constraints 62 and 56
reduces the expression of the potential trailing conflict duration: ρS = ρSff ′ + ρSf ′f to one term. We
can now present a complete set of constraints aiming at minimizing the potential trailing conflict
duration when aircraft worst-case speeds are equal:
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∀(f, f ′, S) ∈ Pt such that vf = vf ′ :

ρSff ′ ≤ ziff ′ · ρSff ′ (63)

ρSff ′ ≥ (tjf − tif ′)− (1− ziff ′) · ρSff ′ (64)

ρSff ′ ≥ 0 (65)

ziff ′ ≤ yiff ′ (66)

tif ′ − tif ≥ (1− ziff ′) ·D/vf ′ − (t
i
f − tif ′ +D/vf ′) · (1− yiff ′) (67)

4.3 Flight overtaking and distancing

Assume vl 6= vp, in that case the potential conflict duration is independent of the separation
condition at i, indeed, it depends on the relation between the leader minimum speed and the
follower maximum speed. Two cases are thus required to model the potential conflict duration: the
distancing case, where vl > vp, and the overtaking case, where vl < vp. Let ψ

S ∈ R be an auxiliary
decision variable, we can linearize the max and min functions in equations 49,50 using the following
constraints set:

ψS ≥ τe − tj if vl > vp (68)

ψS ≥ ti − τb if vl < vp (69)

ψS ≥ 0 (70)

ρS ≥ tj − ti + ψS (71)

ρS ≥ 0 (72)

ψS adjusts the potential conflict duration according to the relative positions of τe and tj , or
τb and ti. Since the maximum conflict duration is tj − ti, we need only to crop the ends of the
time segment if the worst-cases conflict beginning or ending time belongs to [ti, tj ]. To pursue the
linearization, we have to identify which flight is the leader and which is the follower. Using decision
variable yiff ′ , we can express, tj − τe and τb − ti as:

τe − tj = (τ ef − tjf )y
i
ff ′ + (τ ef ′ − tjf ′)(1− yiff ′)

=

(

±D + vf ′(tif ′ − tif )

vf ′ − vf
− tjf

)

yiff ′ +

(

±D + vf ′(tif − tif ′)

vf ′ − vf
− tjf ′

)

(1− yiff ′) (73)

ti − τb = (tif ′ − τ bf )y
i
ff ′ + (tif − τ bf ′)(1− yiff ′)

=

(

tif ′ −±D + vf ′(tif ′ − tif )

vf ′ − vf

)

yiff ′ +

(

tif −
±D + vf ′(tif − tif ′)

vf ′ − vf

)

(1− yiff ′) (74)
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Developing the above expressions yields:

τe − tj =
yiff ′

vf ′ − vf

(

±D + vf ′tif ′ − vf ′tif
)

+ (tjf ′ − tjf )y
i
ff ′ − tjf ′ +

(1− yiff ′)

vf ′ − vf

(

±D + vf ′tif ′ − vf ′tif
)

(75)

ti − τb =
yiff ′

vf ′ − vf

(

∓D − vf ′tif + vf t
i
f ′

)

+
(1− yiff ′)

vf ′ − vf

(

∓D − vf ′tif ′ + vf t
i
f

)

(76)

Remark 4 The sign before quantity D depends on the sign of the denominator of the fraction
factorizing the terms in parenthesis. Since the expressions of the denominators are differences of
aircraft speed bounds, i.e. constant values, they can be determined before the optimization.

To achieve a linear formulation, products of bounded continuous and binary decision variables
can be linearized using auxiliary variables, this technique (presented in appendix C) is applied to
linearize decision variables products: tify

i
ff ′ , tif ′yiff ′ , t

j
fy

i
ff ′ , t

j
f ′yiff ′ . Operator L is used to express

the linearization of two decision variables, we define auxiliary variables βif , β
i
f ′ , β

j
f and βjf ′ as:

βif = L(yiff ′ , tif ), βif ′ = L(yiff ′ , tif ′) (77)

βjf = L(yiff ′ , t
j
f ), βjf ′ = L(yiff ′ , t

j
f ′) (78)

