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Dynamic Walking and Whole-Body Motion

Planning for Humanoid Robots: an Integrated

Approach

Sébastien Dalibard Antonio El Khoury
Florent Lamiraux Alireza Nakhaei Michel Täıx

Jean-Paul Laumond ∗†

Abstract

This paper presents a general method for planning collision-free whole-
body walking motions for humanoid robots. First, we present a random-
ized algorithm for constrained motion planning, that is used to generate
collision-free statically balanced paths solving manipulation tasks. Then,
we show that dynamic walking makes humanoid robots small-space con-
trollable. Such a property allows to easily transform collision-free stati-
cally balanced paths into collision-free dynamically balanced trajectories.
It leads to a sound algorithm which has been applied and evaluated on
several problems where whole-body planning and walk are needed, and
the results have been validated on a real HRP-2 robot.

1 Introduction

During the last twenty years, impressive progress has been achieved in humanoid
robot hardware and control. This leads to a rising need for software and algo-
rithms improving the usability and autonomy of those robots. One important
area of research focuses on the development of robust and general motion gen-
eration techniques for safe and autonomous operation in human environments,
such as offices or homes.

Motion planning for humanoid robots is challenging for several reasons.
First, the computational complexity of classic motion planning algorithms is
exponential in the number of Degrees of Freedom (DoFs) of the considered sys-
tem, which is high for humanoid kinematic trees. Second, a humanoid robot is
an under-actuated system: the DoFs that control the position and orientation
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of the whole robot in space are not directly controlled, they derive from the
articular DoFs of the robot legs. Those latter should be controlled with care to
guarantee dynamically balanced motions, for manipulation or navigation.

When planning collision free motions for humanoid robots, different repre-
sentations of the robot and its environment can be used. The choice of the level
of details of the representation indicates the difficulty of the considered prob-
lem. The simplest option consists in considering the robot as a navigating 2D
shape (Pettré, Laumond & Siméon 2003), and computing obstacle avoidance in
a planar model of the world. Another possibility is to compute only collision-free
footsteps (Kuffner Jr, Nishiwaki, Kagami, Inaba & Inoue 2001). In complex and
difficult environments, such as the one presented in Fig. 1, it can be necessary
to consider exact 3D models of a humanoid robot and its environment.

Figure 1: The robot HRP-2 passing between two chairs. In this kind of envi-
ronment whole-body collision avoidance is needed during locomotion.

There are two main ways of using motion planners to generate dynamically
balanced robotic motions. The more general one is to plan in a robot dynamic
space, see for example (Shkolnik, Levashov, Manchester & Tedrake 2011). By
taking into account both robot configuration and velocity, motions that satisfy
dynamic balance constraints can be generated at a planning phase. When plan-
ning motion for humanoid robots, this is a particularly costly approach, as the
size of the space to explore is augmented with the robot velocity and footprint
positions. The other way is to first plan a geometric path that can be approx-
imated by a dynamic trajectory in a second step (Yoshida, Belousov, Esteves
& Laumond 2005). The approach we present in this paper falls into the second
category. Some feasible dynamic motions are inherently impossible to compute
with this kind of approach. For example, jumping motions cannot be generated
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by a purely geometric planner.
In this paper, we present a planning algorithm that considers exact models

of a humanoid robot and its environment. It is used to solve navigation and
manipulation problems. Our planner is a two-step algorithm: a first collision-
free path is computed in the space of quasi-statically balanced configurations,
then this first path is approximated by a sequence of dynamic walking trajec-
tories. The proof of correctness of the algorithm is based on the concept of
small-space controllability. This property allows, under some assumptions, to
approximate any non necessarily admissible path, by a sequence of admissible
trajectories. In our context we prove that dynamic walking makes humanoid
robots small-space controllable. Our planner is designed for perfectly modeled
indoor environments, where the floor is horizontal and flat. Also, because we
do not explicitly compute footprint positions at the planning stage, our plan-
ner is unable to plan motions in which the robot steps over obstacles. These
limitations are discussed in the paper.

1.1 Outline

Section 2 reviews the related work and states our contribution. Section 3
presents a constrained motion planning algorithm, and its use on a humanoid
robot manipulation problem. Section 4 generalizes the previous algorithm to
problems that require locomotion. The generalization is well-grounded, and
based on a controllability property of legged robots demonstrated in the pa-
per. Section 5 presents some experimental results, and Section 6 discusses the
limitations and potential future work of our method.

2 Related Work and Contribution

This work is based on several fields of humanoid robotics research: prioritized
inverse kinematics, randomized whole-body motion planning and walk pattern
generators based on the Zero-Moment Point (ZMP). This section summarizes
the literature related to each of these fields.

2.1 Prioritized Inverse Kinematics

The problem of inverse kinematics for a humanoid robot, or any articulated
structure, is to compute a joint position to achieve an end-effector pose. As the
robots we deal with are redundant, it is natural to take advantage of this re-
dundancy by specifying multiple tasks, potentially with different priorities. This
problem has been widely studied in robotics planning and control literature, and
many Jacobian-based solutions have been proposed, among which (Nakamura
& Hanafusa 1986), (Siciliano & Slotine 1991), (Baerlocher & Boulic 1998) and
(Khatib, Sentis, Park & Warren 2004). Obstacle avoidance can be taken into
account with similar methods. To do so, one has to include the obstacles as
constraints to satisfy, see for example (Kanehiro, Lamiraux, Kanoun, Yoshida
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& Laumond 2008). These methods are prone to fall into local minima, thus
global motion planning is needed to overcome this limitation. Note that when
local methods find solutions, these are usually smoother and may look more
natural. The choice of using global motion planners is justified by the need for
complete algorithms. (Toussaint, Gienger & Goerick 2007) propose a motion
generation method where tasks follow trajectories defined by cubic B-splines.
The whole-body motion is optimized with respect to the control point positions.
This method can take into account collisions with simple obstacles.

