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APPLICATIONS

LUONG DANG KY

ABSTRACT. Let L = —A + V be a Schrédinger operator on R?, d > 3, where V
is a nonnegative function, V' # 0, and belongs to the reserve Holder class RH /5.
The purpose of this paper is three-fold. First, we prove a version of the classical
theorem of Jones and Journé on weak*-convergence in Hj (R?). Secondly, we give
a bilinear decomposition for the product space H} (R%) x BMOp,(R?). Finally, we
study the commutators [b, T| for T belongs to a class Ky, of sublinear operators
containing almost all fundamental operators related to L. More precisely, when
T € K, we prove that there exists a bounded subbilinear operator R = Ry :
Hi(RY) x BMO(RY) — L*(R%) such that
(1) IT(S(f,0))] = R(f,0) < |[b, T](f)] < R(f,0) + [T (S(f,0))l;
where & is a bounded bilinear operator from Hj(R?) x BMO(R?) into L'(R?)
which does not depend on 7. In the particular case of the Riesz transforms
R; = 0,,L7Y2, j=1,..,d, and b € BMO(R?), we prove that the commutators
[b, R;] are bounded on H}(R?) iff b € BMOY%(R%)~ a new space of BMO type,
which coincides with the space LMO(R?) when L = —A + 1. Furthermore,
d
1]l paroros = bl maro + D111, Ryl oy -
j=1

The subbilinear decomposition (1) explains why almost commutators of the
fundamental operators are of weak type (H1, L"), and when a commutator [b, T
is of strong type (H}, L').
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1. INTRODUCTION

Let L = —A+V be a Schrédinger operator on R? d > 3, with V is a nonnegative
function, V' # 0, and belongs to the class RHy/,. Here RH, is the class of functions
satisfying the reverse Holder inequality of order ¢ > 1. In the recent years, there
is an increasing interest on the study of the problems of harmonic analysis associ-
ated with these operators. In particular, Fefferman [18], Shen [39] and Zhong [46]
obtained some basic results on L, including certain estimates of the fundamental
solutions of L and the boundedness of Riesz transforms VL~2 on Lebesgue spaces
LP(R?) for some p € (1,00). In [17], Dziubafiski and Zienkiewicz considered the
Hardy space H}(R?) defined via the maximal function M, (see Section 2) related
to the semigroup 7; = e~*",¢ > 0, and characterized it in terms of atomic decom-
position and in terms of the Riesz transforms VL~'/2. Then, Dziubanski et al.
[16] introduced a BMO-type space BMOp(R?) associated with L and established
the duality between H}(RY) and BMOp(R?). Later, Deng el al. [15] introduced
and developed new function spaces of VMO type associated with some operators
which have a bounded holomorphic functional calculus on L?(R?). More precisely,

in the particular case of the Schrédinger operator L, their space 17]\\/[/0 r(RY) is the
subspace of BMOp(R?) which consists of all functions f € BMO(R?) such that
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Y1 (f) = 7y2(f) = v3(f) = 0, where

wh) =l | s (e [ 1@ -TwPw)" |

t—0 zeR4 r<t
B(x,r)

o) =Jim | sw (e [ =)

t—oco 2CR r>t

1/2

— %>

7s(f) = lim Msclzgm |er /If () dy
B(z,r)

Also, the authors in [15] showed that H}(RY) is just the dual of VM VMO r(RY). This
fact allows us to study the weak*-convergence in the setting of H}(R?). Motivated

by this, thanks to some ideas from [14] we introduce the space VMO (R?) as the
closure of C>°(R%), the space of C*°-functions with compact support, in BMOp,(R?).

We then prove that VMO (RY) coincides with VMO (R?) and establish a version
of the Jones-Journé theorem for Hi(R?). To do this, we introduce and study the
discrete Riesz transforms Ej (see Section 3).

Products of functions in H! and BMO have been considered by Bonami et al. in
[6]. Such products in general are not integrable. However, following [6], they make
sense as distributions, and can be written as the sum of an integrable function and
a function in a weighted Hardy-Orlicz space. To be more precise, for f € H(R?)
and g € BMO(R?), we define the product (in the distribution sense) f x g as the
distribution whose action on the Schwartz function ¢ € S(R?) is given by

(f xg,90):= {09, f),

where the second bracket stands for the duality bracket between H!'(R?) and its
dual BMO(RY). Then, it was shown in [6] that for each f € H!(R?), there are
two bounded linear operators L; : BMO(R?) — L'(R?) and H; : BMO(R?) —
H?®(R? dpu) such that for every g € BMO(RY),

fxg=Ls(g) + He(g).
Here H®(R?, dy) is the weighted Hardy-Orlicz space related to the Orlicz function
O(t) = m and the weight du(z) = (log(e + |z|))'dz. To be more precise,
H?®(R? du) consists of all distributions f such that for some A > 0,

mf
/ o) o
log (e FRpLTAC )) log(e + |z|)
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with the Luxemburg norm

Mf(z) dx

If 1o = inf )\>O:/ X

log (e + %) 10g(€ + |.T‘

<1
)

R4
Here and in what follows the grand maximal operator 901 is defined by

Mf(z) =sup sup t|f* ot )(y)]

PEA |y—z|<t
with A = {¢ € S(RY) : |¢(x)| + |Vo(z)| < (1 + |2?)~@FD}. Unfortunately, as the
classical spaces H'(RY) and BMO(RR?), the pointwise product b.f of functions b €
BMOp(R?) and f € H}(R?) need not be integrable. Similarly to the classical case
in [6], Li and Peng showed in [32] that they can make in the sense of distributions.
Furthermore, for each f € H}(R?), there are two bounded linear operators Ly :
BMOL(RY) — LY(RY) and H; : BMOL(R?Y) — HP(R? du) such that for every
g < BMOL (Rd),

(1.1) fxg=1Li(g)+ Hy(g)-

Here Hy(R? du) is defined as H®(R? du) with the grand maximal operator 9
replaced by the maximal operator M. Motivated by [6], [32] and some recent results
of Bonami et al. [4], in this paper, we prove that there are two bounded bilinear
operators Sy, : H}(RY) x BMOy(R?) — LY(R?Y) and T}, : H}(R?) x BMOr(R?) —
H"8(R?) such that for every (f,g) € H}(R?) x BMOL(R?),

Here H'8(R?) is a new kind of Hardy-Orlicz space consisting of all distributions f
such that for some A > 0,

M (z)
/ vy )’\ dr < oo
2, log <e+ T ) + log(e + |z|)

with the Luxemburg norm

M (z)

1 fll s = in )\>0:/ o dr < 1
log <e + Tx) + log(e + |z|)

R4

It is easy to see that H'°8(R?) C H®(R?, du) with continuous embedding. Moreover,
similarly to the inclusion H'(RY) C H}(R?), in a forecoming paper, using the atomic
decompositions, we also obtain that H®(RY du) C HP(RY, du) with continuous
embedding. Compared with the main result in [32] (see [32], Theorem 1), our results
make an essential improvement in two directions. The first one consists in proving
that the space Hf (R%, du) can be replaced by a smaller space H'°8(R?). Secondly, we
give the bilinear decomposition (1.2) for the product space H}(R?) x BMO(R?)
instead of the linear decomposition (1.1) depending on f € H}(R?), which was
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conjectured by Bonami, Iwaniec, Jones and Zinsmeister (see [6], Conjecture 1.7) for
the classical case. It allows to study the commutator regularity properties which are
of increasing interest in this setting.

Given a function b locally integrable on RY, and a (classical) Calderén-Zygmund
operator T', we consider the linear commutator [b, 7] defined for smooth, compactly
supported functions f by

[0, T(f) = 0T (f) = T(bf)-

A classical result of Coifman, Rochberg and Weiss (see [12]), states that the com-
mutator [b, T] is continuous on LP(R?) for 1 < p < oo, when b € BMO(R?). Unlike
the theory of (classical) Calderén-Zygmund operators, the proof of this result does
not rely on a weak type (1, 1) estimate for [b, T]. Instead, an endpoint theory was
provided for this operator. A general overview about these facts can be found in the
recent paper of Ky [31]. In the present paper, we consider commutators of singular
integral operators T' related to the Schrodinger operator L, where T is in the class
K, of all sublinear operators T, bounded from H}(R?) into L'(RY) satisfying that
there are ¢ € (1,00], € > 0 such that

(b —bp)Talr < Clb|lBro

for all BMO-function b, generalized (H},q,¢)-atom (see Section 2) a related to
the ball B. Here bp denotes the average of b on B, and C' > 0 is a constant
independent of b,a. This class K contains almost all fundamental operators (we
refer the reader to [31] for the classical case L = —A) related to the Schrodinger
operator L: Schrodinger-Calderén-Zygmund operators, maximal type operators, L-
square operators, etc... (see Section 6). Let R; = &BJL’I/Q, 7 =1,....d, be the Riesz
transforms associated with L. Although Schrodinger-Calderén-Zygmund operators
(related to L) map H}(R?) into L'(RY) (see Section 6), it was observed in [33] that,
when b € BMO(R?), the commutators [b, R;] do not map, in general, H} (R?) into
LY(R%). Formally, when L = —A, Schrodinger-Calderén-Zygmund operators are
just the classical Calderén-Zygmund operators. Similarly to the classical case, it
is natural to ask for subspaces of H}(R?) such that the commutators [b, R;] map
continuously these spaces into L*(R¢). In Section 7, we give such subspaces. Now,
two natural questions arise.

Question 1. For b € BMO(R?). Can one find the largest subspace H} ,(R?) of

Hi (R?) such that all commutators of Schrédinger-Calderén-Zygmund operators and
Riesz transforms are bounded from Hj, ,(R?) into L'(R?)?

Remark that the Riesz transforms R; are just, in general, Schrodinger-Calderén-
Zygmund operators when V' € RH,;. In this paper, we consider all potentials V'
which belong to the reserve Holder class RH /5.

Question 2. Can one find all functions b in BMO(R?) such that Hib(Rd) =
Hi(RY)?
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Let X be a Banach space. We say that an operator T : X — L!(IR?) is a sublinear
operator if for all f,g € X and o, 8 € C, we have

T (af + Bg)(@)| < |al[Tf(x) + [B|Tg(x)]

Obviously, a linear operator T': X — L'(R?) is a sublinear operator. We also say
that a operator ¥ : Hi(R?) x BMO(R?) — L*(R?) is a subbilinear operator if for
every (f,g) € H}(R?Y) x BMO(R?), the operators T(f,-) : BMO(R?) — L'(R?) and
T(-,9) : H(RY) — LY(R?) are sublinear operators.

To anwser Question 1 and Question 2, we study commutators of sublinear opera-
tors in KCp. More precisely, when T" € K is a sublinear operator, we prove that there
exists a bounded subbilinear operator R = Ry : H}(RY) x BMO(R?) — LY(R9) so
that for all (f,b) € HL(R?) x BMO(R?), we have

(1.3) IT(S(f,0))| = R(f,6) < [[b, TIN| < RS, 0) + [T(S(S,0))];

where & is a bounded bilinear operator from H}(R?) x BMO(R?) into L!'(R%)
which does not depend on 7' (see Section 5). The subbilinear decomposition (1.3)
is strongly related to our previous results in [4, 31] on paraproduct and product on
HY(R?) x BMO(RY). Also, it gives a general overview. Namely, it explains why
almost commutators of the fundamental operators are of weak type (H}, L"), and
when a commutator [b, T is of strong type (H}, L').

Let b be a non-constant BM O-function, otherwise [b, 7] = 0. We define the space
Hi 4 (RY) is the set of all f in Hj(R?) such that [b, M](f)(z) = Mr(b(z)f(-) —
b(-)f(-))(x) belongs to L'(R?), and the norm on Hj ,(R?) is defined by ||, =
[ £l 1ol Baro + [[[b; ML](f)[lzr- Then, using the subbilinear decomposition (1.3),
we prove that all commutators of Schrodinger-Calderén-Zygmund operators and the
Riesz transforms are bounded from Hj ,(R?) into L'(R?). Furthermore, Hj ,(R) is
the largest space having this property (see Theorem 5.3). This answers Question 1.

Recall that BM Ofg(Rd) the set of all locally integrable functions f such that

ix)) ‘B(;, T)| / |f(y) - fB(:c,r)|dy < 00,

B(x,r)

p
|l pasos = sup | log e+

B(z,r)

where p(z) = sup{r > 0: - fB(m,r) V(y)dy < 1}. This space arises naturally in the

study of characterizations of pointwise multipliers on BMOp(R?), see for example
3, 35]. Then, we also use the decomposition (1.3) to prove that H} ,(R?) = Hj(R?)

iff b € BMO'5(R?) (see Theorem 5.4), which answers Question 2.

When T is linear and belongs to K, we prove that there exists a bounded bilinear
operators R = Ry : Hi(RY) x BMO(R?) — LY(RY) such that for all (f,b) €
H}(RY) x BMO(R?), we have the following bilinear decomposition

(1.4) [0, T](f) = R(f,0) + T(S(f,)).
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In the particular case of the Riesz transforms R;, j = 1,...,d, Gou et al. showed
in [23] that the classical theorem of Coifman, Rochberg and Weiss still holds for
b € BMO(R?). Recently, this result was extended by Bongioanni et al. [8], there
they obtained that the classical theorem of Coifman, Rochberg and Weiss still holds
for b € BMOyp, o (RY) = Up>oBMOp, o(R?) (see Section 5) containing BMO(R?) as a
proper subset. Let R}, j = 1,...,d, be the adjoint operators of R;. In [7], Bongioanni
et al. established that the operators R} are bounded on BM Or(R%), and thus from
L>*(R%) into BMOp(R?). Later, they (see [8]) ask for a class of functions b such
that the commutators [b, R¥] are bounded from L>*(R?) into BMO(R?), and such

a class of functions BMOli’io(Rd) = U@zoBMOlLovge(]Rd) (see Section 5) was found. A
natural question arises: can one replace the space L>°(R%) by BMOp(R%)?

Question 3. Are the commutators [b, R5], j = 1,...,d, bounded on BMO(R?)
whenever b € BMOy® (R%)?