We now can reformulate equations (75,76) by including the above reformulations:

τe − tj =
1

vf ′ − vf

(

±Dyiff ′ + vf ′βif ′ − vf ′βif
)

+ βjf ′ − βjf − tjf ′

+
1

vf ′ − vf

(

±D(1− yiff ′) + vf ′(tif ′ − tif − βif ′ + βif )
)

(79)

ti − τb =
1

vf ′ − vf

(

∓Dyiff ′ − vf ′βif + vfβ
i
f ′

)

+
1

vf ′ − vf

(

∓D(1− yiff ′) + vf ′(βif ′ − tif ′) + vf (t
i
f − βif )

)

(80)

In order to include constraints (79,80) in the model, we can split them according to the value
of decision variable yiff ′ : let ψS

ff ′ , ψS
f ′f ∈ R be two auxiliary decision variables defined as:

ψS =

{

ψS
ff ′ if f is the leader

ψS
f ′f otherwise

(81)

Reformulating equations (68,69) and (71) gives:















ψS
ff ′ ≥ 1

vf ′−vf

(

−Dyiff ′ + vf ′βif ′ − vf ′βif

)

− βjf if: vf > vf ′

ψS
ff ′ ≥ 1

vf ′−vf

(

Dyiff ′ − vf ′βif + vfβ
i
f ′

)

if: vf < vf ′

ρSff ′ ≥ βjf − βif ′ + ψS
ff ′

(82)















ψS
f ′f ≥ 1

vf ′−vf

(

D(1− yiff ′) + vf ′(tif ′ − tif − βif ′ + βif )
)

+ βjf ′ − tjf ′ if: vf ′ > vf

ψS
f ′f ≥ 1

vf ′−vf

(

−D(1− yiff ′) + vf ′(βif ′ − tif ′) + vf (t
i
f − βif )

)

if: vf ′ < vf

ρSf ′f ≥ tjf ′ − βjf ′ − tif + βif + ψS
f ′f

(83)
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Figure 3: Potential trailing conflict duration according to aircraft speeds

Finally, in order to complete the formulation, we must include the FIFO constraint to the model:

yiff ′ = yjff ′ (84)

Equation 84 states that the crossing order between flights f and f ′ must be the same at inter-
section points i and j, that is, no overtaking may occur along the shared segment.

4.4 Singular behaviour of the potential conflict duration

Computing values of τb and τe can lead to numerical instabilities if the leader’s minimum speed is
too close to the follower’s maximum speed. Indeed, in that case vl 6= vp thus we have to estimate τb
and τe, which may tend to infinity if the concerned aircraft speeds are too close (see figure 4.4). To
overcome this issue we propose to perform a test on the worst-case conflict beginning and ending
times before solving the optimization problem. When aircraft worst-case speeds are different, they
will be considered identical if:

vf 6= vf ′ and
2D

|vf − vf ′ | ≥ t
j
f − tif ′ (85)

or if:

vf ′ 6= vf and
2D

|vf ′ − vf |
≥ t

j
f ′ − tif (86)

In other terms, this test states that if the worst-case conflict duration is greater than the
maximum conflict duration according to the time segment [ti, tj ], then potential conflict duration
should be approximated using the close speeds case.

4.5 A linear formulation for the FIFO paradigm

Let Pt be the set of all potential trailing conflicts, the model aiming at minimizing potential trailing
conflicts duration can be expressed as:
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Model 2 (Trailing Conflicts Model)

min
∑

(f,f ′,S)∈Pt

ρSff ′ + ρSf ′f

subject to:

∀(f, i) ∈ P :

SM =
{

tif ≤ tif ≤ t
i
f

∀(f, f ′, S) ∈ Pt :

T M =























































































































ρSff ′ ≤ ziff ′ · ρSff ′

ρSff ′ ≥ (tjf − tif ′)− (1− ziff ′) · ρSff ′

tif ′ − tif ≥ (1− ziff ′) ·D/vf ′ − (t
i
f − tif ′ +D/vf ′) · (1− yiff ′)

ziff ′ ≤ yiff ′



























if: vf = vf ′

ρSff ′ ≥ βjf − βif ′ + ψS
ff ′

}

if: vf 6= vf ′

ψS
ff ′ ≥ 1

vf ′−vf

(

−Dyiff ′ + vf ′βif ′ − vf ′βif

)