2.2 Whole-Body Motion Planning

When planning a whole-body motion for a humanoid robot, one difficult chal-
lenge is to cope with the curse of dimensionality. The complexity of motion plan-
ning is exponential in the dimension of the configuration space (C) to explore.
When dealing with high-dimensional configuration spaces, it is typically impos-
sible to explicitly represent them, leading to the use of randomized sampling
techniques to solve global planning problems. In the past fifteen years, Proba-
bilistic Roadmaps (Kavraki, Svestka, Latombe & Overmars 1996) and Rapidly
exploring Random Trees (RRT) (Kuffner & LaValle 2000) have been developed
and used to solve many high-dimensional planning problems, see (LaValle 2006)
and (Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki & Thrun 2005)
for comprehensive overviews. When using sampling techniques on a humanoid
robot, another difficulty is to take into account balance constraints, i.e. to gener-
ate random configurations on zero volume submanifolds of C. This problem has
been investigated with success during the last few years, (Berenson, Srinivasa &
Kuffner 2011b) presents an exhaustive survey of Jacobian-based methods. Other
recent contributions (Porta, Jaillet & Bohigas 2012) present sophisticated con-
strained motion planning techniques based on higher-dimensional continuation.
Section 3 presents a simple adaptation of the RRT algorithm to constrained
motion planning, that was first introduced in (Dalibard, Nakhaei, Lamiraux &
Laumond 2009).

2.3 Walk Pattern Generation

Another field of humanoid robotics research is the generation of dynamically
balanced walk patterns. Since the introduction of the ZMP (Vukobratovic &
Juricic 1969), several methods have been proposed to generate walking motions
efficiently. One way to deal with the complexity of a humanoid robot kinematic
tree is to use the so-called ”cart-table” simplified model (Kajita, Kanehiro,
Kaneko, Fujiwara, Harada, Yokoi & Hirukawa 2003). Based on this model,
planning a trajectory for the ZMP is reduced to planning a trajectory for the
Center of Mass (CoM) of the robot. Given a trajectory of the CoM and footprint
positions, inverse kinematics solvers can animate the whole set of DoFs of the
robot to generate a dynamically balanced walk trajectory.
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2.4 Collision-Free Walk Planning

Collision-free locomotion trajectories are usually obtained by simplifying the
model of either the robot or the environment. By reducing a humanoid robot
to a bounding volume that wraps the swaying motion, one can use a simple
planar motion planner on this bounding volume and generate a valid locomotion
trajectory. This strategy is used in (Pettré et al. 2003) in a computer animation
context. Variants of this method include dynamic path reshaping (Yoshida
et al. 2005): if collisions appear when animating the locomotion trajectory, it is
locally reshaped and re-animated. This two-stage strategy does not guarantee
that the locomotion trajectory can be followed or that the local reshaping will
converge.

One possible simplification of the environment consists in considering ob-
stacles at a footstep level only. (Kuffner Jr et al. 2001, Chestnutt, Lau, Che-
ung, Kuffner, Hodgins & Kanade 2005, Kuffner, Nishiwaki, Kagami, Inaba &
Inoue 2005) use an A∗ algorithm to find collision-free footsteps. In (Perrin,
Stasse, Baudouin, Lamiraux & Yoshida 2012), the authors compute dynamic
walking motions avoiding collisions at the leg level by using an RRT algorithm.

Some planning methods for free-climbing robots (Bretl 2006) can be seen as
a general way to consider quasi-static multi-step planning. They are not how-
ever directly applicable to humanoid dynamically balanced locomotion. Other
recent contributions to the field of locomotion planning include algorithms con-
sidering the dynamics at the planning phase (Shkolnik et al. 2011). This leads
to a growth of algorithmic complexity, particularly costly for high-dimensional
systems such as humanoid robots. To the authors’ knowledge such techniques
have not been used on humanoid robotic platforms so far.

We show in this work that, under some assumptions, it is sufficient to plan a
first path in the quasi-static configuration space of a humanoid robot, and then
use the small-space controllability property to approximate this path by an
admissible trajectory, i.e. a dynamically balanced walking motion. This result
was first presented in (Dalibard, El Khoury, Lamiraux, Taix & Laumond 2011).

2.5 Contribution

The main contribution of this work is a whole-body motion planner for humanoid
robots that computes collision-free walking trajectories, based on exact models
of both robot and environment. It is used to solve manipulation tasks that
may require walking. The first stage of our algorithm uses a sampling-based
constrained motion planner and computes a collision-free statically balanced
path for a robot which can be fixed or sliding on the ground.

Another contribution of this paper is the formal proof that dynamic walking
makes humanoid robots small-space controllable, with the direct implication
that this first path can always be approximated by a dynamically balanced,
collision-free walking trajectory. We have implemented this well-grounded method,
and the results have been validated on the HRP-2 robot.
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3 Randomized Motion Planning on Constraint
Manifolds

This section presents an algorithm for constrained motion planning on a sub-
manifold M of the configuration space C. In the particular case of a humanoid
robot which is an under-actuated system, C = Q× SE(3), where Q represents
the kinematic tree actuators and SE(3) represents the position in space of the
root of the tree. If the robot has n actuated DoFs, then dim(Q) = n and
dim(C) = n + 6. A configuration q of C is said to be valid iff, besides being
collision-free, it lies on the manifold M; we call M the planning manifold.