Motivated by this question, we study the Hardy estimates for the commutators
of Riesz transforms [b, R;]. Let us remind that in the setting of the unit circle

= {z € C : |z| = 1}, Janson, Peetre and Semmes showed in [27] that the
commutator of the Hilbert transform [b, H] is bounded on the Hardy space H'(T)
whenever b € BMO“(T), with

bl saromscn = 5] / |dz|\+sup Sl / (1) m b(2)\dz || < oo

where the supremum is taken over all arcs I of T and |I| is the length of I. In
the setting of Schrodinger operators L on R?, an interesting question is for which
functions b the commutators of the Riesz transforms [b, R;] are bounded on H} (R?).
Here, we give such a class of functions, however we do not know whether this class
is the largest (see Question 4). More precisely, given b € BM Oy, o.(RY), we prove
that the commutators [b, R;], 7 = 1,...,d, are bounded on H}(R?) if and only if b
belongs to BM OlLoio(]Rd) (see Theorem 5.6). Furthermore, when b € BM Of%(Rd)
for some 6 > 0, we have
d
||b||BMOIL°% ~ ||b||BMOL,9 + Z || [ba Rj] ||Hi—>H%
j=1
As a consequence, we obtain that if b € BM Olog *o(R?), then the commutators [b, R?]
are bounded on BM Oy (R?), which gives a p051tlve answer for Question 3. Moreover,
for every b € BMOYE(R?), we have
d
1]l aroros = [1bll a0 + S b, Rl s -
j=1

We conclude the introduction by giving an open question:
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Question 4. Is it true that BMOlog ® (R?) is the set of all functions b such that the
commutators [b, R;], j = 1,...,d, are bounded on H}(R?)?

Throughout the whole paper, C' denotes a positive geometric constant which is
independent of the main parameters, but may change from line to line. The symbol
f ~ g means that f is equivalent to g (i.e. C71f < g < Cf). In R we denote by
B = B(z,r) an open ball with center x and radius r > 0, and tB(x,r) := B(z,tr)
whenever ¢ > (0. For any measurable set I/, we denote by xg its characteristic
function, by |E| its Lebesgue measure, and by E° the set R?\ E. For a ball B and
f alocally integrable function, we denote by fp the average of f on B.

Acknowledgements. The author would like to thank Aline Bonami, Sandrine
Grellier and Frédéric Bernicot for many helpful suggestions and discussions. He
would especially like to thank Prof. Sandrine Grellier for her carefully reading and
revision of the manuscript.

2. HARDY SPACES VIA GENERALIZED ATOMS

A nonnegative locally integrable function V' is said to belong to a reverse Holder
class RH,, 1 < ¢ < oo, if there exists C' > 0 such that

1 1/q C
S qd < — d
<\B|/V o)< |B\/V g
B B

holds for every balls B in R?. By Hélder inequality we can get that RH,, C RH,,
if 4 > g2 > 1. For ¢ > 1, it is well-known that V € RH, implies V € RH . for
some ¢ > 0 (see [21]). Moreover, V(y)dy is a doubling measure, namely for any ball
B(z,r) we have

(2.1) / V(y)dy < Co / V(y)dy.

B(z,2r) B(z,r)

In this paper, we always assume that L = —A+V is a Schrédinger operator on R?
with 0 # V belongs to the reverse Holder class RHz/5. We then define the auxiliary
function p by

p()—sup{r>0 —/ dy<1
B(x,r)
z € R?, and for any n € Z,
B, ={z € R : 27("D/2 < p(z) < 272},

Clearly, 0 < p(z) < oo for all z € R?, and thus R? = |, ., Bn.
The following lemma is important and will be used often.
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Lemma 2.1 (see [39], Lemma 1.4). There exist C > 1 and ko > 1 such that for all
z,y € RY,

C_lp(x)(l + |xp(;)y\)k0 <ply) < C’p(x)(l + |xp(_x)y‘>k§31

Let {T};}+~0 be semigroup generated by L and T;(z,y) be their kernels. Namely,

Tof(x) = e f(x) = / Ti(w.y)f(y)dy, | e LXRY, t>0.

Rd
Then the maximal operator is defined by

A4Lftw==§ggkﬂftwh

We say that a function f € L*(R?) belongs to the space H} (R?) if
||f||Hi = || Mprfllr < oo.

The space H}(RY) is then defined as the completion of HE (R) with respect to this
norm.
Throughout the whole paper, we denote by C;, the constant

C, = 8.9%(C

where ky and C' are defined as in Lemma 2.1.
Thank to the ideas from [11] and [13], we give here some variants of the definition
of atoms for H} (R?) which are useful for our study.

Definition 2.1. Let 1 < g < oo and € > 0.

ecall that a function a is called a classica ,q)-atom related to the ba
1) Recall th fi lled a cl | (H! lated to the ball
(.T(], ) Zf
(a) supp a C B(xg,r),
(b) llallzs < [B(xo, )|,
(¢) Jpaa(z)dz =0.
(2) A function a is called a (HL, q)-atom related to the ball B(xg,r) if r <
Crp(xg) and
(CL) supp a C B(.To,T),
(b) llallzs < 1B(xo, r)[Yet,
(c)ifr < g +o(x0) then fRd x)dz = 0.
(3) A function a is called a genemlzzed (H},q,¢e)-atom related to the ball B(xq, 1)

of
(a) supp a C B(zo,r),
(b) llallze < \B( )|

(0) | fowaois] < (555
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Remark 2.1. Let 1 < ¢ < oo and e > 0. Then, a (H},q)-atom will be a Cy, times
a generalized (H} ,q,¢)-atom related to the same ball.

Remark 2.2. Let 1 < q < oo and ¢ > 0. Then, a classical (H',q)-atom will
be a generalized (H},q,¢e)-atom related to the same ball, but not a (H},q)-atom in
general.

By Remark 2.1, Remark 2.2 and in what follows, it seems that the notation
of generalized (H},q,¢)-atoms will be useful to study the theory of Hardy spaces
associated with Schrodinger operators.

Definition 2.2. Let 1 < g < oo and e > 0.

(1) The space Hi’i’f(Rd) is defined to be set of all functions f in L'(R?) which
can be written as f = Z;’il Aja; where the a;’s are generalized (H},q,¢€)-
atoms and the \;’s are complez numbers such that 77| |\j| < 0o. As usual,
the norm on Hy% (R?) is defined by

|l =it {3701 £ =D Nas |-
=1 i=1

(2) The space HIL’%E(Rd) is defined to be set of all f = Z?Zl Aja;, where the a;’s
are generalized (H} ,q,€)-atoms. Then, the norm of f in Hi’}_{i(Rd) is defined

by
k k
I Flle =i {7105 £ =D Aas .
Jj=1 J=1
(3) The space Hi’fét(Rd) is defined as in (1) with generalized (H},q,€)-atoms
replaced by (H}, q)-atoms.
(4) The space Hi:%n(Rd) is defined as in (2) with generalized (H},q,¢€)-atoms
replaced by (H},q)-atoms.
(5) The space Hg'(R?) is defined as in (2) with generalized (H}, q,¢)-atoms
replaced by classical (H', q)-atoms.

Theorem 2.1. Let 1 < ¢ < 0o and € > 0. Then, Hy¢,(R?) = Hp% (RY) = H}(R?)
and the norms are equivalent.

In order to prove Theorem 2.1, we need the following two lemmas.

Lemma 2.2 (see [32], Lemma 2). Let 0 = min{1,2—d/qo}/2 > 0 for some qo > d /2
with V€ RH,,. Then, for all |y — z| < |x —y|/2 and t > 0,
g _lz—yl? ly — 2|7

Yy —2\o e -
T y) = Tile, 2)| < O(F 2 ) ede ™ < op— o
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Lemma 2.3 (see (3.5) in [17]). Given € > 0. There exists a positive constant
C = C(g, L) such that for every z,y € R? and t > 0,

1 1
(1 + M) o —y|*
p(y)
Proof of Theorem 2.1. The proof is divided in three steps. Step 1: Hi Zt(Rd)
Hy%F (R and the inclusion is continuous. Step 2: Hp%f(R?) C H}(R?) and the
inclusion is continuous. Step 3: H}(R?) C Hp?,(R?) and the inclusion is continuous.
Step 1. It is an immediate consequence of Remark 2.1.

Step 2. Let a be a generalized (H},q,¢)-atom related to the ball B = B(xg,r),
we would like to prove that

(2.2) lally = [Me(a)ll < C.

Indeed, from the L?-boundedness of the classical Hardy-Littlewood maximal opera-
tor M, the estimate M (a) < CM(a) and Holder inequality,

(23)  [IMu@llpes < ClM@)es < C2BY M@ < C.

where 1/¢' +1/q = 1.
Let x ¢ 2B and t > 0, Lemma 2.2 and Lemma 2.3 give

Ta)) = | / Ti(z, y)aly)dy)

Ti(z,y)| < C

< )/ (Ty(x,y) — Ti(x, z0))a dy‘ + Ty (x x0)|‘/a(y)dy)

Lo} 15

r T

< C C .

— |{L‘—l‘0|d+0 + |l‘—l‘0|d+5
Therefore,

[IMz(a)llzr@2B)ey = |l sup T3 ()|l L1 (2B)e)
<C 7d C 7d
/ z — ao|tHe T+ / | — o|d+e
(2B)° (2B)e

(2.4) <c

Then, (2.2) follows from (2.3) and (2.4).
Now, for every f = >, \ja; € Hiqaf(Rd). As Mr(f) < 325 [NIME(ay), (2.2)
implies that

[IML()llr < Z MM (a)] e < CZ A4l

This prove that f € Hj(R?), moreover, || f|1 < Cllf lgrae.-
,at
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Step 3. It is an immediate consequence of Corollary 2.1 (see below) and the
proof of Theorem 1.5 in [17]. We omit the details.
O

Theorem 2.2. Let 1 < g < oo and ¢ > 0. Then, the norms || - |1 and || - ||H2,%,E
are equivalent on HlL”%’fl(Rd).
Using Theorem 2.2, we immediately obtain the following result.

Proposition 2.1. Let 1 < g < o0, € > 0 and X be a Banach space. Suppose that
T: H%?{E(Rd) — X is a sublinear operator with

sup{||Tal||x : a is a generalized (H},q,€) — atom} < occ.

Then, T can be extended to a bounded sublinear operator T from HE(RY) into X,
moreover,

HfHHi—VY < Csup{||Tallx : ais a generalized (H},q, <) — atom}.

Remark 2.3. It is not difficult to see that Hp%: (R?) = H'4 (R?). Thus, Theorem
2.2 can be followed from Theorem 2.1 and Theorem 3.2 of [45]. However, we would
also like to give a proof for two reasons:

1. One has a direct proof in the setting of FEuclidean space R,

2. To prove Theorem 2.2, we give some lemmas and corollaries which are useful
and will be used often in next sections.

Before giving the proof of Theorem 2.2. We would like to recall some notations
and results of the paper from Dziubariski and Zienkiewicz [17].

Let P(z) = (4m)%2e~1*P/4 be the Gauss function. For n € Z, the space hl(R?)
denotes the space of all integrable functions f such that

Mof(@)= sup |Pyxf@)|= sup / ol y)f (9)dy| € L' (R,

0<t<2-" 0<t<2-"
R4
|2
where the kernel P, is given by p,(z,y) = (47t)~% 2053 We equipped this space
with the norm
[Nl o= (Mo fl Lo

Definition 2.3. For1 < ¢ < oo andn € Z. A function a is said to be a (h), q)-atom
related to the ball B(xo,r) if r < 212 and

i) supp a C B(zg,1),

i) |lallze < |B(wo, r)[e ",

iii) if r < 27172 then [h, a(z)dz = 0.

The atomic space %, (R?) is defined as in (1) of Definition 2.2 with generalized

n,at

(H},q,¢e)-atoms replaced by (h}, ¢)-atoms.
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Lemma 2.4 (see [17], Theorem 4.5). Let 1 < q < oo. Then, for all n € Z we
have hl(R?) = h-1

n,at(Rd) with equivalent norms and constants are independent of n.
Moreover, if f € hi(RY), supp f C B(x,2'7"?2), then there are (hl,q)-atoms a;
related to the balls B(zj,r;) such that B(x;,r;) C B(z,227"/?) and

f:Z)\jaj, Z|)‘j| SCHthrlz
j J

with a positive constant C' independent of n and f.

Corollary 2.1. Let 1 < q < oo, n € Z and x € B,. Suppose that f € hl(R?)
with supp f C B(xz,2'"/%). Then, there are (H},q)-atoms a; related to the balls
B(z;,7j) such that B(zj,r;) C B(x,2%™?) and

F=> Nag, Y INI<Clflny
j j

with a positive constant C' independent of n and f.

Proof. By Lemma 2.4, there are (h), q)-atoms a; related to the balls B(z;,7;) such
that B(x;,7;) C B(z,227/2) and

F=Y Nag, >IN < Cllf
j j

As x; € B(z,2*>°"/?) and z € B,, Lemma 2.1 implies that r; < 2272 < Cpp(x;).
In addition, if r; < ép(xj), then Lemma 2.1 implies that r; < 27172 and thus
Jga a;(x)dz = 0 since a; are (h;,, q)-atoms related to the balls B(x;,r;). These prove

that a; are (Hj, ¢)-atoms related to the balls B(z;,7;).
U

We next give three lemmas which are due to Dziubanski and Zienkiewicz [17].

Lemma 2.5 (see [17], Lemma 2.3). There ezists a constant C > 0 and a collection
of balls By, ), = B(:pn,k,Z*"ﬂ), ne€Zk=1,2,.., such that x, € B, B, C U, B,
and

card{(n', k') : B(xpx, R27"?) 0 B o, R27?) # 0} < R
for alln,k and R > 2.

Lemma 2.6 (see [17], Lemma 2.5). There are nonnegative C*-functions iy, n €
Z,k =1,2, ..., supported in the balls B(x,x, 2" ""/?) such that

Y Unp=1 and ||V~ < C2V2
n,k

Lemma 2.7 (see (4.7) in [17]). For every f € Hi(R?), we have
Z [ngfllny < Cllf |-
n,k
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To prove Theorem 2.2, we also need some lemmas below.
Lemma 2.8. Let 1 < q < oco. Then, the norms || - ||z and || - ”Hé;‘q are equivalent
on Hy%(RY).

The proof of Lemma 2.8 can be found in [36].

Lemma 2.9. Given 0 < R < co. Then, there are two positive integer numbers Ng
and Kg such that if |n| > Ng or k > Kg,

B<xn,k7 21711/2) N 8(07 R) = 0.
Deduce that for any f a function satisfying supp f C B(0, R), we have

Nr  Kpgr
n,k n=—Npr k=1

Proof. As B(0, R) is a compact set, Lemma 2.5 follows that there is a finite set
I'r C Z x Z* such that

B(O,R)c |J B@w2"?c |J B2,
(n,k)EFR (n,k)GFR

Again, using Lemma 2.5, the above inclusion implies that there is a finite set
[y C Z x Z* such that for every (n, k) ¢ I'j,

B(2 1,227 N B(0, R) = 0,
which allows us to end the proof. O

Throughout the whole paper, we fix a non-negative function ¢ which belongs
to S(R?) with supp ¢ C B(0,1) and [, p(z)dz = 1. We also assume that ¢ is a
even function on R?, that is, p(z) = ¢(—x) for all z € R? Then, we define the
linear operator §) by

9(1) = (bnif = fanrz  (ns)).
n,k
Lemma 2.10. The linear operator §) is bounded from H}(R?) into H'(R?).
To prove Lemma 2.10, we need following lemma which proof can be found in [22].
Lemma 2.11. There exists a constant C' = C(¢,d) > 0 such that
1f = amnrz * fllar < Cllfllny . for alin € Z, f € hy(RY).