− βjf

}

if: vf > vf ′

ψS
ff ′ ≥ 1

vf ′−vf

(

Dyiff ′ − vf ′βif + vfβ
i
f ′

) }

if: vf < vf ′

tif ′ ≤ tif + (t
i
f ′ − tif ) · yiff ′

yiff ′ = yjff ′

yiff ′ + yif ′f = 1

ρSff ′ , ψS
ff ′ ≥ 0

βif ∈ [tif , t
i
f ], β

i
f ′ ∈ [tif ′ , t

i
f ′ ], β

j
f ∈ [tjf , t

j
f ], β

j
f ′ ∈ [tjf ′ , t

j
f ′ ],

(tif ,∆T
i
ff ′ , ρSff ′ , ψS

ff ′) ∈ R, (yiff ′ , ziff ′) ∈ {0, 1}.

Note that using this formulation, not all constraints are designed to be active simultaneously,
thus allowing every possible configuration of aircraft speeds to be correctly modelled. Suppose for
instance that vf < vf ′ and that vf ′ = vf . First consider the triplet (f, f ′, S) ∈ Pt, then according
to condition vf < vf ′ , the following constraints are active:

ρSff ′ ≥ βjf − βif ′ + ψS
ff ′ (88)

ψS
ff ′ ≥ 1

vf ′ − vf

(

Dyiff ′ − vf ′βif + vfβ
i
f ′

)

(89)

Consider now the triplet (f ′, f, S) ∈ Pt, after exchanging the roles of indices f and f ′ in model
2 and according to condition vf ′ = vf , the following constraints are active:
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ρSf ′f ≤ zif ′f · ρSf ′f (90)

ρSf ′f ≥ (tjf ′ − tif )− (1− zif ′f ) · ρSf ′f (91)

tif − tif ′ ≥ (1− zif ′f ) ·D/vf − (t
i
f ′ − tif +D/vf ) · yiff ′ (92)

zif ′f ≤ yif ′f (93)

Assume flights f and f ′ are the only flights in a potential trailing conflict, then the model to
solve is:

Model 3 (Example)

min ρSff ′ + ρSf ′f

subject to:

∀(f, i) ∈ P :

SM =
{

tif ≤ tif ≤ t
i
f

∀(f, f ′, S) ∈ Pt :

T M =















































































































ρSf ′f ≤ zif ′f · ρSf ′f

ρSf ′f ≥ (tjf ′ − tif )− (1− zif ′f ) · ρSf ′f

tif − tif ′ ≥ (1− zif ′f ) ·D/vf − (t
i
f ′ − tif +D/vf ) · yiff ′

zif ′f ≤ yif ′f



























Constraints on ρSf ′f

ρSff ′ ≥ βjf − βif ′ + ψS
ff ′

ψS
ff ′ ≥ 1

vf ′−vf

(

Dyiff ′ − vf ′βif + vfβ
i
f ′

)

}

Constraints on ρSff ′

tif ′ ≤ tif + (t
i
f ′ − tif ) · yiff ′

tif ≤ tif ′ + (t
i
f − tif ′) · yif ′f

yiff ′ = yjff ′

yiff ′ + yif ′f = 1

ρSff ′ , ψS
ff ′ ≥ 0

If f ′ is the leader (see model 4) that is, yiff ′ = 0, then yif ′f = 1 and all β-reformulations vanish.

In model 4, ρSff ′ is only constrained to be positive and thus is set to 0 during the minimization.