The problem solved here differs from classic approaches in two ways:

1. the set of valid configurations is defined implicitly, as the set of collision-
free configurations satisfying a given set of inverse kinematics balance
constraints;

2. the goal manifoldMg is also defined implicitly, by additional inverse kine-
matics constraints.

During global planning, we will consider several types of constraints for various
reasons:

− Static balance: the CoM of the robot stays above the support polygon
center, the two feet are horizontal on the ground.

− End-effector position and orientation: the goals of some problems pre-
sented in the experimental section of this paper are defined as a specific
robot hand pose, or a gaze direction.

− Configuration task: our adaptation of randomized motion planning algo-
rithms uses tasks defined as the distance towards a given configuration in
C. This will be detailed in the following section.

Our algorithm generalizes randomized tree expansion strategies, introduced
in both (Hsu, Latombe & Motwani 1999) and (Kuffner & LaValle 2000) to
constrained motion planning problems. Next subsection will recall the structure
of the RRT algorithm, a popular randomized motion planning algorithm. Our
method could be applied to any randomized sampling planning method, such
as RRT* (Karaman & Frazzoli 2011), which is slower than RRT but generates
optimal paths.

3.1 Rapidly exploring Random Trees (RRT)

The classic RRT algorithm, as presented in (Kuffner & LaValle 2000), grows
a random tree inside the robot collision-free configuration space Cfree. Each
iteration of the algorithm attempts to extend the tree by adding new vertices in
the direction of a randomly selected configuration qrand. Algorithm 1 shows the
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Algorithm 1 RRT(q0)

T .Init(q0)
for i = 1 to K do
qrand ← Rand(C)
qnear ← Nearest(qrand, T )
Extend(T , qnear, qrand)

end for

pseudo-code of the RRT algorithm. It takes as input an initial configuration q0
and grows a tree T rooted in q0.

One way to make the RRT algorithm more efficient is to grow trees from
both the initial and goal configurations. This was first proposed in (Kuffner &
LaValle 2000). Our formulation of manipulation planning does not include an
explicit goal configuration, so it is not possible to directly grow a tree from the
goal. To make use of the idea of growing multiple trees, we first randomly sample
the goal manifold and generate several goal configurations. Then, we grow
random trees from the initial configuration and the random goal configurations.
The idea of generating several goals for manipulation planning was proposed in
(Diankov, Ratliff, Ferguson, Srinivasa & Kuffner 2008).

Section 3.2 describes a constraint solver, Section 3.3 the goal manifold sam-
pling, and Section 3.4 the adaptation or RRT random extensions to constrained
motion planning.

3.2 Constraint Solver

We show here how a multiple constraint solver works: its purpose is to find the
root q of a non-linear C1 function f(q) with a tolerance of ε. If we want to find a
configuration on a manifoldM, f(q) can be defined as a vector valued function
that contains the concatenation of all constraints definingM. Note that as the
intersection of two or more manifolds is also a manifold, this constraint solver
allows us also to generate configurations that lie at the intersection of several
manifolds.

Algorithm 2 implements a Newton-Raphson method (Bonnans, Gilbert, Lemaréchal
& Sagastizábal 2006): starting from an initial value of q, q is updated iteratively

by −α
(
∂f
∂q (q)

)+
f(q), where α denotes a gain and

(
∂f
∂q (q)

)+
denotes the Moore-

Penrose pseudo-inverse of the Jacobian of f(q). The use of an adaptive gain α,
which increases iteratively from an initial value α to a maximum value αmax,
allows the overshoot avoidance and convergence acceleration. The update rule
relies on a real factor w ∈ [0, 1]; the greater w is, the faster α will reach αmax.
Obviously, the solver convergence depends on the initial value of q, and a bad
initialization can lead to either slow convergence or failure. A cutoff number of
iterations itmax is hence introduced to bypass these cases.

We observed that values of ε = 10−6, α = 0.1, αmax = 0.95 and w = 0.8
lead to good behavior, i.e. fast convergence and low failure rate. These values
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are kept constant for all scenarios in this work.

Algorithm 2 SolveConstraints(q, f, ε): find q such that f(q) = 0

i = 0
while ‖f(q)‖ > ε and i ≤ itmax do

// (.)
+

denotes the Moore-Penrose pseudo-inverse

q ← q − α
(
∂f
∂q (q)

)+
f(q)

i ← i+ 1
// Make α tend toward αmax
α→ αmax − w(αmax − α)

end while
if ‖f(q)‖ ≤ ε then

return q
else

return failure
end if

3.3 Goal Manifold Sampling

The way we generate a goal configuration is the following:

1. Shoot a random configuration qrand in C with uniform distribution.

2. Call SolveConstraints (Algorithm 2) on qrand, with f(q) defined by the
intersection of the planning and goal manifolds M∩Mg.

3. If success, check for collisions.

Fig. 2 shows resulting random configurations which satisfy both balance (M)
and reaching (Mg) constraints for the HRP-2 robot.

Figure 2: Random goal configurations solving a reaching task. All the config-
urations are balanced and collision-free, and the right hand of the character
reaches the orange ball.
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3.4 Random Extensions on a Constrained Manifold

Fig. 3 shows an extension of the classic RRT algorithm, from a configuration
already in the tree qnear towards a random configuration qrand.

qnear

T

qnew
qrand

Obstacle

Figure 3: One step of extension of the RRT algorithm. The algorithm tries to
add the longest possible edge from qnear towards qrand, while avoiding collisions.