Proof of Lemma 2.10. For every f € Hi(R?), it follows from Lemma 2.11 and
Lemma 2.7 that

19 < > |

Ynif = Pr-ni % (Unif)|

H1

< C) nifllny < Cllfllay,
n,k
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which finishes the proof. O

Lemma 2.12. Let 1 < ¢ < oo and € > 0. Suppose that a is a generalized (H},q, €)-
atom related to the ball B(xq, 7). Then, $(a) is a multiple of a classical (H', q)-atom,
and thus generalized (H},q,€)-atom.

Proof. By Lemma 2.9, there are N, K € Z" such that

9A(a) = i i <¢n,ka — Po—n/2 * (wn,k@))-

n=—N k=1

Therefore, the support of $(a) is a compact set, moreover, ||9(a)||« < K(2N +
D)(||allrs + |¢llzt]|allze) < oo. This together with Lemma 2.10 allow us to conclude
that $(a) is a multiple of a classical (H*, q)-atom.

U

Definition 2.4. For 1 < ¢ < co. A function a is said to be a (L', q)-atom related
to the ball B(xo, 1) if

i) supp a C B(zg,T),

i) llal| s < |B(wo, )[4

Clearly, if a is a (H},q)-atom relate to the ball B then a is also a (L', ¢)-atom
relate to the ball B.

Lemma 2.13. Let 1 < g < oo. Then, for every f € L*(RY) with supp f C B(z,r),
there are (L', q)-atoms a; related to the balls B(xz;,7;) such that B(xz;,r;) C B(z,2r)

and
f:Z)\jaj, Z‘)\]| SCYHJC”L17
j J

where the constant C' is independent of f.
The proof of Lemma 2.13 is classical and will be omitted.

Lemma 2.14. Let 1 < g < oo, n € Z and v € B,,. Then, @y-ns2 *x a is C times
a (H},q)-atom related to the ball B(x,5.27™?) for all (L', q)-atom a related to the
ball B(xy,r) C B(x,2*/?), where C > 0 independent of n,x, a.

Proof. Obviously, g-p(z) < 5.27%/2 < Cpp(z) since © € B,. As supp ¢ C B(0,1),
one get sUpp @qo-n/2 ¥ a C B(x,5.27?). In addition,
lansz * allza < [lognsollzallal e < (272 T Vllp| e < O|B(x,5.27"/2)VaL

These show that ¢,—./2%a is C times a (H}, q)-atom related to the ball B(z,5.27/?).
U

Lemma 2.13 and Lemma 2.14 give:
Corollary 2.2. There exists a constant C' > 0 such that
la-nsz * (npf) iy < Cllnef Il
for alln, k and f € L'(R?).
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Proof of Theorem 2.2. It follows from Theorem 2.1 that Hy%:(R?) C H}(R?) and
[flla < C||f||H1 7 for all f € HlL%E (R%). Thus, we have to show that there exists
a constant C' > 0 such that

(2.5) [l < Ol Flliy

for all f € H} Ln(R?). By homogeneity, we may assume that [ fllg = 1.
Suppose that f = Zj L \ja;, where a; are generalized (H}, g, €)-atoms related to
the balls B; B(x], ;). Then, by Lemma 2.9, there are N, K € Z* such that

f= Z Z(wnkf ) e Z Z% w2 ()

—N k=1 —N k=1
N

(2.6) = NHa) + YD ok ().
j=1 n=—N k=1

On the other hand, by Lemma 2.8, Lemma 2.12, Remark 2.2 and Lemma 2.10,
there are generalized (H},q,¢)-atoms by, ...,b and fi, ..., B, are complex numbers

such that » 7", A\;9(a;) = Zj L B;b;, and
¢

(2.7) > 1Bl Z A (aj)llm = ClIH) [ < Cllfllmy = C
=1 j=1

Let n € {=N,..,N} and k € {1,..,K}. As supp ¥ns C B(z,4,2""/?) and
Ty x € By, Corollary 2.1 and Remark 2.1 yield that there are generalized (Hj, g, ¢)-
atoms ?i?’k related to the balls B(x?’k, rjnk) C B(zp1,2%/?) and complex numbers
)\?’k such that

n,k~n,k n,k
(2.8) Yupf = D NG and Y O INE] < Ol [
j=1 j=1
with a constant C' independent of n, k, f. We deduce that
lpg-nrz x (Y ATF@E) | pa < 2VIOYD o] g Y AT
j=i Jj=t
tends to 0 as ¢ — co. This implies there exists N, , € Z" such that
n,k~n,k —-n -
lpprz (D X4l < €l Blan, 5:272)
j:Nn,k
with € = m By supp @g-n/2 * (Z]O.;Nnk )\?k?i?k) C B(zpp, 527?) and

(:cn k) < 5272 < Crp(x,1), the above inequality and Remark 2.1 prove that
<p2 w2 (D072 N B )\?k ;‘k) is C'e times a generalized (H},q,¢)-atom related to the
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ball B(z,, 1, 5.27"/2). This together with (2.8), Lemma 2.14, Remark 2.1 and Lemma
2.7 yield

” Z 2902 n/2 % wnkf”‘]ﬂlqu

N k=1
Nnk: 1 o0
SDIPID IPLIRE AN 3P SLA TS DRV L) B
~N k=1 j=1 —N k=1 =Nk '
(2.9)
<O lnifllny +CK@N +1)e < C|| fllm +C < C.
n,k

Finally, (2.5) follows from (2.6), (2.7) and (2.9). This finishes the proof.

3. VMOL(RY) SPACES AND WEAK*-CONVERGENCE IN H}(RR?)

As usual, we denote by C2°(R?) the space of all C*-functions with compact sup-
port, by S(R?) the Schwartz space on R? and by Cy(R?) the space of all continuous
functions vanishing at infinity:.

3.1. Discrete Riesz transforms. Recall that the linear operator $) is defined by
9(1) = 3 (0nrf = proe * (Wus)).

n,k
Lemma 3.1. Let 1 < p < co. Then, § is bounded on LP(RY).
Proof. 1t is sufficient to show that

< Ol f e

> " 0gensz * (Yuif)
n,k

Lp

Let z € B(0,1), Lemma 2.5 yields
—n/2 P
1@ = 27 X, iy (0] o
Rd n,k

C [ 318w = 22 P ()

dnk

< o3 | lrwra=c [ O S Xt 0
R4 b

B(zn,k, 22 n/2)

< c [Irwr

IN
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where the constants C' are independent of f, z. This implies that
< Ol f e

Z‘f ‘XB(ankfi? n/2)
Lp
For every x € RY, by 0 < 9,1, < 1 and supp ¥, x C B(zpk, 2172),

S| (pre = urh)) @) < 3 / P(2)|f (@ = 27722 X, a1 — 27722)dz
n,k

"k B(0,1)

(3.1)

s/ Z|f 27/22) X g 2-re) (@)
B(0,1)

This together with (3.1) and Holder inequality give

< Cllellll fllze < CllFllze-

Lp

Z Po-n/2 * <7vbn,kf)
n,k

U

By Lemma 3.1, we are now already to give the definition for discrete Riesz trans-

forms Ej as follows. Here and in what follows we denote by R; the classical Riesz
transforms.

Definition 3.1. Let j = 1,...,d. For every f € U,>1 LP(R?), we define
Ri(f) = Ry(9(1)).

Then, by ¢ is a even function on R?, the adjoint operators of éj, j=1,....d, have
the forms

(3.2) B(1) = =3 s (RilF) = amara # (R5(1))).
n,k
From Lemma 3.1, the boundedness on LP(R?) with 1 < p < oo and the bounded-
ness from L'(R?) into L1 (RY) of the classical Riesz transforms, we deduce that:

Proposition 3.1. Let j =1,...,d. Then, Ej is bounded on LP(R%), for 1 < p < oo,
and bounded from L'(R?) into LY (R?).

From Lemma 2.10 and the boundedness on H'(R?) of the classical Riesz trans-
forms, one have:

Proposition 3.2. Let j = 1,...,d. Then, R; is bounded from H}(R%) into H'(R).
Corollary 3.1. The operators ﬁ; are bounded from BMO(R?) into BMOr(R?).

It is well-known (see [7]) that the Riesz transforms R; are bounded on BM Oy (R?),
see also [34] for the setting of the Heisenberg group H¢. Similarly, we also have:
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Proposition 3.3. The discrete Riesz transforms R; are bounded on BMOp(RY).

Proof. Let f € BMOL(R?), let us first verify that

(3.3) lo-nr2 * (Vnpf)llze < C|l fllBroy

for all n, k. In fact, one only need to consider & € B(z, 1, 3.27™/2) since otherwise
©o-ns2 % (Y1 f)(x) = 0. For every x € B(w, 4, 3.27/%),

oot sl )@) < Wolimgmm [ Wesf 1

B(zn,k,227"/2)

1
o= S NN UG

B(xn,k722_n/2)

IA

< C|fllBmoy

since x,, € B, which verified (3.3). Then, Lemma 2.5 and (3.3) yield

195N Bro, < 1fllsyo, + 1Y @a-nsz % Wil < Cllfllsacos,

n,k

and hence

1B (Nl mvo = IR (S()llzmo < CIH()llzmo < Cllfllsao, -

Now, we only need to prove that for every ball By = B(x,r) with r > p(zo),

1 -
(3.4) o / By (f)(@)ldz < C| o,

By Lemma 2.1, there exists a constant C' = C'(L) > 1, depends only on L, such
that for every y € B(znx, 2'72) N (By)S,

(3.5) 27/ < Ciplaeg) 5|y — 20| HT < Oy — 2o 0%,
Deduce that

1
(3.6) ly =2 — 2| 2 |y — 20| — |z — @0l = |2] = 7]y — w0l

forallz € By, 2 € B(0,27/%) and y € B(z, 21*"/2)ﬂ(530)c, where C' = (2C)kotl
with C' is the constant as in (3.5). Therefore, setting f2 := fXp,., (3.6) allows
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that for every z € By,
(Rj(Unpfo — Pansz * (Ynif2)) ()]

Ti— Y, Ti— Y — 2
= / / 902”/2<z)(‘x ]_ y|di—1 o ]_ y i z|dil>d'z wn,k<y)f2<y)dy

|
R? |\ B(0,2—7/2)

an/2
< Cllellrs / m@/}n,k(?/)|f(y)|d?/

(530)0

gci/-—lﬁLerMﬂmw

|y — ao| TR0

(éBo)c

since (3.5). This implies that every = € By,

d+

@MM@|§C§/T—ET—7WM@
)

~ — x| R0t
(CB())C
o0 o
< CZ ﬁIf(y)\dy
k:12k+1B0\2kB0 ‘y B SL’()| o
> S 1
k=1 2ki1 5,
< Cllfllsmo,
since r > p(xp). Deduce that
1 -
1) 7 [ TRt @lde < I Lnvo,.
By

We next write f = f1 + fa where fi = fxgp,- Then, the L?-boundedness of Ej
and John-Nirenberg inequality (see Corollary 3.2) give

ﬁl@(mm'“ : (ﬁ!@(m(xnm)m

<z  vere)”

By
(3.8) < Cllfllsaroy-
Finally, (3.4) follows from (3.7) and (3.8). This ends the proof.
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Next, we give a characterization of H}(R?) via the discrete Riesz transforms.

Theorem 3.1. A L'-function f belongs to H}(RY) if and only if Rj(f) € LY(RY)
forall j =1,...,d. Moreover, for every [ € Hl(]Rd), we have

[y~ 1]l +Z 125 (F) -

Proof. Suppose that f € H}(R?). Then, Proposition 3.2 implies that éj( f) €
LY(RY) for all j = 1,...,d, moreover,

(i +Z 175 (Hler < ClL Sl

Conversely, assume that f € Ll(Rd) and R;(H(f)) = ﬁj(f) € LY(R?) for all
j=1,...,d. Then, Lemma 3.1 implies that (f) € L*(R?), and thus $(f) € H*(R?)
since the characterization of H'(R?) via the classical Riesz transforms. In addition,
Corollary 2.2 gives

Z Pa-—n/2 * (wn,k‘f)
n,k

<O Nnnf e < ClIf o
Hi n,k

These prove that f = H(f) + 3, pa-nse * (Ynif) € H}(R4), moreover,

[l < ClUH e +

Z Po-—n/2 * (’l/}n,kf)
n,k

Hj

< (Il +ZHR i)

which ends the proof.
O

3.2. VMOL(RY) spaces. In [16] it was shown that the dual of H}(RY) can be
identified with the space BMOp(R?) which consists of all functions f € BMO(R?)
with .
: + su dy < oo.
Ifllwo, = fllowo + s e [ 11y
B(z,r)
As an immediate consequence of Theorem 2.1 and the duality, we have:

Corollary 3.2. Let 1 < g < oo. For every f € BMOp(R?), we have

s (G [ 10faentr) " (g [ Wran)" < Ol lawo,

B(z,r) B(x,r)
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and

< T
p(x) = B(z,r)

1
= _ dy.
llosion = Wfllswo+ s e [ 1)y
L <Cp,

Definition 3.2. The space VMOL(R?) is defined to be the closure of C°(R?) in
BMO,(RY).

Remark 3.1. The space VMOL(R?) coincides with the closure of Co(R?) in BMOp,(R?)
since Co(RY) is the closure of C*(RY) in L®(R?) and BMOp-norm is bounded by
the L>-norm.

Definition 3.3. Let n € Z. The space bmo, (R?) is defined to be the set of all locally
integrable functions f such that

1 llomon = 1/l 210 + sup Eéﬂm/u@w<m

$€Rd,2_1_"/2§7’§21_"/2
B(z,r)

The space vmo, (RY) is the subspace of bmo,(R?) consisting of those f such that

o—0 z€R r<o

1
. _ dy | =
B(z,r)

and

lim sup -
R=o00 | g-1-n/2<p<01-1/2 B(2,r)NB(0,R)=0 |B(z,7)|

Lemma 3.2 (see [14]). Let n € Z. Then,
i) The space vmo,(R?) is the closure of C=(R?) in bmo,(RY).
ii) The dual of vmo,(R?) is the space hl(R?).