∆T i
f ′f is now equal to the correct crossing time difference and the value of zif ′f depends on the

bounds of decision variables tif and tif ′ . If f is the leader (see model 5), that is yiff ′ = 1, then

yif ′f = 0 and all β-reformulations are equal to the corresponding crossing time. In model 5, ρSf ′f is

automatically set to 0 for zif ′f = 0 and ρSff ′ is correctly lower bounded.
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Model 4 (f ′ leader)

min ρSff ′ + ρSf ′f

subject to:

∀(f, i) ∈ P :

SM =
{

tif ≤ tif ≤ t
i
f

∀(f, f ′, S) ∈ Pt :

T M =















































































ρSf ′f ≤ zif ′f · ρSf ′f

ρSf ′f ≥ (tjf ′ − tif )− (1− zif ′f ) · ρSf ′f

tif − tif ′ ≥ (1− zif ′f ) ·D/vf
zif ′f ≤ 1



























Constraints on ρSf ′f

ρSff ′ ≥ ψS
ff ′

ψS
ff ′ ≥ 0

}

Constraints on ρSff ′

tif ≤ tif ′ + t
i
f − tif ′

tif ′ ≤ tif

ρSff ′ , ψS
ff ′ ≥ 0

Model 5 (f leader)

min ρSff ′ + ρSf ′f

subject to:

∀(f, i) ∈ P :

SM =
{

tif ≤ tif ≤ t
i
f

∀(f, f ′, S) ∈ Pt :

T M =























































































ρSf ′f ≤ 0

ρSf ′f ≥ (tjf ′ − tif )− ρSf ′f

tif − tif ′ ≥ tif − t
i
f ′

zif ′f ≤ 0



























Constraints on ρSf ′f

ρSff ′ ≥ tjf − tif ′ + ψS
ff ′

ψS
ff ′ ≥ 1

vf ′−vf

(

D − vf ′tif + vf t
i
f ′

)

}

Constraints on ρSff ′

tif ≤ tif ′

tif ′ ≤ tif + t
i
f ′ − tif

ρSff ′ , ψS
ff ′ ≥ 0
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5 A Complete Speed Regulation Model

Model 6 (Crossing and Trailing Conflicts Model)

min
∑

(f,f ′,i)∈Pc

1

2
ωi
ff ′ +

∑

(f,f ′,S)∈Pt

ρSff ′ + ρSf ′f

subject to:

∀(f, i) ∈ P :

SM =
{

tif ≤ tif ≤ t
i
f

∀(f, f ′, i) ∈ Pc :

CM =











































































ωi
ff ′ ≥

(

tif − t
prec(i)
f

)

·Gi
ff ′ −∆T i

ff ′

ωi
ff ′ ≥ 0

ωi
ff ′ = ωi

f ′f

∆T i
ff ′ ≤ tif − tif ′ + 2(t

i
f ′ − tif ) · yiff ′

∆T i
ff ′ ≥ tif − tif ′

∆T i
ff ′ = ∆T i

f ′f

tif ′ ≤ tif + (t
i
f ′ − tif ) · yiff ′

yiff ′ + yif ′f = 1

∀(f, f ′, S) ∈ Pt :

T M =























































































































ρSff ′ ≤ ziff ′ · ρSff ′

ρSff ′ ≥ (tjf − tif ′)− (1− ziff ′) · ρSff ′

tif ′ − tif ≥ (1− ziff ′) ·D/vf ′ − (t
i
f − tif ′ +D/vf ′) · (1− yiff ′)

ziff ′ ≤ yiff ′



























if: vf = vf ′

ρSff ′ ≥ βjf − βif ′ + ψS
ff ′

}

if: vf 6= vf ′

ψS
ff ′ ≥ 1

vf ′−vf

(

−Dyiff ′ + vf ′βif ′ − vf ′βif

)

− βjf

}

if: vf > vf ′

ψS
ff ′ ≥ 1

vf ′−vf

(

Dyiff ′ − vf ′βif + vfβ
i
f ′

) }

if: vf 6= vf ′

tif ′ ≤ tif + (t
i
f ′ − tif ) · yiff ′

yiff ′ = yjff ′

yiff ′ + yif ′f = 1

ρSff ′ , ψS
ff ′ ≥ 0

βif ∈ [tif , t
i
f ], β

i
f ′ ∈ [tif ′ , t

i
f ′ ], β

j
f ∈ [tjf , t

j
f ], β

j
f ′ ∈ [tjf ′ , t

j
f ′ ],

(tif ,∆T
i
ff ′ , ωi

ff ′ , ρSff ′ , ψS
ff ′) ∈ R, (yiff ′ , ziff ′) ∈ {0, 1}.
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Model 6 is a 01-Mixed Integer Linear Program (MILP) which is a combination of sub-models
1 and 2. Notice that these sub-models are independent and can thus be deactivated if required.
Model 6 can be presented in a reduced form as:

Model 7 (MILP for the speed regulation problem)

min
∑

(f,f ′,i)∈Pc

1

2
ωi
ff ′ +

∑

(f,f ′,S)∈Pt

ρSff ′ + ρSf ′f

subject to:

∀(f, i) ∈ P : SM

∀(f, f ′, i) ∈ Pc : CM

∀(f, f ′, S) ∈ Pt : T M

(ωi
ff ′ , ρSff ′ , ρSf ′f ) ∈ R.

Conclusion

In this report a complete modellization of the speed regulation problem is proposed. The final model
is a combination of two sub-models, 1 and 2, that are designed to minimize the total potential con-
flicts duration for both crossing and trailing conflicts respectively. All the models are developed
using worst-case bounds on aircraft speeds in order to provide a robust framework where no po-
tential conflict can be leftover. The models are formulated with linear constraints and objective
functions, hence they can be solved using industrial-strength optimization solvers.
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A Notations and glossary

Quantity Definition Qualification in the model

P set of potential conflicts set

Pc set of potential crossing conflicts set

Pt set of potential trailing conflicts set

D horizontal separation norm parameter

vf speed of flight f none

vf , vf lower and upper bounds on flight f speed parameters

tif crossing time of flight f at point i real decision variable

tif , t
i

f lower and upper bounds on tif parameters

∆T i
ff ′ crossing time difference between flights f and f ′ at point i:

∆T i
ff ′ = |tif − tif ′ |

real decision variable

ωi
ff ′ crossing conflict duration at point i real decision variable

yiff ′ crossing order of flights f and f ′ at point i: yiff ′ = 1

if tif ≤ tif ′ , yiff ′ = 0 otherwise

binary decision variable

ti date after which both aircraft are on the shared segment none

tj date after which one aircraft has left the shared segment none

T∞ trailing conflict duration on an infinite segment none

tb, te trailing conflict beginning and ending dates none

τb, τe worst-case FIFO-trailing conflict beginning and ending dates none

τ bf , τ
e
f worst-case FIFO-trailing conflict beginning and ending dates if f

is the leader
none

τ bf ′ , τef ′ worst-case FIFO-trailing conflict beginning and ending dates if f ′

is the leader
none

vl, vp speeds of the leader and the follower none

ziff ′ flights f and f ′ separation at point i if f is the leader: ziff ′ = 0

if ∆T i
ff ′ ≥ D/vf ′ , ziff ′ = 1 otherwise

binary decision variable

zif ′f flights f and f ′ separation at point i if f ′ is the leader: zif ′f = 0

if ∆T i
ff ′ ≥ D/vf , z

i
f ′f = 1 otherwise

binary decision variable

ρS trailing conflict duration on segment S none

ρSff ′ trailing conflict duration on segment S if f is the leader real decision variable

ρSf ′f trailing conflict duration on segment S if f ′ is the leader real decision variable

ρSff ′ , ρSf ′f upper bounds on ρSff ′ and ρSf ′f parameters

ψS trailing conflict duration adjustment if vl 6= vp none

ψS
ff ′ trailing conflict duration adjustment if vf 6= vf ′ and if f is the

leader
real decision variable

ψS
f ′f trailing conflict duration adjustment if vf ′ 6= vf and if f ′ is the

leader
real decision variable

βi
f linearization of decision variable product: βi

f = tif · yiff ′ real decision variable
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B Crossing Conflicts and the Gamma Function