The equivalent random extension on a constrained manifold M, defined
by the constraint function f , starts from a valid configuration qnear ∈ M,
and extends the tree towards a random configuration qrand, while keeping the
constraints satisfied. Extension attempts orthogonal toM are useless, as newly
added edges have to be included in M. To extend in directions that follow the
directions of M, we rely on Jacobian-based inverse kinematics. Algorithm 3
presents the adaptation of the classic extend function, and Fig. 4 illustrates this
extension. The idea is to first project qrand on the tangent space toM at qnear.
Let us call the projected configuration q′rand. Let q′′rand be the result of a call to
SolveConstraints(q′rand, f, ε). It is the projection of q′rand on M. Instead of
extending the tree from qnear towards qrand, the algorithm tries to extend from
qnear towards q′′rand while remaining on M 1. While extending the tree, the
configurations along the new edge are automatically projected onto M. These
projections are not very costly if the edge is close to the constrained manifold.

(Berenson, Srinivasa & Kuffner 2011a) presents a formal proof that projection-
based constrained random motion planning on a fixed dimension manifold is
probabilistically complete. This proof applies to our algorithm.

3.5 Example

We present in Fig. 5 an illustration of the use of randomized motion planning
on complex manipulation problems. The humanoid robot HRP-2 faces shelves.
It has to: (i) grasp a ball lying on a shelf, (ii) put it on a higher shelf, (iii)
come back to a natural rest configuration. We can hence define three separate
constrained motion planning problems where the planning manifold M is the
static balance manifold defined in 3; the goal manifold of problem (i) is defined

1This presentation attempts to give a precise idea of the algorithm, without
focusing on technical details. Readers interested in the actual implementation
can refer to https://github.com/laas/hpp-constrained and https://github.com/laas/

hpp-constrained-planner, where the corresponding open-source code is available.
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Obstacle

Constrained

manifold M

qnear

qrand

TqM
q′rand

q′′rand

qnew

Figure 4: One step of constrained extension illustrating Algorithm 3: qrand is
first projected on TqM the tangent space of M. q′rand is then projected onto
M. A classic RRT extension tries to go as far as possible from qnear towards
q′′rand while remaining on M. qnew is then returned.

Algorithm 3 ConstrainedExtend(T , qnear, qrand, f, ε)
d← Distance(qnear, qrand)
q ← qnear
while d > ε do
q′rand ← OrthogonalProject(qrand, TqM)
q′′rand ← SolveConstraints(q′rand, f, ε)
d← Distance(q, q′′rand)
q ← q′′rand

end while
qnew ← RRT::Extend(T , qnear, q′′rand)

by a hand pose constraint (the hand must be horizontal and its position has to
coincide with the ball initial position), and a gaze constraint (the robot has to
look at the ball in its initial position). Similarly, the goal manifold of problem
(ii) is defined by hand and gaze constraints that correspond to the position of
the ball on the higher shelf. Finally, we define the rest configuration as the
single goal configuration for problem (iii).

Note that for phases (i) and (iii) the ball is also considered as an obstacle.
This is necessary to prevent the robot grasping hand from colliding with the
ball during the approach (respectively retraction) phase.

For the two reaching motions in (i) and (ii), we first generate 8 random goal
configurations (Section 3.3), then we solve the three constrained motion plan-
ning problems separately. As randomized motion planning algorithms produce,
a classic shortcut method is used to optimize and shorten the paths. Extension
1 presents a video of the concatenated motion.

We have run this set of motion planning problems 20 times; results are com-
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min max average average
per problem

number of nodes 43.00 481.00 102.70
goal generation time (s) 1.00 1.56 1.22
planning time (s) 67.36 376.84 134.28 44.76

Table 1: Experimental results on 20 runs: Each run consists of 3 motion plan-
ning problems and 2 goal generations for the three phases. Time is expressed
in seconds.

piled in Table 1. We have also measured the performance of SolveConstraints
(Algorithm 2) when used to project configurations on M; the average number
of iterations is 6.5 per call, and the success rate, i.e. the ratio of the number of
successfully projected configurations over the total number of calls, is above 95
percent. This success rate, high as it is, could be further improved by sampling
a better initial configuration of C, for example by introducing a heuristic bias
towards statically balanced configurations. Nevertheless we choose to sample C
uniformly-randomly for the sake of genericity.

Figure 5: HRP-2 grabs a ball on a shelf, puts it on another shelf, and comes
back to a rest position. Static balance constraints are enforced along the path,
and the intermediary goals consisting in grasping and displacing the ball are
defined implicitly as inverse kinematics constraints.
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4 From Statically Balanced Paths to Dynamic
Walk Trajectories

The previous section has presented a simple algorithm that solves manipulation
planning problems on a given constraint manifold M of C.

If we use this algorithm with static balance constraints without fixing glob-
ally the robot foot positions, it generates statically balanced paths for a robot
sliding on the ground. Fig 6 shows an example of a whole-body collision-free
path for a robot passing between two chairs. Since in reality a legged robot
cannot slide on a regular floor, such paths are physically unfeasible. They are,
however, easier to generate than feasible dynamic walking trajectories because
only geometric constraints are considered at planning time.

Figure 6: Collision-free statically balanced path for a humanoid robot sliding
on the ground.

This section presents a constructive proof that any such statically balanced,
collision-free path for a legged robot sliding on the ground can be approximated
by a dynamically balanced, collision-free walk trajectory. The proof is based on
ideas from control theory, in particular small-space controllability. It also uses
the fact that balance criteria for dynamic walking are different from the ones
for static balance.

Section 4.1 recalls the definition of small-space controllability and its use in
motion planning. Section 4.2 proves that a dynamically walking legged robot
is small-space controllable, while a quasi-statically walking legged robot is not.
Section 4.3 shows how this property is used to approximate collision-free stati-
cally balanced paths by dynamic walking trajectories.