Theorem 3.2. The dual of VMOL(R?) is the space H} (R?).
To prove Theorem 3.2, we need the following two lemmas.
Lemma 3.3. The operators ﬁ; map S(RY) into Cy(R?).

Lemma 3.4. Let n € Z and k € Z*. Then, 1. is a multiplier from vmo,(R?)
into VMO (RY), that is, there exists a constant C(n,k) > 0 such that for all f €
vmon(RY), we have

Hwn,kf”VMOL S C('I’L, k)”f”vmon

Proof of Lemma 3.3. We first observe that the classical Riesz transforms R; map
S(R?) into Cy(R?). Then, by the fomular (3.2), we use the facts supp @g-n2 C
B(0,272), log-nsellr = llpllpr and [[0g-n/zx(R; ()l < Gmmarmllellez Ry ()]l :
to conclude that the operators Ej map S(R?) into Cy(R?). O
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Proof of Lemma 3.4. Since [ € vmo,(R?) the closure of C>°(R?) in bmo, (RY) (see
Lemma 3.2), there exists a sequence {f;};>1 in C>°(R?) such that || f; — f|lomo, — O
as j — oo. Clearly, {1 f;}j>1 in C(R?) since ¢, € C°(R?). Let us now show

that ”wn,kfj — wn,kf”BMOL — 0 as ] — o0.
We first note that, by Theorem 3 of [37], there exists a constant C'(n, k) > 0 such

that for all g € bmo, (R?),
[¥nkgllbmo, < C(1, k)| gllbmo,-
This implies that

i fi = UnrfllBro < Nni(fi — Fllomon < Cn, k)i — fllomon — 0

as j — 0o. Therefore, it is now sufficient to prove that

59 o /‘wM: () — F @)y < CCEMIE = Flume,

B(:v r

forallz € R and r > p(x). Inequality (3.9) is obvious if B(x, )N B (., 2'7/%) = 0
since supp Y C B(w,4,2'72). Otherwise, that is B(z,r) N B(w, .k, 2172) # 0.
Taking z € B(x,7) N B(w,4,2'7?), Lemma 2.1 gives

27172 < parn ) < Cp(2)

since @, € B, and 2z € B(x,,2'7/?), and

p(z) < Cp(x)(l + ‘Zp(_x;d) ot <Cr

since z € B(x,r) and p(z) < r. This implies that 27/ < Cr, and thus

s /‘wm (550) = FDldy < Clnalfs = Fllmar

< GOk f; = fllomo, =0,

as j — 0o, which ends the proof.
O

Proof of Theorem 3.2. Since VMO (R?) is a subspace of BMOp(R?), which is the
dual of H}(R?), every function f in H}(R?) determines a bounded linear functional
on VMO (RY) of norm bounded by [ £l -

Conversely, given a bounded linear functional 7 on V MOy (R?). Then, for every
n € Z and k € Z*, Lemma 3.4 follows that the linear functional 7, x(g9) — T (¥n.x9)
is continuous on vmo,(R?). Consequently, by Lemma 3.2, there exists f, » € h.(R?)

such that for all ¢ € C>®(RY),

T (Wnsd) = / farly
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Note that supp fox C B2k, 217/2) since supp ¥np C B(xnx, 217?). Corollary
2.1 allows that f,x € H(R?). Let R > 0, by Lemma 2.9, there exist Ng, Kp € Z*

such that
Nr Kgr

p= > > Yo

n=—Npr k=1

for all ¢ € C*°(B(0, R)). Therefore, for all ¢ € C>*(B(0, R)),

ﬂwzfﬁ@wwm

where fr = S.N7 Kn fux € HE(RY)  LY(R?). This follows that there exists

n=—Ngr

f € L .(R%) such that for all ¢ € C>®(RY),

Twwa/ﬂwww@.

From the VMOp-norm (i.e., BMOp-norm) is bounded by the L*-norm, the above
prove that fr tends f, as R — oo, in L'(R%), and || f||z < ||T]-

Next, as fr € HL(RY) for all R > 0, Lemma 3.3 and Remark 3.1 allow us to define
the ”discrete Riesz transforms” of T by

Ri(T)(9) == T(R(#) = lim [ R;(fr)(y)d(y)dy

R—o00
Rd

whenever ¢ € C®(R?), j = 1,...,d. Then, by Corollary 3.1, we get
|B;(T) ()| < ITIIE; (@)l srso, < CITN¢llvaro,

for all ¢ € C°(R?). This show that R;(T) can be extended to a bounded linear
functional on VMO (R?), moreover,

IR,(T)|| < O[T

Therefore, similarly to the previous argument, there are f; € L'(RY), j = 1,...,d,
such that R;(fr) tends f; in LY(R?) and ||f;]|z: < [|R;(T)|| < C||T|. Deduce that
R;(f) = f; since R;(fr) tends R;(f) in LY°(RY) by fr tends f in L'(R?). Then,

we use Theorem 3.1 to conclude that f € H}(R?), moreover,

d
10y < (Il + - 1fsller) < CITIL
j=1

which ends the proof.
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3.3. Comparison with the space %L(Rd). Following Deng et al. [15], a
function f € BMOL(R?) is in VMOL(R?) if it satisfies the limiting conditions
N(f) =72(f) = 73(f) = 0, where

1/2
— i “dy)
w=tm| s (oo [ e -noera)” |,
B(z,r)

I 2d 1/2
7e(f) = lim m€%g§>t |er /If (F) y) :
B(z,r)

I 2d 1/2
7s(f) = lim Nsclzgm |er B(/ [f(y) = T(F) )| y) ,

we endow ‘%L(Rd) with the norm of BMOL(R?). It was shown in [15] that
H3(R?) is just the dual of VMO (RY).

Theorem 3.3. The space VMOL(RY) coincides with the space ‘%L(Rd).

Proof. As VMO (R?) and \7]\\/[/OL(Rd) (see [15]) are two closed subspaces of BMOp,(R?)
and they define the same dual space H}(R?), by Hahn-Banach theorem, it suffices
to show that C°(R?) C VMOL(R?). Indeed, for every f € C®(R?) with supp
f € B(0, Ry) for some Ry > 0, one need to establish the following three steps:
Step 1: For every z € R% and r > 0,

! 2
e, / 190 =T
< 2 s ) - f(z)|>2 +2(2) L~ B0, RO”)Q(W)de_ﬁ

By the uniformly continuity of f, the above proves that

v =tm | sw (o [ 10 -TnwP) " | <o

t=0 z€R,r<t
B(=,r)
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Step 2: For every x € R? and r > (2R)?,

1 2
e / | @) — T, () ) Pdy

< e |

()~ F(2dz) dy +

B(z,r)NB(0,,/T) Rd
1 1 ly=zl? 2
"B / (W / e« |f(y)—f(2)|dz) dy
B(z,r)N(B(0,/1))° B(0,Ro)
1B(0, vl

1
< 2 oo 2 200—-
= By Wl C

This follows that

1/2

— i dy) | =o.

7e(f) = lim m%g?pm |er /If (Fy)ldy 0
B(z,r)

Step 3: For every t > 2R, and B(z,r) C (B(0,1))¢,

1
Trexal OGO
’ B(z,r)
1 2
|B(x, )| / 47T7“ d/2 / )\dz) dy
B(z,r) 0,Ro)
1
< OIS BO, Fo) e
1 S
< COMIBO R e *F
Therefore,
1 1/2
wh=pm | s (o [ - T0we)” ) <o

B(z,r)

which finishes the proof.
O

3.4. Weak*-convergence in H;(R?). Now, we are ready to state the main theorem
of Section 3.
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Theorem 3.4. Suppose that {fm}m>1 is a bounded sequence by A > 0 in H}(R?)
and that f,,(z) — f(x) almost everywhere. Then, f € HL(R?) and {fn}m>1 weak*-
converges to f, that is,

lim [ f.(z)é(z)dr = / flx
m—r00
Rd

for all p € C=(RY) since the space C(R?) is dense in VMOL(RY) the predual of
H} (R and f,, are uniformly bounded in H}(R?).

Corollary 3.3. Suppose that {f,}m>1 is a bounded sequence by A > 0 in H} (RY)
and that f,, converges to f in L*(RY). Then, f belongs to H}(R?), moreover,

1y < T [ fonllay < 2.

m—o0

Proof of Theorem 3.4. For every n € Z,k € Z*, one has ¥y, i fn(z) = Yo i f(x) a.e
since f,(x) — f(x) a.e. Consequently, it follows from Theorem 11 of [14] that
{n i frn }m weak*-converges to 1, xf in hl(R?), and thus

Ga0) [l @) - / nal@)f (@)0(z)da.
R4

for all ¢ € C=(R?) C vmo,(R?), moreover,
(3.11) [on g fllny < Hm [[¢hnk finllns-
m—r00

Then, Corollary 2.1 implies that there are (H},2)-atoms a?’k related to the balls
B(a*, 1) € B(xp,2°7"/?) such that
Yaf =D N N TINE < Ol fllny -
J J
This together with (3.11) and Lemma 2.7 follow that for every N, K € Z*, there
exist my x € Z* such that

N K . N K A
ZNZZM? < Z ZC( T+ n?)(1+ k) Hw””fme’K”"%)
n=—N k=1 j =—N k=1

= Zk 1+ k2) +C||me,K||Hi
S 09[7

where the constants C' are independent of N, K, which allows to conclude that

f= tnxf € HLRY and |fllm <D D INF| <O
n,k nk j
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Finally, for every ¢ € C>®°(R?), Lemma 2.9 implies that there are two positive
integer numbers N, K depend only on support of ¢ such that

N

K N K
fo=>_ Y turfé and fud= Y > tufumd

=—N k=1 n=—N k=1
for all m > 1. Consequently, by (3.10), we obtain that

lim [ f.(z)¢(z)de = lim / Z Z@/)nk ) (@)@ (2)dx

m—00 m—00
Rd Rd = N k=1

- anggo/wnk ) n(2)o(a)da

—N k=1

- zz/m (v)da

Nk:l

~ [ t@otwyis

which ends the proof.

4. THE BILINEAR DECOMPOSITION FOR H}(R?) x BMOy(R?)

The main result of this section, namely the bilinear decomposition theorem for
the product space Hi(R?) x BMOL(R?), is as follows:

Theorem 4.1. There exist two continuous bilinear operators on the product space
H}(RY) x BMOL(R?), respectively Sy, : Hi(R?) x BMOL(RY) — L*(RY) and T}, :
H}(RY) x BMOp(RY) — H"8(R?) such that

f Xg:SL(fag)+TL(fag)

In applications to nonlinear PDEs, the distribution fxg € S'(R?) is used to justify
weak continuity properties of the pointwise product fg. It is therefore important to
recover fg from the action of the distribution f x ¢ on the test functions. An idea
that naturally comes to mind is to look at the mollified distributions

(4.1) (f xg)e=(f X g)* ¢,

and let € — 0. Here ¢ € S(R?) with [, ¢(2)dz = 1.
As a consequence of Theorem 4.1, we will see that the limit (4.1) exists and equals
fg almost everywhere.
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Theorem 4.2. Let f € H}(RY) and g € BMOr(R?). For almost every v € R? it
holds

lim(f x g)(z) = f(z)g(x).

Noting that H™¢(RY) c H®(R? du) with continuous embedding, the proof of
Theorem 4.2 follows directly from the one of Theorem 1.8 of [6]. We leave the
details to interested reader. It should also be pointed out that Theorem 2 of [32]
can be seen as an immediate consequence of Theorem 4.2 since V' € RH,, for any
g > 1, if V is a nonnegative nonzero polynomial on R?. Let us now start to prove
Theorem 4.1. First, we need the following key lemma.

Lemma 4.1. There exists a constant C = C(p,d) > 0 such that for all (n,k) €
Zx 7%, g€ BMOL(R?) and f € h:(R?) with supp f C B(xnk,2'""?), we have

[Ga-vrz e Do), < U lgllmrron.

Proof. As @, € B, it follows from Corollary 2.1 that there are (H],?2)-atoms a;
related to the balls B(x;,7;) C B(zy,k, 227"/?) such that

(4.2) f= Z)\jaj, D I < Cllfllng.-

Then, Lemma 2.14 yields that (py-n/2 * a; are C times (H},2)-atoms related to the
ball B(x,,5.27"/2), and hence
(4.3) lpo-no * ajllmy < C.

Furthermore, supp (py-n/2 * a;)(9 — 9, ,5.2-7/2)) C B(@nk, 5.27"/2) and

H(%‘”“ *4;)(9 = 9B, 1 5.2-72)) 1372

IN

[po—n/2 * a; [ z2][(g — gB(xn’k,S.Z*"/Q))XB(mn’k,S.Z*"/Q) | s
< Cllgllsyol B(ank, 5272

where C' > 0 is independent of g, f, n. This proves that (¢-n/2%a;)(9—9p s, , 5.2-7/2))
are C||g||samo times (H},3/2)-atoms, and thus

(4.4) [(pg-nr2 * a;)(9 = 9pa, 52— 2 < Cllgllpmo.
Combining (4.2), (4.3) and (4.4) allows to conclude that

| s Pag| < O Dalllormre % )9 = 9(a, 5000
J

Hj

+CZ ‘)\]‘ HSOQ*"/Q * ajHHi|gB(mn’k75_27n/2)|
J

< ClAlnliglzasor

since |9p(, 5.2-m2)| < lgllsao, as plang) < 5.2772
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U

The proof of Lemma 4.1 gives a corollary which is useful for studying the theory
of commutators in the next sections.

Corollary 4.1. Assume that g € BMO(RY) and f € hl(R?) as in Lemma 4.1.
Then, we have

lpg-ns2* fllar < C fllns
and

|@2mvie # £)0 = 9500, 22|, < Cll Sl liglmavo.

h

Recall that the set & = {0,1}¢\ {(0,---,0)} and {¢°},c¢ is the wavelet with
compact support as in Section 3 of [4]. Suppose that ¢? is supported in the cube

(3 —%3—%)dforall o € £ As it is classical, for ¢ € € and I a dyadic cube of R

which may be written as the set of z such that 27z — k € (0,1)4, we note
U (@) = 29207 (D3 — k).
In the sequel, the letter I always refers to dyadic cubes. Moreover, we note kI the

cube of same center dilated by the coefficient k.

Remark 4.1. For every o € £ and I a dyadic cube. Because of the assumption on
the support of 17, the function ] is supported in the cube cl.

In [4] (see also [31]), Bonami et al. established the following.

Proposition 4.1. The bounded bilinear operator 11, defined by
0(f,9) =Y Y (e, 0D @7)*,
I oce€
is bounded from H'(R?) x BMO(R?) into L'(R?).