The next figures represent the surfaces generated by function Γ(vf , vf ′) for a fixed value of θ, the
confluence angle. The surfaces are generated by considering aircraft speeds as bounded variables.
The planar plots and the color map on the right-hand side of the figures show that maximum values
of Γ(vf , vf ′) are achieved when aircraft speeds are both maximal or minimal according to θ. For
low values of θ, maximum values of Γ(vf , vf ′) are reached when aircraft fly at their maximal speed
whereas for θ ≥ 34◦, maximum values of Γ(vf , vf ′) are achieved for minimal aircraft speeds.
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Figure 4: θ = 15◦
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Figure 5: θ = 30◦
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Figure 6: θ = 45◦

0.1
0.11

0.12
0.13

0.14
0.15

0.16

0.1

0.12

0.14

0.16
30

40

50

60

 vf in NM/s

vf’ in NM/s

G
am

m
a(

vf
,v

f’)
 in

 s

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.1

0.11

0.12

0.13

0.14

0.15

0.16

 

 vf in NM/svf’ in NM/s
 

40

42

44

46

48

50

52

54

56

Figure 7: θ = 60◦
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C Linearization through reformulations

Along the linearization process that is required to provide a linear framework for the speed regula-
tion problem, several decision variables products are encountered and need to be refined. Most of
the time these products appear to model a binary decision. However, according to this decision an-
other decision ought to be taken on a continuous decision variable. In order to linearize constraints
where a binary and a continuous decision variable are expressed as a product, we need to introduce
an auxiliary decision variable. This can be achieved if the continuous decision variable is bounded
[5], which is often the case in the models. Let b be a binary decision variable and c ∈ [c, c] be a
continuous decision variable. To linearize the decision variable product p = bc, we can introduce
p ∈ R as an auxiliary decision variable in the model by including the following constraints set to
the model:

p ≥ bc (99)

p ≤ bc (100)

p ≥ c− (1− b)c (101)

p ≤ c− (1− b)c (102)

Clearly, if b = 0 then 0 ≤ p ≤ 0 ⇐⇒ p = 0 and constraints (101,102) become redundant.
If b = 1 then c ≤ p ≤ c ⇐⇒ p = c and constraints (99,100) become bounds on p. This
reformulation of the decision variable product bc is linear and thus provides an efficient method
to linearize products of binary and bounded continuous decision variables. To simplify the models
description, constraint p = L(b, c) will be used instead of the full constraints set linearizing the
decision variables product.

∀b ∈ {0, 1}, c ∈ [c, c], p ∈ R p = L(b, c) ⇐⇒















p ≥ bc
p ≤ bc
p ≥ c− (1− b)c
p ≤ c− (1− b)c

(103)

References

[1] Dimitri Bertsekas. Convex Analysis and Optimization. Athena Scientific, 2003.

[2] Eurocontrol Experimental Centre. ERASMUS baseline scenario - First dynamic assessment of
the ERASMUS concept. Technical report, EUROCONTROL, 2008.

[3] Fabrice Drogoul, Philippe Averty, and Rosa Weber. Erasmus strategic deconfliction to benefit
sesar. In 8th USA/Europe Air Traffic Management Research and Development Seminar, Napa,
USA, 2009.

[4] James K. Kuchar and Lee C. Yang. A review of conflict detection and resolution modeling
method. Technical report, Massachusetts Institute of Technology, USA, 2000.

[5] Leo Liberti, Sonia Cafieri, and Fabien Tarissan. Reformulations in mathematical programming
: A computational approach. In Foundations of Computational Intelligence Volume 3 - Global
Optimization. 2009.

[6] International Civil Aviation Organization. Rules of the air and air traffic services. Technical
report, ICAO, 1996.


	Potential Air Conflicts
	Modelling Choices
	Crossing Conflicts
	A geometric approach
	Modelling aircraft crossing order

	Trailing Conflicts
	Time Segments Modelling
	Modelling the separation condition at the segment entry point
	Flight overtaking and distancing
	Singular behaviour of the potential conflict duration
	A linear formulation for the FIFO paradigm

	A Complete Speed Regulation Model
	Notations and glossary
	Crossing Conflicts and the Gamma Function
	Linearization through reformulations