4.1 Small-Space Controllability

A robotic system is controllable if for any two configurations q1 and q2, there
exists a trajectory going from q1 to q2. It is small-space controllable if for all
configurations q, for all ε > 0, there exists η > 0 such that all the configurations
contained in the ball of center q and radius η are reachable by trajectories
included in the ball of center q and radius ε. Fig. 7 shows an illustration of this
property.

The main consequence of this property in motion planning is the following
theorem, that shows how planning for dynamic systems is reduced to geometric
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q′

q

ε

Bε(q)

η Bη(q)

Figure 7: The small-space controllability local property: any configuration q′ at
a distance less than η is reachable from q by an admissible trajectory included
in a ball of size ε.

planning thanks to the small-space controllability property:

Theorem 1. Any collision-free path of a small-space controllable system can
be approximated by a sequence of both collision-free and admissible trajectories.
Thus, small-space controllability reduces trajectory planning problems to geo-
metric path planning problems.

Fig. 8 shows an example of collision-free path approximation by admissible
collision-free sub-trajectories. The convergence of this algorithm is guaranteed
by the small-space controllability property.

q2

q1

C

Obstacles

Figure 8: Small-space controllability in motion planning. A collision-free path
from q1 to q2 is approximated by collision-free and admissible trajectories by
using the local property.
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This result has been long known and used in motion planning, in particular
for non-holonomic systems. A detailed proof can be found in (Laumond, Jacobs,
Taix & Murray 1994). We will present a sketch of the proof to give an intuition
about the corresponding algorithm.

Proof of Theorem 1. Let C be the configuration space of a small-space control-
lable robot, and Cfree ⊂ C the set of collision-free configurations. We consider in-
contact configurations as colliding, so Cfree is an open set. Let τ : [0, 1]→ Cfree
be a collision-free path. Thus for all x ∈ [0, 1], τ(x) ∈ Cfree, there exists εx
such that the open ball B(τ(x), εx) of center τ(x) and radius εx is included in
Cfree. The small-space controllability property states that for all x, there exists
ηx > 0 such that every configuration q ∈ B(τ(x), ηx) is reachable from τ(x) by
a trajectory included in B(τ(x), εx).

The set of open balls (B(τ(x), ηx))x∈[0,1] forms an open cover of τ([0, 1])

which is compact. The Heine-Borel theorem (Fitzpatrick 2006) states that there
exists a finite subcover (B(τ(xi), ηxi))i∈{1,...,n} of τ([0, 1]). To this finite sub-

cover corresponds a finite number of feasible trajectories, going from τ(0) to
τ(1), included in the union of (B(τ(xi), εxi

))i∈{1,...,n}, and thus in Cfree. This
concludes the proof.

4.1.1 Small-Time versus Small-Space Controllability

In the control theory literature, the property used is usually small-time control-
lability, which states that for all configurations q, for all times T > 0, the set
of configurations accessible from q in time less than T forms a neighborhood
of q. When accelerations and velocities are bounded, small-time controllabil-
ity implies small-space controllability. This is why a lot of motion planning
previous work only refers to the sufficient small-time controllability property.
However, the reciprocate is not necessarily true: a system can be small-space
controllable and not small-time, if the trajectories generated by its controller
are arbitrarily long. The important property, regarding motion planning ap-
plication, is small-space controllability, as Theorem 1 shows. In the following,
we show that legged robots are small-space controllable, but not that they are
small-time controllable. In fact, the control method that we present does not
follow the small-time controllability property. For the sake of clarity, we have
chosen to make the distinction between these two controllability properties.

4.2 Dynamic Walking Makes Humanoid Robots Small-
Space Controllable

This section discusses a walking robot small-space controllability. To clarify
the presentation, we consider a simplified model of a legged robot consisting
of two feet of zero mass and a point mass free to move in three dimensions.
We do not consider the kinematic chains between the feet and the mass. The
robot is walking on a flat terrain, and the feet are assumed to have a positive
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surface. For our presentation, it is not necessary to consider the foot height, so
the configuration space of the robot is:

C = SE(2)× SE(2)× R3

It is of dimension 9.
The balanced walking conditions for a quasi-static walking robot are that

the point mass, or CoM, should always be over the support polygon (the convex
hull of the two feet), and one foot can move iff the CoM is over the other
foot. Similarly, the walking conditions for a dynamic walking robot are that the
ZMP should always be in the robot support polygon, and one foot can move
iff the ZMP is over the other foot. For a precise description of dynamically
balanced walking conditions, the reader can refer to (Wieber 2002). Under
these assumptions, the following result holds:

Theorem 2. A quasi-statically walking robot is not small-space controllable. A
dynamically walking robot is.

Proof of Theorem 2. The first claim is straightforward. Let the robot be in a
configuration q where the two feet are separated by a positive distance. Let
L > 0 be the positive horizontal distance between the CoM and the left foot (if
the CoM is over the left foot, we can consider similarly the right foot). For all
ε < L, any valid trajectory starting from q, included in the ball of center q and
radius ε, is such that the CoM is never over the left foot. Given the quasi-static
walking conditions, the right foot of the robot is fixed along the trajectory. Thus,
the set of accessible configurations from q by staying inside B(q, ε) does not form
a neighborhood of q, since it does not include any configuration where the right
foot has moved. This shows that the robot is not small-space controllable.

Let us now consider a dynamically walking robot. Starting from any valid
static configuration, the CoM can move vertically without affecting balance,
so there is no need to consider this degree of freedom in the following. If the
CoM is not over the edge of the support polygon, it is possible to move it in
a quasi-static way inside a neighborhood of its current position that projects
itself over the support polygon. It is thus sufficient and necessary to prove that
for all ε > 0, it is possible to move the feet while keeping the CoM inside a
neighborhood of size ε. Let such ε > 0 be arbitrarily fixed.