To prove Theorem 4.1, we need to recall a recent result of Bonami, Grellier and
Ky [4] which can be stated as follows:

Theorem 4.3 (see [4], Theorem 1.1). There is a bilinear operator T maps contin-
uously H'(R?) x BMO(R?) into H8(R?) such that for every (f,g) € H*(RY) x
BMO(RY),

f>xg=1(f.9)+%(f,9).

Before giving the proof of Theorem 4.1, we should point out that the bilinear
operator ¥ in Theorem 4.3 satisfies

(4.5) IECF5 Dl zpos < ClLf (gl Baro + l9al)

where Q := [0,1)¢ is the unit cube. To prove this, the authors in [4] used the
generalized Holder inequality (see also [6])

[ 9llpes < ClIfl[Lrllgll =
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and the fact that ||g — gollzz= < CllgllBmo, where L=(R?) denotes the space of all

measurable functions g such that fRd<e|g(w)|/>\ — 1)(1;‘1% < oo for some A > 0 with

2= inf{)\ >0: / (e‘g(m)‘/’\ — 1)# < 1}.

R4
In fact, Inequality (4.5) also holds when we replace the unit cube Q by B(0,r) for
every r > 0 since ||g—gp( )|z < C|lg||Bmo- More precisely, there exists a constant
C' > 0 such that

the norm

g1

(4.6) 1F9lles < ClIf N2 (gl Baro + 1980.000]) < ClIf L1 ll9ll Baro,
for all f € L'(RY) and g € BMOr(R?). As a consequence, we have
(4.7) 1ZC, P zes < CllflanllgllBrro,

for all f € HY(R?) and g € BMO(R?).
Proof of Theorem 4.1. We define two bilinear operators Sy and T}, by

Su(f9) = (), 9) + D (amrra + (Unrf)) g
n,k

and

TL(fag) = ‘Z(S{)(f),g),
for all (f,g) € HL(RY) x BMOr(R?). Then, it follows from Proposition 4.1, Lemma
4.1, Lemma 2.10 and Lemma 2.7 that

182 9l < IS 9l +C Y [ (92 % W) )]

Hj
< Clglemoll9(Hm + Cliglsrmo, D 1k lIny
n,k

< Clifllm lgllzaroy,
and as (4.7), Theorem 4.3 yields

1T (f, 9)| e ClIHN) e llgll saco,

Cll ANl llgllBaro,.

Furthermore, in the sense of distributions, we have

SL(fag) + TL(fag)

- <Z (e = panre wn,kf))) x g+ Y (Pawe % (Wunh))9

n,k

= <an,kf>xg:fxga
n,k

which ends the proof.

<
<
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5. BILINEAR, SUBBILINEAR DECOMPOSITIONS AND COMMUTATORS

Recall that Ky, is the set of all sublinear operators 7" bounded from H}(R?) into
L*(R9) and that there are g € (1,00] and € > 0 such that

1(b = bp)Tal|r < Clbllsrmo

for all b € BMO(R?), any generalized (H}, g, €)-atom a related to the ball B, where
C > 0 a constant independent of b, a.

5.1. Two decomposition theorems. Let b be a locally integrable function and
T € Kp. As usual, the (sublinear) commutator [b,T] of the operator T is defined

by [b, T](f)(z) := T((b(:v) - b())f()) (). Here and in what follows, we denote the
bilinear operator

&(f,9) = —1H(f), 9)-
Then, by Proposition 4.1 and Lemma 2.10, we obtain that:

Proposition 5.1. The bilinear operator & is bounded from H}(RY) x BMO(R?)
into L'(RY).
Theorem 5.1 (Subbilinear decomposition). Let T' € Kp. There exists a bounded

subbilinear operator R = Ry : Hi(RY) x BMO(RY) — LY(RY) such that for all
(f,b) € Hi (R?) x BMO(RY), we have

T(S(f,0))] = R(f,0) < |[b. TI(f)| < R(f,0) +[T(S(f,0))]-
Corollary 5.1. Suppose that T € Ky, and T is of weak type (1,1). Then, the oper-

ator B(f,9) = g, T)(f) maps continuously H} (R?) x BMO(R?) into weak-L*(R?).
In particular, the commutator [b, T] is of weak type (H}, L') if b € BMO(R?).

When T is linear and belongs to Ky, we obtain the bilinear decomposition for the
linear commutator [b, T| of f, [b, T|(f) = bT(f) — T'(bf), instead of the subbilinear
decomposition as stated in Theorem 5.1.

Theorem 5.2 (Bilinear decomposition). Let T' be a linear operator in K. Then,
there exists a bounded bilinear operator R = Ry : HL(R?) x BMO(R?) — L'(R?)
such that for all (f,b) € H}(RY) x BMO(R?), we have

[0, T](f) = R(f,0) + T(S(f,)).

5.2. The space Hib(Rd). Using Theorem 5.1 and Theorem 5.2, we find the largest
subspace H} ,(R?) of Hj(R?) such that all commutators of Schrédinger-Calderén-

Zygmund operators and the Riesz transforms are bounded from #} ,(R?) into L' (R?).
We also find all functions b in BMO(R?) such that H} ,(R?) = H}(R?).
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Definition 5.1. Let b be a non-constant BMO-function. The space H} ,(R?) con-
sists of all f in HL(RY) such that [b, Mz](f)(z) = Mp(b(z)f(-)=b(-)f(-))(z) belongs
to L'(R?). We equipped Hj ,(R?) with the norm

1f 1z, = I F g 1ol Baro + (110, MLI(F) |-

Here, we just define for b is a non-constant BM O-function since [b, 7] = 0 if b is
a constant function.

Theorem 5.3. Let b be a non-constant BMO-function, we have:
i) For every T € Ky, the commutator [b,T) is bounded from H} ,(R?) into L' (R?).
ii) Assume that X is a subspace of H}(RY) such that all commutators of the Riesz
transforms are bounded from X into L'(R?). Then, X C Hj ,(R?).

Theorem 5.3 gives an anwser for Question 1 in Introduction.

Theorem 5.4. i) Let b € BMOY3(RY). Then, for every T € Ky, the commutator
[b,T] is bounded from H}(R?) into L'(R?). Deduce that H} ,(R?) = Hj(R?) since
M e Kr.

it) Suppose that b is a non-constant BMO-function such that H} ,(R?) = H} (R?).

Then, b belongs to BMOY®(RY).
Theorem 5.4 gives an anwser for Question 2 in Introduction.

5.3. Hardy estimates for linear commutators. Let us first recall (see [8]) that
BM OlLOg(Rd) the set of all locally integrable functions f such that

Hf”BMOILOg = BS(UP (log (6 + p(x)>MO(f,B(:c,'r’))) < o0,

x77") T

where and in what follows

MO(f, B) == ﬁ / ) — faldy.

Observe that Ma et al. [35] have very recently showed that g is a pointwise
multiplier for BMOL(R?) if and only if g belongs to L®(R%) N BMOYE(RY).
Our first main result of this subsection is the following theorem.

Theorem 5.5. i) Let b € BMOYS(R?) and T be a L-Calderdn-Zygmund operator
satisfying T*(1) = 0. Then, the linear commutator [b,T] is bounded on H}(RY).

it) When V€ RH,4, we have the conversion. More precisely, assume that b €
BMO(RY) and that [b,T] is bounded on H}(R?) for every L-Calderén-Zygmund
operator T satisfying T*(1) = 0. Then, b € BMOYE(R?), moreover,

d
10l pasoies 2 16l maro + Y 11, Rylllerg o

J=1
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In order to study commutators of general Schrodinger-Calderon-Zygmund oper-
ators, we always assume that b € BMO(R?). However, when T' = R; = 0,, L'/,

j=1,...,d, one can find a class of functions which is larger BM O 5(R?) such that
the commutators of the Riesz transforms [b, R;] are bounded on H} (R?) whenever
b is in this class. To be more precise, we need to recall some notations from [8].

Let § > 0. Following Bongioanni et al. [8], we denote by BM Oy, (R%) the set of
all locally integrable functions f such that

1
||f||BMOL,0 = sup 70M0(f,B(ZL‘,T)) < 00,

B(z,r) (1+$)

and BM OlLO,%(]Rd) the set of all locally integrable functions f such that

log ( i p(x))
1l prroes = sup | ————5~

W ) MO(g, Bz, 1) | < o0,

Then, we define
BMOy,o(R?) = | ] BMOyp(R?)
>0
and
BMOY® (RY) = | ] BMO%(RY).
>0
Clearly, BMOp(R?) is just the classical BMO(R?), and BMOE%(Rd) is just
BMOYE(RY). Moreover, for any 0 < 0 < 0’ < oo,

(5.1) BMOY%(R?) = BMOLo(R?) N BMOY®_(R?)
and
(5.2)  BMOpg(RY) C BMOLg(RY), BMOp%(R?) C BMOY%,(RY).

Remark that the inclusions in (5.2) are strict in general. In particular, BM O10g > (RY)

is in general larger than BM Olog(Rd) As an example, when L = —A + 1, it is easy
to check that the functions b; = |z;|, j = 1,...,d, belong to BMOILOiO(Rd) but not
to BMOYE(RY).

Now, we are ready to give the necessary and sufficient condition for the H}-
boundedness of the (linear) commutators of the Riesz transforms.

Theorem 5.6. i) Letb € BMO10g * (RY). Then, the commutators b, R;], j = 1,...,d,
are bounded on Hi(R?).
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i) Conversely, assume that b belongs to BM Oy, .o(R?) and that the commutators
b, Rj], j = 1,....,d, are bounded on H}(R?). Then, b is in BMOlLOiO(Rd). Further-
more, when b € BMOIL(’%(Rd) for some § > 0, we have

d
HbHBMOlIf’% ~ ||b||BMoL,0 + Z [0, Rj]HH}JaHi-
j=1
Remark that the constants in the above equivalence depend on 6.

As an immediate consequence of Theorem 5.6, the following gives a positive anwser
for Question 3 in Introduction.

Theorem 5.7. Let b € BMOlLOiO(Rd). Then, the commutators [b, Ri], j = 1,...,d,
are bounded from BMOy(R?) into itself.

Recall that LMO(RY) is the set of all locally integrable functions f such that

o = s (108 (¢ + 1) 307 Bl ) <

It should be pointed out that LMO type spaces appear naturally when study-
ing the boundedness of Hankel operators on the Hardy spaces H'(T?) and H'(B?)
(where B? is the unit ball in C?), the characterization of pointwise multipliers for
BMO type spaces, the endpoint estimates for commutators of singular integrals op-
erators and their applications to PDEs (see for example [10, 5, 26, 27, 31, 38, 41, 43]).
Remark that when L = —A + 1, then H1(RY) is just the space h'(R?) of Goldberg
(see [22]). The following gives a characterization of the space LMO(RY).

Corollary 5.2. Let b € BMO(R?). Then, b belongs to LMO(R?) if and only
if the vector-valued commutator [b,V(—=A + 1)7Y2] maps continuously h'(R?) into
hYH (R RY) = (RYH(RY), ..., ki (R?)). Furthermore,

16l aro = 116l Baro + 1B, V(=A + 1) 72|y gy (ra pery.

In [37], Nakai and Yabuta characterized the pointwise multipliers for BMO(RR?):
they proved that g is a pointwise multiplier for BMO(RY) if and only if g belong to
L>*(R%) N BMOYs(RY), with

(53)  ll9llsaowe = sup (lo(e +|B| ™) + suplog(e + |+]))MO(g. B)) < oo,
Te

where the supremum is taken over all balls B in R?. It should be pointed out that
the BMO'"“8-norm studied in [37] is different from (5.3), however they are equivalent
(see [30]). Moreover, in [30] the author established also that BMO%(RY) is just the
dual of H'8(R?). Thus, from Theorem 4.1 and Proposition 3.2 of [35], it is easy to
see that
L®(RY) N BMO™8(RY) ¢ L=(RY) N BMOY®(RY).

A natural question arises: is BMO"YS(R?) a subspace of BMOY(R%)? The fol-

lowing theorem gives an answer.
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Theorem 5.8. Let b € BMO"8(RY). Then, the commutators [b, R;],j = 1,...,d,
are bounded on H}(R?).

Then, Theorem 5.6 and Theorem 5.8 allow us to conclude that
BMO"“8(R%) ¢ BMOYE(RY)

and the inclusion is continuous. Remark that the above inclusion is strict in general.
For example, when L = —A + 1, it is not difficult to see that the function b(z) =
log(1 + |#|?) belongs to BMOY(R?) but not to BMOW(RY).

6. SOME FUNDAMENTAL OPERATORS AND THE CLASS K,

The purpose of this section is to give some examples of (sublinear) operators which
are in the class Ky.

6.1. Schrédinger-Calderén-Zygmund operators. Let 6 € (0, 1]. Following [35],
a continuous function K : R4 x RY\ {(x,z) : x € R} — C is said to be a (d, L)-
Calderon-Zygmund singular integral kernel if for each N > 0,

C(N) [z —y[\ N
6.1 K(z,y)| < 1+
(6. Ke) < g (e )
for all = # y, and
/ , |,I‘—ZL'I|5
. - - < |1 — y|d+o
(6.2) K (@,y) = K@ y)l + Ky, @) = Ky, 2)] < O7 — 55

for all 2|z —2'| < |z —y].

A linear operator T : S(R?) — S'(R?) is said to be a (6, L)-Calderén-Zygmund
operator if T' can be extended to a bounded operator on L?(R%) and if there exists
a (9, L)-Calderén-Zygmund singular integral kernel K such that for all f € C>°(RY)
and all x ¢ supp f, we have

Tﬂmz/meﬂww

We say that T is a L-Calderén-Zygmund operator if it is a (0, L)-Calderén-Zygmund
operator for some 0 € (0, 1], and that T satisfies the condition 7%(1) = 0 (in the sense
of BMOp(R?), see the paper of Bernicot [2] for the details) if there are ¢ € (1, o0]
and ¢ > 0 such that [, Ta(x)dz = 0 for all generalized (H}, ¢, ¢)-atom a.

Remark 6.1. i) Using Lemma 2.1, Inequality (6.1) is equivalent to

C(N) [z —yl\N
o)l < |f6—y\d<1+ p(y) )

for all x # .
ii) If T is a L-Calderén-Zygmund operator then it is also a classical Calderén-

Zygmund operator, and thus T is bounded on LP(RY) for 1 < p < oo and bounded
from LY(R?) into LY>°(RY).
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Proposition 6.1. Let T be any L-Calderon-Zygmund operator. Then, T belongs to
the class Kp,.

Proposition 6.2. The Riesz transforms R; are in the class Kp,.