The model of a walking robot with a point mass at a fixed height is known
in the literature as the cart-table model (Kajita et al. 2003). The equations
giving the ZMP horizontal coordinates (px, py) as functions of CoM horizontal
coordinates (x, y) in the cart-table model were presented in (Kajita et al. 2003):(

px

py

)
=

(
x− zc

g ẍ

y − zc
g ÿ

)
(1)

where zc is the constant height of the CoM and g is the gravity constant. In

the following we will note ω0 =
√

g
zc

.
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Without loss of generality, let us assume that the robot is in a configuration
in which the CoM is at the horizontal position (0, 0), the foot centers are aligned
with the y-axis and the horizontal distance between the CoM and either of the
foot centers is L. To achieve dynamically balanced walking, we aim at making
py(t) oscillate between −L and L. To move the ZMP under a given foot, only the
y coordinate of the CoM is of interest. Thus, we will keep the x coordinates of
the CoM and ZMP constant equal to 0. By hypothesis, the feet have a positive
surface, let l > 0 be such that the length of the section of a foot along the y-axis
is greater than l. Fig. 9 summarizes the notations used in the following.

y-axis

CoM

zc

L

l

Figure 9: Simplified model of a legged robot. The CoM is at (0, 0, zc), the two
feet are flat on the ground, aligned with the y-axis, at a horizontal distance L
from the CoM.

The idea of this proof is to use the form of Eq. (1) to apply a scaling factor
between the amplitude of the oscillations of the CoM and of the ZMP. The
faster the CoM oscillates, the bigger is the amplitude of the ZMP oscillations.
Following is a formalization of this idea.

For ω > 0, assuming the CoM follows the trajectory y(t) = ε sin(ωt), Eq.
(1) gives:

py(t) = (1 +

(
ω

ω0

)2

)ε sin(ωt)

The amplitude of the oscillations of y is multiplied by a factor (1 +
(
ω
ω0

)2
).

Choosing ω = ω0

√
L
ε − 1 makes py oscillate between−L and L, while y oscillates

between −ε and ε. At time t
(n)
l = n 2π

ω + π/2
ω , the ZMP is located at the center

of the left foot, the robot can move its right foot and at time t
(n)
r = n 2π

ω + 3π/2
ω

the ZMP is located at the center of the right foot, the robot can move its left
foot.

Starting from a static configuration at time (t = 0), we cannot apply directly
a command y(t) = ε sin(ωt) because it generates a discontinuity in the speed
of the CoM at time (t = 0). To overcome this discontinuity, we go through a
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time

ε

−ε

0 T1

y

CoM

ZMP

Figure 10: CoM motion (solid line) along y axis. The CoM stays in the interval
[−ε, ε] while during permanent state (t ≥ T ), the ZMP (dashed line) oscillates
between the centers of the feet, which allows in-place walk.

transient state between (t = 0) and (t = T ) for some T > 0. Let f : [0, T ] →
[0, 1] be an increasing function of class C∞ such that f(0) = 0, ḟ(0) = 0,
f(T ) = 1, ḟ(T ) = 0 and f̈(T ) = 0. We can explicitly construct such an f with
a spline of degree 4. We also request that for all t ∈ [0, T ], |2εḟ(t) ω

ω2
0
| ≤ l

4 and

|εf̈(t)/ω2
0 | ≤ l

4 . These inequalities will be used to bound the trajectory of the
ZMP. We can guarantee them by choosing T large enough. Let us now consider
the following CoM motion:

y(t) =

{
f(t)ε sin(ωt) if t ∈ [0, T ]

ε sin(ωt) if t ≥ T

One can check that y is of class C2 over R+, and that ḟ(0) = 0. When t ≥ T ,
the robot is in the permanent state described above and can successively move
either of its feet inside small neighborhoods. The last point to check is that for
t ∈ [0, T ] py(t) stays inside the support polygon of the robot. The calculation
of the successive derivatives of y gives:

py(t) = f(t)ε(1 +
(
ω
ω0

)2
) sin(ωt)

+2εḟ(t) ω
ω2

0
cos(ωt)

+ ε
ω2

0
f̈(t) sin(ωt)

For all t ∈ [0, T ], f(t)ε(1 + ω
ω0

2) sin(ωt) lies between −L and L. The bounds
on the derivatives of f guarantee that py(t) lies between −L− l/2 and L+ l/2,
which means that the ZMP stays inside the support polygon. Fig. 10 shows
an example of CoM motion on the y axis and the corresponding ZMP motion.
Once in permanent in-place walking state, the robot can come back to a static
state by applying a symmetric transient state used to decrease gradually the
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amplitude of the oscillations of the CoM without generating a discontinuity in
the first derivative of the command.

We have thus exhibited a continuous control scheme that allows to move any
of the feet in any direction, while keeping the CoM inside an arbitrarily small
neighborhood. This concludes the proof.

4.2.1 Remarks

Generalization to a complete model: We did not extend the previous
proof to any legged robot model since empirically, the table cart model is a
very good fit for our humanoid robot. Although of little practical interest, the
generalization of the proof does not seem very difficult to achieve. As an insight,
the difference between the table cart model and the full size humanoid robot is
due to the derivative of the angular momentum and to the vertical acceleration
of the center of mass. These perturbations can be made as small as desired
along the sliding path by following the sliding path as slowly as necessary. The
derivatives of the angular momentum produced by the stepping motion can also
be made as small as desired by making the step height as small as necessary and
by using recent results on properties of joint trajectories induced by end-effector
motions (Zanchettin & Rocco 2012).

Use of ZMP preview controller: The control strategy presented in the pre-
vious proof may generate very long trajectories, because of the transient states
at the beginning and end of the locomotion. In the actual implementation,
we have chosen to generate CoM motions with a ZMP preview controller, as
presented in (Kajita et al. 2003). We have observed experimentally that the
amplitude of CoM trajectories decreases when the frequency of steps increases.
Our current ZMP preview controller relies on the cart-table model approxima-
tion. To make this approximation valid, we fix the height of the robot CoM
during walk, as well as the vertical orientation of the robot waist. These geo-
metric constraints are also applied when planning statically balanced paths, to
ensure that the paths can be approximated by dynamic walk trajectories. Note
that this is due to our current ZMP preview controller implementation, and
does not affect the generality of the small-space controllability result presented
above.

Relying on the cart-table model approximation means that the angular mo-
mentum induced by arm movements for instance can lead to non dynamically
balanced walking motion. We thus implement the ZMP filtering stage proposed
in (Kajita et al. 2003) to compute the exact ZMP, take into account the full
dynamics of the robot and generate feasible trajectories.

Speed of CoM: The theoretical result presented in this section implies that
any collision-free path can be approximated by a sequence of admissible and
collision-free trajectories. However, the theorem depends on a control law that
generates trajectories with unbounded velocities for the CoM, when the input
path is close to obstacles. The humanoid robot hardware may be a limitation
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to such trajectories. To prevent the generated CoM oscillations from being too
fast, one has to require that the statically balanced path is included inside an
ε-radius tube of the free space, where ε depends on the physical capacities of
the robot.

4.3 Application: Dynamic Approximation of a Statically
Balanced Sliding Path

The algorithm that animates a statically balanced path into a dynamically bal-
anced walk trajectory has been inspired by the previous small-space controlla-
bility proof. Given a statically balanced path p verifying the cart-table model
approximation constraints, we start by placing footprints corresponding to the
nominal walk pattern of the robot. Given the footprints, we compute a ZMP
trajectory, derive foot trajectories, and a preview controller returns the corre-
sponding CoM trajectory. Classic numerical Jacobian-based prioritized inverse
kinematics methods prove to be very useful to generate a dynamic walking tra-
jectory while trying to accomplish secondary tasks, such as following a reference
configuration trajectory. We use the framework called Generalized inverse kine-
matics (Gik) and developed in (Yoshida, Kanoun, Esteves & Laumond 2006).

The hierarchy of tasks (referred to as GikTasks in Algorithm 4) applied to
the robot to generate a dynamic walking motion is – in decreasing priority order:

1. Positions and orientations of feet,

2. Horizontal position of the CoM,

3. Height of the CoM,

4. Verticality of the waist,

5. Configuration task towards corresponding configuration in p.

Tasks (1) and (2) generate a dynamically balanced motion by using the
simplified cart-table model and the ZMP criterion. Tasks (3) and (4) ensure
that the resulting motion is well described by the cart-table model. Task (5) is
used to approximate p as well as possible given the walk parameters.

Because it comes at the lowest priority, task (5) is not necessarily fulfilled
in the resulting trajectory. Hence, collisions may appear when animating p,
if the resulting trajectory diverges too much from the initial sliding path. If
so, it is necessary to approximate more closely p by a walk trajectory. To do
so, we use the small-space controllability property of the system shown in the
previous section. The way we use this property is inspired by similar results in
non-holonomic mobile robot control presented in (Laumond et al. 1994).

If the animated trajectory collides with the environment, we cut the initial
path p into two sub-paths, that we try to animate recursively. When the paths
to animate are too short for the robot nominal walk parameters, we accelerate
the steps, and decrease the maximum height of the moving foot. As shown in
previous section, the walk trajectory corresponding to smaller and faster steps

19



converges toward the sliding path. Algorithm 4 shows pseudo-code that takes a
sliding path p as input and returns a collision-free walk trajectory2.

Algorithm 4 FindDynamicTrajectory(Path p)

Footprints← ComputeFootprints(p)
GikTasks.addFootprintTask(Footprints)
GikTasks.addWaistTask()
GikTasks.addConfigurationTask(p)
DynamicTrajectory ← ComputeWalkTrajectory(GikTasks)
if (CheckForCollisions(DynamicTrajectory) = Colliding) then

(p1, p2)← CutInHalf(p)
DT1 ← FindDynamicTrajectory(p1)
DT2 ← FindDynamicTrajectory(p2)
return Concatenate(DT1, DT2)

else
return DynamicTrajectory

end if

5 Experimental Results

The motion planning algorithms presented in this paper have been implemented
using KineoWorksTM(Laumond 2006). The planning times have been mea-
sured on an Intel Core 2 Duo 2.13 GHz PC with 2 GB of RAM. Evaluation
of the randomized algorithm has been conducted by executing 500 trials on
each scenario using two flavors of RRT: the classic RRT and IPP-RRT (Ferre
& Laumond 2004). We present the results in Appendix A, Fig. 17, 18, 19, as
well as in Extension 4 for the raw data.

Our whole-body motion planner generates a robot configuration trajectory
that is sampled at a 200 Hz rate and stored in a file. This file can then be
used to play the trajectory in open-loop on the HRP-2 robot, which is position-
controlled. Scenarios in Sections 5.1 and 5.3 were both successfully executed.

To get more natural motions in the experiments, we require the foot positions
to be fixed with respect to each other, and the CoM to be projected in the center
of the support polygon during the sliding path planning stage.