The proof of Proposition 6.2 follows directly from Lemma 9.6 and the fact that
the Riesz transforms R; are bounded from Hj}(R?) into L'(R?).
To prove Proposition 6.1, we need the following two lemmas.

Lemma 6.1. Let 1 < g < oco. Then, there exists a constant C' > 0 such that for
every ball B, [ € BMO(Rd and k € ZjL

1/q
(g [ )= Foran) ™ < CI v
2%
Lemma 6.2. Let 1 < ¢ < oo and ¢ > 0. Assume that T is a (0, L)-Calderén-

Zygmund operator and a is a generalized (H},q,¢e)-atom related to the ball B =
B(zg,r). Then,

ITal| parsiprarpy < C27F0 128 B/t
for all k =1,2, ..., where 6o = min{e,d}.

Using the classical John-Nirenberg inequality, the proof of Lemma 6.1 is elemen-
tary and left to reader.

Proof of Lemma 6.2. Let x € 2871B\ 2¥B, so that |r — o] > 2r. Since T is a
(0, L)-Calder6n-Zygmund operator, we get

Ta@)] < | [ () = Kloz)aldy| + i ool [ atw)dy

y —xo|” 2|’ 1 [w — @\~ T \E
<c la(y)|dy + C (1+ ) ()
& — @o|#+ |z — ol pxo) p(xo)
5 e o
r r r
C C
- ‘SL’—IO‘OH‘; + |$—5L’0|d+€ ‘x_xo‘dJréo
Consequently,
8o
190
||Ta||Lq(2k+lB\2kB) < CWDK—HBP/Q < (2™ k60|2kB|1/q 1

g

Proof of Proposition 6.1. Assume that T is a (9, L)-Calderén-Zygmund for some § €
(0,1]. Let us first verify that T is bounded from H}(R?) into L'(R%). By Proposition
2.1, it is sufficient to show that

|Tal||;: <C
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for all generalized (H},2,d)-atom a related to the ball B. Indeed, from the L>-
boundedness of 7" and Lemma 6.2, we obtain that

||Ta||L1 = ||Ta||L1(zB) + Z ||Ta,||L1(2k+lB\2kB)
k=1

< CRBIV|T ool + O S [2841 BIY22 |24 B2
k=1

< C.
Let us next establish that

|(f = fB)Tall < C| fllamo

for all f € BMO(R?), any generalized (H},2,6)-atom a related to the ball B =
B(zg,r). Indeed, by Holder inequality, Lemma 6.1 and Lemma 6.2, we get

1(f = fB)Tall
= |I(f = f8)TallLrem) + Z [(f = fB)Tall L1+ pr2rB)
k>1
< |I(f = fe)xeslle2lIT| L2~ 22|l 22 + Z If = fBll2@s+1my | Tall 22641 3\2x By

k>1

< Clfllsmo + Y Clk+ 1)l fllzarol2" B2 25 B| 7/

k>1
< C| fllzmo,

which ends the proof.
O

6.2. The maximal operators. Recall that {T}},~¢ be heat semigroup generated
by L and T;(z,y) be their kernels. Namely,

Tf(e) = Hf @) = [ To)f)dy, € D@D, t>0
Rd
Then the "heat” maximal operator is defined by

My f(x) = sup [Ty f(x)],
>0
and the ”Poisson” maximal operator is defined by

ML f(z) = sup |P.f (z)],

where

Pf(a) = e f(a) QJ_/€4“
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Proposition 6.3. The "heat” maximal operator My, is in the class Kr.
Proposition 6.4. The ”"Poisson” maximal operator ./\/lLP 15 1n the class Kr..

Here we just give the proof for Proposition 6.3. For the one of Proposition 6.4,
we leave the details to the interested reader.

Proof of Proposition 6.3. Obviously, M, is bounded from H}(R?) into L!(R?).
Now, let us prove that

I(f = fe)Mo(a)|lr < CllfllBaro

for all f € BMO(RY), any generalized (H},2,0)-atom a related to the ball B =
B(xg, ), where the constant ¢ is as in Lemma 2.2. Indeed, by Step 2 in the proof
of Theorem 2.1, for every = ¢ 2B,

TJ

<C—rro—.
Mi(a)(z) < |z — zo|THe
Therefore, using Lemma 6.1, the L?-boundedness of the classical Hardy-Littlewood
maximal operator M and the estimate M (a) < CM(a), we obtain that

I(f = fa) M@
= [[(f = feIMr(a)llLi@s) + [[(f — fB)ML(a)l L1 (@2B))
< O - follzem M@l + C / (@) — Fotan | ———da

| s |l‘ _ l‘0|d+0
T—xg|>2r

< C|fllsmo,

where we have used the following classical inequality, which proof can be found in

[19]7

/ (@) = Fogmm)
|z—z0|>2r

This allows us to end the proof of Proposition 6.3.

dx < Ol fllBmo-

|l‘—l‘0|d+0

n

6.3. The L-square funcfions. Recall (see [16]) that the L-square funcfions g and
G are defined by

- 1/2
o = | [rannwr]
and 0
N 1/2
@ = [ [ remnwris
0 |z—y|<t

Proposition 6.5. The L-square function g is in the class Kp,.
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Proposition 6.6. The L-square function G is in the class K.

Here we just give the proof for Proposition 6.5. For the one of Proposition 6.6,
we leave the details to the interested reader.
In order to prove Proposition 6.5, we need the following lemma.

Lemma 6.3. There exists a constant C > 0 such that

h|\?d o lo—y|?
(63 0T,y + ) = 0T )] < € () e i

for all |h| < ‘x;y‘, 0 < t. Here and in the proof of Proposition 6.5, the constants

d,c € (0,1) are as in Proposition 4 of [16].

Proof. One only need to consider the case vt < |h| < ‘x;y‘. Otherwise, (6.3) follows
directly from (b) in Proposition 4 of [16].
For v/t < |h| < @ By (a) in Proposition 4 of [16], we get

le—yl|?

to,Ty(z,y + h) —td,Ty(z,y)| < Ct=¥%ec + Ot 2e e
M)étdﬂeix;ﬂ_

Vit

le—y—h|?

< ¢(
O

Proof of Proposition 6.5. The (H} — L') type boundedness of g is well-known, see
for example [16, 24]. Let us now show that

I(f = fela(a)llr < CllfllBumo

for all f € BMO(R?), any generalized (H},?2,6)-atom a related to the ball B =
B(zg,r). Indeed, it follows from Lemma 6.3 and (a) in Proposition 4 of [16] that
for every t > 0, x ¢ 2B,

10T(a) )
= | [t0tia.) - 0T, z0))aty)dy + 10Tz, 0) [ alw)dy

é cl|lT—x 2 T—x 2 t t -4 )
< C(L> 12§ g - Ot 2eme T (1+ Vi + J) ( - )
Vi p(z) — plwo)/  \plxo)
< C<L>5t_d/2€—i—x_f°2
7 .
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2
|z—zq|

Therefore, as 0 < § < 1, using the estimate e” 2~ ¢+~ < C(c, d)(—tg )42

= |$_1.0|2 I
~ 1/2
2 é clz—z \2 dt
gla)(z) < C /th%2t°_
t t
0
o2 . 1/2
2\¢ d+2 2\¢
<ol [yt ]y
t |z — x0]? t t t
0 lz—ao|?
5
,
C———.
|z — m|4H9

Therefore, the L?-boundedness of g and Lemma 6.1 yield

1(f = fB)a(a)|l
= |I(f = fe)a(a)llzr@my + I(f — fB)a(a)l|Lr(@B)e)
"

< = folenla@le +C [ 1@ = ol e
|x—x0|>2r

< C|fllsmo,

which allows us to ends the proof.

7. SOME APPLICATIONS OF TWO DECOMPOSITION THEOREMS
7.1. Atomic Hardy spaces related to b € BMO(R?).

Definition 7.1. Let 1 < ¢ < 00, e >0 and b € BMO(R?). A function a is called a
(H} g, €)-atom related to the ball B = B(xo,r) if a is a generalized (H, q,€)-atom
related to the same ball B and

(7.1) )/a(x)(b(x) —bB)dx) < (,;(20))6'

Then, the space Hi:Z’E(Rd) is defined as in (1) of Definition 2.2 with generalized
(H},q,¢e)-atoms replaced by (H}va, q,€)-atoms.
Obviously, Hi’jf(Rd) C H}(R?) and the inclusion is continuous.

Theorem 7.1. Let 1 < ¢ < 0o, ¢ >0, b€ BMORY) and T € K. Then, the
commutator [b, T is bounded from H;Z’E(Rd) into L*(RY).

Remark 7.1. The space H}(RY) which has been considered by Wang et al. [44] is
a strictly subspace of H}J:%’a(Rd) in general. As an example, let us take 1 < q < o0,
e>0,L=—-A+1, and b be a non-constant bounded function, then it is easy to
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check that the function f = xp(o,1) belongs to Hé’j)’e(]Rd) but not to HE(RY). Thus,
Theorem 7.1 is an improvement of Theorem 5 of [44].

We should also point out that the authors in [44] proved Theorem 5 in their paper
by establishing that

116, B)(a)ll o < Cllbll srro

for all H}-atom a. However, as pointed in [9] and [31] that such arguments are not
enough to conclude that [b, R;] is bounded from H}(R?) into L'(R?) in general.

Proof of Theorem 7.1. Let a be a (H} ,, q,€)-atom related to the ball B = B(xo, ).
We first prove that (b—bg)a is C||b|| saro times a generalized (H}, (g+1)/2, €)-atom,
where ¢ € (1,00) will be defined later and the positive constant C' is independent
of b,a. Indeed, one has supp (b — bg)a C supp a C B. In addition, from Holder
inequality and John-Nirenberg (classical) inequality,

(b= b)all sz < Nl(b = bs)xsllzaavan llalls < ClIblsaro] BT/ @D,

where ¢ = ¢ if 1 < ¢ < oo and ¢ = 2 if ¢ = co. These together with (7.1) yield
that (b — bg)a is C||b||pmo times a generalized (H;, (g + 1)/2,¢)-atom, and thus
(b= bp)allg1 < C|bllpro-

We now prove that &(a,b) belongs to H} (R9).

By Theorem 5.2, there exist d bounded bilinear operators R; : H} (R*)x BMO(R?) —
LY(RY), j =1,...,d, such that

[b, Rj](a) = R;(a,b) + R;(S(a, b)),

since R; is linear and belongs to K, (see Proposition 6.2). Consequently, for every
j=1,..,d,as R; € Kp,

17;(S(a;b))][r = [I(b—bp)R;(a) = B;((b—bp)a) — R;(a, b) s
< (b =b5)Ri(a)ller + ([ Rl — e[| (b = b)al g + [|9R;(a, b)|
< Cllbllsaro-
This together with Proposition 5.1 prove that &(a,b) € H} (R?), and moreover that
(7.2) 16(a, bl < Cllbll Baro-

Now, for any f € Hi:Z’E(Rd), there exists an expansion f = Y, Ayay where the
ar are (H} ,, q,€)-atoms and ) 7 | [Ai] < 2||f||Hi%g Then, the sequence {d_;_; Aiak n>1

converges to f in Hé’f{)’e(Rd) and thus in H}(R?). This together with Proposition 5.1

imply that the sequence {6 ( > e Ak b)} converges to G(f,b) in L*(RY). In
n>1

addition, by (7.2),

& ( i Aoty b)
k=1

bllBro-

<D ellS(a D)l < Cllfllzae
k=1

h



HARDY SPACES AND COMMUTATORS 43
We then use Corollary 3.3 and Theorem 5.1 to conclude that
16, Iz < NRe(f, D)l + 1T ez e [S(F5 ) iy
< Clfllay Wlssio + Ol s
< Clfllpg-lblmo,

bl Bmo
which allows us to end the proof.

7.2. The spaces HlLoi(Rd).

Definition 7.2. Let a« € R. We say that a is a H > -atom related to the ball
B = B(z,r) if r < Cpp(zo) and

i) supp a C B,

ii) llallz> < (1og<e+ et} g1,

i) if r < - =p(xo) then [p. a(z)dz = 0.

Then, the space H 8 (R%) is defined as in (1) of Definition 2.2 with generalized
(H},q,¢)-atoms replaced by H}fi-atoms.

Clearly, H;’5(R?) is just H}(R?). Moreover, H;® (R?) C H%,(R%) for all o < o,
It should be pointed out that when L = —A + 1 and o > 0, then HEi(Rd) is just
the space of all distributions f such that

Mf(x)
/ /\anf( ) ~dxr < 0o
2 <log(e + ))
for some A > 0, moreover (see [30] for the details),
Mf(x)
1]l e ~ int )\>O:/ 2 dr <1
b (log(e + _zm];(m) ))

Theorem 7.2. Let T € K;, and b € BMO(R?). Then, the commutator [b,T) is
bounded from H® ,(R?) into L}(RY).

Proof. Let a be a HlL‘ig_l—atom related to the ball B = B(xg,r). Let us first prove
that (b — bg)a € H(R?Y). By Hi(R?) is the dual of VMO (R?), it is sufficient to
show that for every g € C°(R?),

||(b — bB)ag||L1 < CHbHBMOHgHBMOL'
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Indeed, thanks to John-Nirenberg inequality and Lemma 2 of [16], we get

I(b—bp)agllLr < (g —98)(b—bp)allrr + |galll(b — bp)all 1
< (g = g98)xsllsll(b = bp)xsl +llall2 +

P(l’o)
T
< Cbllzmollgllzroy

which prove that (b — bg)a € Hi(R?), moreover, ||(b— bg)allm < Cbl|sumo-
Similarly to the proof of Theorem 7.1, we also obtain that

ISCf, 0y < CllFl s 105300

+C10g (e + 222 g lprio, (b — bo)xallszllel

for all f € HILOi {(R9). Therefore, Theorem 5.1 allows to conclude that

116, YNz < Cll Nl s 16l maro,

which ends the proof. ([

7.3. The Hardy-Sobolev space H,'(R%). Following Hofmann et al. [25], we say
that f belongs to the (inhomogeneous) Hardy-Sobolev H, "' (RY) if f, 0y, f, ..., Ou,f €
H}(R?). Then, the norm on H;}"'(R%) is defined by

d
1 Narr = ez + D 1102, fla -
j=1

It should be pointed out that the authors in [25] proved that the space Hz(R%)
is just the classical (inhomogeneous) Hardy-Sobolev HL1(RY) (see for example [1]),

and can be identified with the (inhomogeneous) Triebel-Lizorkin space F|'"*(R%) (see
[29]). More precisely, f belongs to H!(R?) if and only if

1/2
Wy(f) = {ZZ (f 7)1+ |f|-1/d>2|f|—1xf} e L'(RY),

I oc€€

moreover, || f||gi1 & ||[Wy(f)||z:. Here {¢7},c¢ is the wavelet as in Section 4.

Theorem 7.3. Let L = —A+1,T € K;, andb € BMO(R?). Then, the commutator
b, T] is bounded from H, " (R?) into L'(R?).

Remark 7.2. When L = —A + 1, we can define H(f) = f — ¢ * f instead of
() =2k f —po-np* (urf)) as in Section 3. Then, all results in this paper
are still holding. Moreover, it is easy to see that

0z, (9(f)) = H(0x, f)-



HARDY SPACES AND COMMUTATORS 45

Here and in what follows, for any cube Q[y, 7] := {z € R? : max;<j<q|z;—y;| < 1},
we denote

Bg = {:c eRY: |z —y| < 2\/ar}.
To prove Theorem 7.3, we need the following lemma.
Lemma 7.1. Let L = —A +1. Then, the bilinear 11 maps continuously H'(R?) x
BMO(R?) into Hi(R?).

Proof. Note that p(x) = 1 for all z € R? since V = 1. We first prove that there
exists a constant C' > 0 such that

(7.3) I+ 1Y) W)y < C

for all dyadic I = Qxg,r] and A\ € E. Indeed, it follows from Remark 4.1 that supp
(1 + |[I]7YD = M2 C el C eBy, and it is clear that ||(1 + [I|7Y) 7 ()?]|1= <
[I)]7H|Y ]|z < CleBr|™t. In addition,

| [ e | = o <

ey

These prove that (1 + |[I|7Y9)~1(¢2)? is C times a generalized (H},o0,1)-atom
related to the ball ¢By, and thus (7.3) holds.
Now, for every (f,g) € H"'(R?) x BMO(R?), (7.3) implies that

A9y = 11> CF g 40) (W)l

I XeE

OIS (KA I+ 17177) g v

I XeE
ClWy (Nl llgll o2
Cllf Nzt llgll o,

where we have used the fact that BMO(R?) = F%2(R?) is the dual of H'(R%)
F?(RY), we refer the reader to [20] for more details.

IN

<
<

n

Proof of Theorem 7.3. Let (f,b) € Hp'(R?) x BMO(R?). Thanks to Lemma 7.1,
Remark 7.2 and Lemma 2.10, one get
IS(f, 0l < CUHN)mrallbll ro
< Cllfllglblsro-
Then we use Theorem 5.1 to conclude that
15Tl < 1905l + 1Tl IS B)
< Clfllgllollsaro,

which ends the proof.
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8. PROOF OF THEOREM 5.1, THEOREM 5.2, THEOREM 5.3 AND THEOREM 5.4

First, we recall (see [31]) that K is the set of all sublinear operators 7" bounded
from H'(R") into L*(R™) and there is g € (1, 00] such that

I(6 = bp)Tal|r < Clbl sao,

for all b € BMO(R"), any classical (H',g)-atom a related to the ball B, where
C > 0 a constant independent of b, a.

Remark 8.1. By Remark 2.2 and H'(RY) C H}(RY), we obtain that K; C K.
Lemma 8.1. Let T € K;. Then,

|9 = 9560, 5202w )| < CIF g lglaro
for all g € BMO(R?) and f € hL(RY) as in Lemma 4.1.
Proof. Since T € Ky, there are ¢ € (1,00] and € > 0 such that

(8.1) (9 — gB)allzr < Cllgllzmo

for all generalized (H},q,<)-atom a related to the ball B. Then, it follows from
Remark 2.1 and the proof of Lemma 4.1 that there are generalized (H}, g, €)-atoms
a; related to the ball B(z,, 1, 5.27/2) such that

Ponax [ = Na; and N[ < Ol
j j

Therefore, (8.1) implies that
19 = 955202 T (P2 Al < Clglimao YA
J

IA

Cllfllngllgll aro-

Lemma 8.2. Let T' € Kr. Then, the subbilinear operator
Uuf,b) = b TI(f —H(f))
is bounded from H}(RY) x BMO(R?) into L'(RY).
Proof. As Hi%}l(Rd) is dense in H}(RY), it is sufficient to show that
[ACL, D)l < ClIf 1Bl aro

for all (f,b) € Hizﬁi(Rd) x BMO(R?). Indeed, it follows from Lemma 8.1 and
Corollary 4.1 that for every n, k,

116, T(pg-ns2 % (Ynpf))llzr < [|(b— bB(gcn,k,EJ.rnﬂ))T(SOW/2 * (Vn g f))] 2
+ 1 T((6 = bp(a, p,5.2-7/2)) (P2nrz % (e f)))] 11
(8.2) < CllYniflln lIbll aro-
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As f € HlL’i{i(Rd), thanks to Lemma 2.9, there exist N, K € Z* such that
¢n,kf =0

if [n| > N or k > K. Hence, (8.2) and Lemma 2.7 allow us to conclude that

S S [ Tl )

n=—N k=1

[ACf, D)l <

Ll

< Clbllsao Y Nenkfllny < Cllf s bl sy,
n,k

which ends the proof.
O

The proof of Theorem 5.1. As T € K, C K (see Remark 8.1), it follows from The-
orem 3.1 of [31] that there exists a bounded subbilinear operator V : H'(R?) x
BMO(R?) — L'(R?Y) such that for all (f,b) € HY(R?) x BMO(R?), we have

(8.3) [ T(=TI(f, 0)[ = V(£ 0) < |6, TI(H) < V(f,0) + [T (=1I(f, b))].

Let us now define the bilinear operator R by

R(f,0) == U(f.0)] +V(H(]), )
for all (f,b) € H} (R?)x BMO(R?), where U is the subbilinear operator as in Lemma
8.2. Then, the subbilinear decomposition (8.3) gives
T(S(f, )| = R(S,b) < [[b, TINI < |T(S(f,0))] + R(S, b).
Moreover, by Lemma 8.2, the boundedness of V and Lemma 2.10, we get
IR0 < UL 0) e + IVH(S), b) e
< C|fllm 1ol Baro + CUHE) a2 |6l Baro
< Cllf [l 1ol aro,

which ends the proof.
O

The proof of Theorem 5.2. As T is a linear operator in K C K, it follows from
Theorem 3.2 of [31] that there exists a bounded bilinear operator W : H'(R?) x
BMO(R?Y) — LY(R?) such that for all (f,b) € H'(R?) x BMO(R?), we have

(8.4) [0, T](f) = W(f,b) + T(=II(f,b)).
Let us now define the bilinear operator R by
R(f,0) :=U(f,0) + W(H(S),b)
for all (f,b) € HL(RY) x BMO(R?). Then, the bilinear decomposition (8.4) gives
0. T](f) = R(f,0) + T(S(f,b)).
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Moreover, by Lemma 8.2, the boundedness of W and Lemma 2.10, we get

IR 0) [ < UL D) + [VH), )l
< Ol fllm Il aco + CUSH) a0l Baro
< Clfllm ol Baro,

which ends the proof.

To prove Theorem 5.3 and Theorem 5.4, we need the following lemma.

Lemma 8.3. Let b be a non-constant BMO-function and f € Hi(R?). Then, the
following conditions are equivalent:

i) f € Hp,(RY).

i) &(f,b) € Hi(R?).

i1) [b, R;](f) € L*(R?) forall j=1,....d.

Furthermore, if one of these conditions is satisfied, then

1y, = Al 1ol Baco + NI[b; MLI(f)l| s
~ Nl bllsao + 160, 0)1 a2

Q

d
£ 1Lz 1Bl aso + D by R,

j=1
where the constants are independent of b and f.

Proof. (1) < (ii). As My € K1, (see Proposition 6.3), by Theorem 5.1, there is a
bounded subbilinear operator R : H; (R?) x BMO(R?Y) — L'(R%) such that

ML(S(f,0)) = R(f,0) < [[b, ML()] < ML(S(f,0)) +R(f,b).
Consequently, [b, M1](f) € L*(RY) iff &(f,b) € H}(R?), moreover,
113y, = W Nz 10l saro + 1SS, 0) |y -

(1) < (d4it). As the Riesz transforms R; are in K (see Proposition 6.2), by
Theorem 5.2, there are d bounded subbilinear operator R; : H} (R?) x BMO(R?) —
LY(RY), j =1,...,d, such that

[b, Bj](f) = R;(f,0) + R;(S(f,0)).
Therefore, &(f,b) € H}(RY) iff [b, R;|(f) € L'(RY) for all j = 1,...,d, moreover,

d
1z lolmao + 1S 0) e ~ L Lz blzao + > NI Ri) ()l

J=1
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Proof of Theorem 5.3. (i). By Theorem 5.1, there is a bounded subbilinear operator
Rr : Hi (RY) x BMO(R?) — L'(R?) such that

I T(S(f,0)| = R (f.0) < |[b, TI(f)| < |T(S(f, b)) + R (f, D).
Hence, Lemma 8.3 allows that for every f € H} ,(R?),

116, TI e < Ty 2 IS, D)y + (R0 (f, 0)] e
< Cll ey, + Cllf e 1ol a0 < Clifllaeg

which ends the proof of (7).
(17). It follows directly from Lemma 8.3, and thus the proof of Theorem 5.3 is
finished. O

Proof of Theorem &5.4. The proof of Theorem 5.4 can be seen a consequence of The-
orem 5.6 and Lemma 8.3. We leave the details to the interested reader.

U

9. PROOF OF THEOREM 5.5, THEOREM 5.6 AND THEOREM 5.8

We start by recalling the notation of molecules which is a slightly modified version
of the classical one.

Definition 9.1. Let 1 < ¢ < oo and € > 0. A function a is called a (H',q,€)-
molecule related to the ball B if

i) lallzaim) < |BIVI,

ii) ||a|| porriparpy < 2728 B|VaT k=45, ...,

i) [pa a(x)de = 0.
Lemma 9.1. Let 1 < ¢ < oo and e > 0. Then, there is a constant C = C(q,€) > 1
such that for every (H*,q,e)-molecule f related to the ball B,

I flle < C.

Furthermore, there exists a sequence of classical (H', q)-atoms ay, as, ..., ag, ..., re-
lated to 2°B,2°B, ..., 23T* B, ..., respectively, satisfying

f =C i 27]%044:-
k=1

The proof of Lemma 9.1 is similar to the one of Theorem 4.7 of [40]. We omit the
details.

9.1. Proof of Theorem 5.5. In order to prove Theorem 5.5, we need the following
lemma.

Lemma 9.2. Let 1 < ¢ < o0, € > 0 and T be a L-Calderon-Zygmund operator.
Then,

I(f = f8)(9 = 98)Talr < CliflBmollgllzro
for all f,g € BMO(RY), generalized (H},q,¢c)-atom a related to the ball B.
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Proof. By Lemma 6.1, Lemma 6.2 and Holder inequality, we get
I(f = fB)(9 — gB)Tall:
= |I(f = f8)(g9 — 9B)TallL12p) + Z 1(f = f8)(g — 9B)Tall L1 2k+1\2¢ B)

k>1

< [If- fB”L2q’(zB)”9 - QBHL%/(QB)HT(‘I)HLQ +
+ N = Follar @ream g — 98l 2w ey | T(@) | aois o)
k>1
< Clfllsmollgllizmo + D Ck+ 1| flsumollgllsao|28 B[V 270 2k B|H/a~t

k>1
< C|fllsmollgllsro,

where 1/¢+1/¢' =1 and §y > 0 in Lemma 6.2.
U

Proof of Theorem 5.5. (i). Suppose that T'is a (¢, L)-Schrodinger-Calderén-Zygmund
operator. Let us first prove that 7' is bounded from H}(RY) into H'(R?). Indeed,
for every generalized (H},2,6)-atom a related to the ball B. As T*(1) = 0, Lemma
6.2 implies that T'a is C' times a (H', 2, §)-molecule related to the ball B. Therefore,
Lemma 9.1 and Proposition 2.1 yield that T is bounded from H}(R?) into H*(R?).
By this, the proof of (7) will be reduced to showing that

(9.1) 1(b = bg)allmy < Cbll pp00e
and
(9.2) (b = bp)Tallm < CHbHBMO‘LOg

for all generalized (Hj},2,d)-atom a related to the ball B = B(xq,r). Note that the
constants C'in (9.1) and (9.2) are independent of b, a. Indeed, if (9.1) and (9.2) are
true, then

116, TT(@) [y 1(b = bp)Talgy + T~ bs)a)llmy

<
< Clbllgprowes + ClT g~ 10 = bs)all sy

IN

CHb”BMo‘L"g-

Therefore, Proposition 2.1 yields that [b, T] is bounded on H} (R%), moreover, ||[b, T o <
C with the constant C' is independent of b.
Verifying (9.1) is similar to (9.2) but its proof uses an easier argument, we leave
the details to the interested reader. Let us now establish (9.2). As H}(RY) is the
dual of VMO (R?) (see Theorem 3.2), it is sufficient to prove that

(9:3) l¢(b = bp)Tal|Lr < Clbll gpsoeell ¢l Baro,
for all ¢ € C>°(R?). Besides, from Lemma 9.2,
I(¢ = é8)(b = bp)Tallr < Clbllsrolldllyo < Clbll gyrorsll@l Baro, -
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This together with Lemma 2 of [16] allow us to reduce (9.3) to showing that

s
(9.4) 105 (e + 22 b~ by)Tall 12 < Cllglpagon

Setting € = §/2, it is easy to check that there exists a constant C' = C'(¢) > 0
such that

log(e + kt) < Ck®log(e + 1)
for all £ > 2,¢t > 0. Consequently, for all £ > 1,

p(xo) c p(xo)\ kot
(9.5) log (e + T) < C2*log <e + <2k+1r> :
Then, by Lemma 6.2 and Lemma 9.7 (see below), we get
log (
= log (

Z log <e + ) (b —b)Tal|p1(or+1p\2¢ By

k>1

T ko+1
C'log (e + (p(QTo)) ) 16— ball2e8) | Tal| > +

p T ko+1
+C Z 2’95 log <6 + (215_’_?,2) ) ||b - bBHL?(Q’“HB) ||Ta,||L2(2k+lB\2kB)

k>1

)H b— bB TaHLl

>’ b—bB TaHLl(QB -+

IN

< CRBIY2|b| ysoeslall 2 +C 3 25 ( + D2 B2 by o2 (2" B2
k>1
< C”bHBMolLoga

where we used d = 2¢. This allows us to end the proof of (7).

(i1). As V € RHy, it is well-known (see [35, 39]) that the Riesz transforms R; are
Schrodinger-Calderén-Zygmund operators satisfying Rj(1) = 0, and thus (ii) can
be seen as an immediate consequence of Theorem 5.6.