5.1 Passing between two chairs

The environment shown in Fig. 1 and 6 was presented in (El Khoury, Taix &
Lamiraux 2011). There, the motion planning problem is solved with a bounding
box method, leading the robot to walk sideways between the two chairs. Our
method generates a locomotion trajectory in which the robot walks forward,
which may be required if the robot has to use vision during locomotion. The

2The actual implementation of this algorithm is part of an open-source package, available
at https://github.com/laas/hpp-wholebody-step-planner.
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first planning stage requires 1 s on average. The animation of the sliding path
presented in Fig. 6 uses 66.5 s of computation time.

Figure 11: Horizontal trajectory of the robot CoM during locomotion. When
the robot is close to obstacles, the amplitude of the oscillations decreases.

Fig. 11 shows the horizontal trajectory of the robot CoM during locomotion.
The amplitude of the oscillations decreases when passing between the chairs.
This motion has been validated on a real HRP-2 platform. Extension 2 shows
a video of the experiment.

5.2 Walking among floating obstacles

Figure 12: Solution path for a cluttered environment, the robot walks among
floating obstacles.

In the environment shown in Fig. 12, the robot has to find a way among
floating obstacles. In this environment neither bounding box nor footstep plan-
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ning strategies could find a collision-free walk trajectory. The first planning
stage requires 53 s on average, and the animation of the trajectory presented
in Fig. 12 uses 339.5 s of computation time. Fig. 13 shows the robot CoM
trajectory during locomotion.

Figure 13: Horizontal trajectory of the robot CoM during locomotion.

5.3 ’Put the ball on a shelf’

In the problem shown in Fig. 14 the robot has to put a ball on a shelf, in a
constrained apartment environment. The final configuration is defined implicitly
as a desired hand position. We have generated automatically goal configurations
solving the task, as described in Section 3 . Then, we have applied our planner
to generate a whole-body walking motion that solves the hand reaching task.

The solution sliding path is constrained between the table on the right and
the lamp on the left. This passage is too narrow for the robot nominal walk
parameters. When executing the walk motion resulting from our algorithm, the
robot left hand is only a few centimeters away from the lamp.

The first planning stage requires 15 s on average, and the animation of the
resulting walk motion presented in Fig. 14 requires around 190 s of computation
time. Fig. 15 shows the robot CoM trajectory during locomotion. Extension 3
presents a comprehensive video of this problem, including the motion execution
on the real robot HRP-2 on stage. Fig. 16 shows some snapshots taken from
Extension 3.

6 Limits and Discussions

This section lists several limitations of the current methods, and discusses po-
tential future work to overcome them.

6.1 Stepping over obstacles

Because of the kinematic constraints we apply at the planning stage, we are
not able yet to plan motions where the robot steps over obstacles, while this is
an important feature of humanoid robots. Nevertheless, because we compute

22



Figure 14: Solution path for a hand reaching problem in an apartment. The
goal is implicitly defined as an inverse kinematics task.

collision queries on an exact model of the robot, our method is able to generate
paths where obstacles pass between the feet of the robot. In future work, we
plan to develop mixed methods, where collision avoidance at the leg level can
be solved by footstep planning techniques, while whole-body collision-avoidance
can be solved by the algorithm presented in this paper.

6.2 Environment representation

The experimental setup assumes perfect knowledge of the environment. This
can be guaranteed during experiments by using calibrated objects and motion
capture systems. This indeed allows us to focus on complex motion planning
problems. The perception problem, interesting as it is, is thus completely de-
coupled from the planning problem in our presentation. From previous ex-
periences however, we are confident that our algorithm will work as well in
environments modeled by vision (Nakhaei & Lamiraux 2008, Dang, Lamiraux
& Laumond 2012).

6.3 Trajectory following

The setup also assumes perfect execution of the plan. It can be critical here,
since non-nominal stepping may cause the robot to drift away from the planned
trajectory. Future experiments will include trajectory following during plan
execution.
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Figure 15: Horizontal trajectory of the robot CoM during locomotion.

Figure 16: Execution of the walking trajectory by HRP-2 on stage. The robot
first goes to the shelves to release the ball, then comes back to a rest position.

7 Conclusion

In this paper, we have presented a simple algorithm for constrained motion
planning and used it within a novel, well-grounded strategy for humanoid whole-
body manipulation planning including locomotion. The locomotion algorithm
is based on a formal small-space controllability property of humanoid robots.
An important point is that this strategy only holds for dynamic walking robots,
and not for quasi-static walking ones. We have used our motion planner on
different challenging examples, and validated the generated motions on a real
platform. We have discussed the limits and potential extensions of our method,
and we plan to address them in future work.
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A Sliding Motion Planning Benchmarks

Figure 17: Number of RRT iterations it for the floating objects and the shelf
scenarios, using two variants of RRT. Mean it, standard deviation σit, minimum
and maximum values are represented.
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Figure 18: RRT computation time t for the floating objects and the shelf sce-
narios, using two variants of RRT. Mean t, standard deviation σt, minimum and
maximum values are represented.

Figure 19: Number of tree nodes n for the floating objects and the shelf scenar-
ios, using two variants of RRT. Mean n, standard deviation σn, minimum and
maximum values are represented.
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B Index to Multimedia Extensions

Extension Type Description

1 Video
Example of a constrained motion planning result exe-
cuted on HRP-2.

2 Video
Chairs scenario: solution of whole-body planning exe-
cuted on HRP-2.

3 Video
Shelf scenario: solution of whole-body planning exe-
cuted in simulation and on HRP-2.

4 Data
Raw data of sliding motion planning benchmarks for all
scenarios.
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