U

9.2. Proof of Theorem 5.6. Here and in what follows, Ny = log, Cy + 1 with Cj
the constant in (2.1) and the constant 6 € (0,1) is as in Lemma 2.6 of [33] (see
below). Let us now recall the following two lemmas.

Lemma 9.3 (see [23], Lemma 1). Let V. € RHys. Suppose that N > Ny. Then,
there exists C(N) > 0 such that for all ball B(z, R),

1 _
S / V(y)dy < C(N)R™2.
(1+35) sin



HARDY SPACES AND COMMUTATORS 52

Lemma 9.4 (see [33], Lemma 2.6). Let V' € RHyy. Then, there exists § € (0,1)
such that for any positive number N and 0 < h < |z — y|/16, we have

C(N) 1 V(z) 1
K (o, y)| < ( / d+ )
| ]( )| <1+ |x—y|)N|x—y\d1 ‘l,_z‘dfl |x_y‘

p(y) B(z,|lz—yl)

and
C(N) ho V(2) 1
| j( ) ]( )| <1+H)N|x_y|é+d—1 |x—z|d—1 |x—y|
o(y) B(z|lz—yl)

where K;(z,y), j =1, ...,d, are the kernels of the Riesz transforms R;.
Next lemma will be useful for proving Theorem 5.6.

Lemma 9.5. Let 1 < ¢ < d/2. Then, Rj(a) is C times a (H',q,d)-molecule for all
generalized (H}, q,0)-atom a related to the ball B = B(xq,r). Furthermore, for any
N >0, there exists C(N) > 0 such that for every k > 4,

C(N) N2_k6|2kB|1/q_1-
2k
(1 + p(mo>)
Proof. 1t is well-known that R; is bounded from H} (R?) into H'(R?), inparticular,
one has [, R;(a)(x)dz = 0. Moreover, by the L%boundedness of R; (see [39],
Theorem 0.5) one has ||R;(a)||r« < C|B|Y97!. Therefore, it is sufficient to verify

(9.6). Thanks to Lemma 9.4, as a is a generalized (H}, g, §)-atom related to the ball
B, for every x € 2"1B\ 2¥B,

R < | [05,0,) ~ Kwmn)alo)dy] + 1w m0)| [ atw]

< [ bl [ Ve

(9.6) 1R ()| Laae+1pr2em) <

e N+ANo | — go|d+0-1 |z — 2[4 |z — 20|
B p(x0) B(z,|z—=0])
C(N 1 Viz 1 r 4
O (M Ly
1 o lz—adl 00 |z — 20 |z — 2| |z — 20|/ \ p(z0)
p(zo) B(z,|z—wo)
(9.7)
C(N 1 0 V 9—ko
< &) N No [0k Td+5—1 / <Z)df1dz +5r
(1 L2 ) (1 R zwr) > (2r) |z — 2] 2" B]
p(zo) p(zo) B(z,|z—=o])

Here and in what follows, the constants C'(N) depend only on N, but may change
from line to line. Note that for every z € 2" B\ 2*B, one has B(z, |x — x¢|) C
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B(z, 28 r) € B(xo, 2"2r). The fact V € RHys, d/2 > g > 1, and Holder inequal-
ity yield

(@;|z=2ol) La(2k+1B\2k B,dx)
1/q
\% d/2 2q
< C(2k+17,)173 / ( / [V (2)] dz) T g
|z — z|d-1
2+1B\2kB  B(z,2k+1r)
2/d
/2
< C(2F) 32 Bl a / dx / VeI,
|z — 2|41
B(z,2kt1r) B(zo,2k+27)
(9.8) < C2kp |2k B[Vt / V(z2)dz.
B(z0,2k+2r)
Combining (9.7), (9.8) and Lemma 9.3, we obtain that
”Rj (a)] L4(2k+1B\2k B)
C(N 02ky |2k B| /a4t 1 2=k
< ( ) - r 7];| - (l : ~ / V(Z)d2+ - |2k+lB‘1/q
1 4 2 (2ky)d+o- 1 4 22 0 |2~ B
p(o) p(@o) B(o,2k+2r)
< C(N) N2_k6|2kB|1/q_1,
2ky
(1 + p(mo>)
which completes the proof. O

In order to prove Theorem 5.6, we need the following two technical lemmas.
Lemma 9.6. Let 1 < ¢ <d/2 and § > 0. Then,
(g = g98)R;i(a)|lr < Cligllzro,

and

I(f = fB)(g — gB)R;j(a)|[r < C|[fllzmollgllzro,

for all f € BMO(R?), g € BMOy4(RY) and generalized (H},q,d)-atom a related
to the ball B = B(xo,T).



HARDY SPACES AND COMMUTATORS 54

Lemma 9.7. Let 1 < ¢ < o0 and 8 > 0. Then, for every f € BMOlOg(]Rd)
B = B(x,r) and k € Z", we have

2k

/\f(y)—fBde)”qgcze (1%

)(k0+1)€
”fHBMologv
log <e + (5 ple ))k‘)“) wo

|2+ B

2kB
where the constant ko is as in Lemma 2.1.

To prove Lemma 9.6, we need to recall the following lemma.

Lemma 9.8 (see [8], Lemma 1). Let 1 < ¢ < oo and 0 > 0. Then, for every
f € BMOpy(RY), B= B(x,r) and k € Z*, we have

/q kg \ (ko+1)
[ = solran) ™ < (14 220" i v

Proof of Lemma 9.6. Noting that r < Cpp(zg) since a is a generalized (H},q,0)-
atom related to the ball B = B(x,r), choosing N = (ko+ 1) in (9.6) together with
Holder inequality and Lemma 9.8 allow to conclude that

(g — gB)R‘( )l |F!

= (9 — 9B)Rj(a)|| 1 21m) +ZH 9 — 95)R;j(a)|| L1 2r+1\2¢ B)

1
2" B

2kB

k=4
< llg- QBHLq’(243)HRJ'”L‘I%LQHGHL‘! + Z lg — gB|’Lq'(2k+1B\2’“B)|’Rj<a>"Lq(2k+1B\2kB)
k=4
< CligllBmos, +
LC i<k X 1)‘2k+lB‘1/q’ <1 n 2:(‘;1)7“>(k0+1)0 gllsmro,, 1 ; 27k5‘2kB‘1/q*1

(ko t1
k=4 (1 + %) ’

< CHg”BMoL,97
where 1/q+ 1/¢' = 1. Similarly, we also obtain that

I(f = fB)(g — gB)R;(a)] 11
= |(f—fe)(g—gn)R ()||L1(24B)+Z|| = I8)(9 — g8)Rj(a)| L1 (2r+13\28 B)

IA

1f = FBll 2 amllg = gB||L2q/(24B)||Rj( a)l[za +

+ Z If = fBHLQq/(2k+1B) lg — QBHLQQ/(zkﬂB)”Rj(a)HLq(2k+lB\2kB)

< CHfHBMngHBMoLea
which ends the proof.
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Proof of Lemma 9.7. First, we claim that for every ball By = B(xq,9),

o (ko+1)0
(1 * p(zo) )

log <e + ( (”CO))’COJrl

09 (g 16 = falan) " <C oot

Assume that (9.9) for a moment. Then,

(g [ 110 = opian) "

2kB
k—1
1 1/q
< (g [ 110) = Fnltdn) "+ 3 | fon = fon
2k B =0
(o) o ()
p(z d p(x
< ”JCHB]\/IOIOg + 2 HJC”BMOlog
o (e e v+ 2T T gy
(1 n &)(ko-‘rl)e
< Ck— " 11 paros
log (e + (%)k”l) e
Now, it remains to prove (9.9).
Let us define the function h on R? as follows
1, T € Bo,
h(z) = § 2=l g € 2B, \ By,
0, X ¢ 2Bo,
and remark that
r—1Yy
(9.10) ) )| < =4

Setting f:: f — faB,- By the classical John-Nirenberg inequality, there exists a
constant C' = C'(d, q) > 0 such that

e - iy -7

< CthHBMo-

/a
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Therefore, the proof of the lemma will be reduced to showing that

T0

(1+
= (o)
|hfllBro < C =

)(ko-ﬁ-l)@

lOg (6 + (m)k0+1> Hf”BMOL"%,
o
namely, for every ball B = B(z,r),
14+ —ro (ko+1)0
: f f < P(xo))
9.11 RN o )
B

Now, let us focus on Inequality (9.11). Noting that supp h C 2By, Inequality
(9.11) is obvious if BN 2By = (). Hence, we only consider the case B N 2B, # ().
Then, we have the following two cases:

The case r > ry: the fact BN 2B, # () implies that 2By C 5B, and thus

1 = = 1 7
& / ) fl) = (hsldy < 2 / () Fw)ldy

< z5dﬁ / F) — fosoldy

0
(zo)

< C 4 .

 log (e 4 elao )) HfHBMOIL%

2ro

o (k:()-i-l)@
< C (1 T P(%)() ;

P(0) \ko+1
log(e—l—( Lo kot )

[T —
The case r < ry: Inequality (9.10) yields
1 / ~
[ b Fly) — (hF)ldy < 275 / 1) F(y) — hi Faldy
71/ E

< 2% / () (F) — Fo)ldy+

+ 2l / |B|’/ ))dy|de
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By r <ry, B= B(z,r) N B(xg,ry) # 0, Lemma 2.1 gives

< <C 1+ <Cc(1+ .
p(z) = plz) = p(xo) ( ) ( )

Consequently,

9
1 1+pLm
1B] / |f(y) — faldy < ((p)(rz)flazuolog

J log(e +
(ko+1)0
(9.13) <c (1 ) £
. lo; 3
~ log (e + (22 ))ko+1) BMOL
and
1 ( 237’0)
W / |f(y) — fB(x,23m)|dy < (@) ||f||BMolos
7 ’ B(x,2370) 237’0
( . (ko+1)0
)
p(zo)
(914) S C Hf”BMolog
£(xo) \k L0
log (e + ( mo ) 0+1)
Noting that for every k € N with 281y < 23,
d 1
ok+1p — JokB| S IEYRERY] — Jort+1p
faenn = fool < X'rp [ 1)~ fapldy
2k+1B
0
(1 + igy)
< C p(x Hf”BMolog
( 237'0)
()™
< Hf”BMolOgv
:B L,6
log (e+ - Vyko+ )
allows us to conclude that
(1 . (ko+1)0
_'_ T
To (J:()))
(915)  |fp(er) — Fparen] < Clog (e+22) 11 paros-

log (e + (p(xo))ko 1)
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Then, the inclusion 2By C B(z, 2%r¢) together with the inequalities (9.12), (9.13),
(9.14) and (9.15) yield

1 ~ ~ 1
Eﬂ!Wmmf@»—Wﬁmm/s aEEZU@»—muy+

r
_'_47,_ (‘fB($,T’) - fB(m,2310)| + 4dMO<f7 B(.ﬁl}, 23%0)))
0

ro (k0+1)9
(1 - p(zo) )

T To
< C(l _'_ - 10 e + - ) o
N To 2 r ) log (e + (M)kwl) Hf”BMOIL%
T0
( )(k;o-i—l)@
< o
a log (e + ( p(zo )k +1) Hf”BMOIL%
we have used = log(e + %) < sup,, tlog(e + 1/t) < oo. This ends the proof.
U

Proof of Theorem 5.6. (i). Suppose that b € BM’Olog > (R?) for some 6 > 0. By the

Riesz transforms R; are bounded from H}(R?) into H L(R%), similarly to the proof
of Theorem 5.5, it is sufficient to show that

(9.16) 16— bs)alluy < Colpasoms
and
(9.17) 100 =bp)Rja)llmy < Cloll parores

for all generalized (H},d/2,d)-atom a related to the ball B = B(wg,r). Note that
the constants C' in (9.16) and (9.17) are independent of b, a.

Verifying (9.16) is similar to (9.17) but its proof uses an easier argument, we leave
the details to the interested reader. Let us now establish (9.17). Using the ideas
from the proof of Theorem 5.5 together with Lemma 9.6 allow us to reduce (9.17)
to showing that

p(xo)
(9.18) log e+ 52 )16 = b8) Ry @)l < Cl o
Setting € = /2, there is a constant C' = C(¢) > 0 such that for all k£ > 1,
p(xo) ke p(xo)\ kot1
(9.19) 1og( - ) < 2% log <e n <2k+1r> .

Note that r < Cpp(xg) since a is a (H},d/2)-atom related to the ball B(zg,r).
Choosing N = (ko +1)0 in (9.6) together with Holder inequality, (9.19) and Lemma
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9.7 allow us to conclude that
p(To)
tog (e + 52 )16 — bs) Ry (0)]| 12

~ log(e+ M) 16— b5) Ry (@) | o) +

+Zlog(

k>4

)H(b — b) Ry (@) | 1 x1 pr2v )

p(x0)\ kot
< Clog (et ()" ) 10~ bal ity IS0 +
. p(o) \ kot
+C ) 2% log (6 * (2k+(1)r> ) 1= 051l 72, (2+1B) 185 (@) o201 m2)
k>4
—ke
< CHb”BMolL"ff9 + CHb”BMOIL"ff9 Z 2

k>4
< Clbll o
where we used 0 = 2e. This ends the proof of (7).
(7). Although (ii) can be followed from the duality and Theorem 2 of [8], we
would also like to give a direct proof for the completeness.

Suppose that b € BM Oy, 9(R?) for some > 0. For every (H},d/2)-atom a related
to some ball B = B(zg,r) in R?, Remark 2.1 and Lemma 9.6 give

[1R;((0 = bp)a)|r < [[(b—bs)R;(a)l[rr + ClI[b, Ryl(a) ||y
(9.20) < Cllbllsaoy, o + ClNIb, Billlsry

for all j = 1,...,d. On the other hand, noting that r < Cpp(x) since a is a (H},d/2)-
atom related to some ball B = B(xg,r), Holder inequality and Lemma 9.8 give

b = bg)allpr < Ib=bsll 4,  llalleem) < Cliblsyor,.

This together with (9.20) prove that (b — bg)a € H}(R?), moreover,

d
(9.21) I(b—bp)allmy <C (IIbIIBMoL,e +> I, Rj]ll@yg)

j=1
where the constant C' > 0 independent of b, a.
Now, we prove that b € BM OILO%(]Rd). More precisely, the following

log <e + M) d
0 MO(bv B(x()v r)) <C (HbHBMOL,e + Z ||[bv R]]HH%%H%)
(1 + = j=1
p(zo)
holds for any ball B(xg,r) in RY. In fact, we only need to establish (9.22) for
0 <7 < p(x)/2 since b € BMOy o(R?).

(9.22)
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Indeed, in (9.21) we choose B = B(zg,r) and a = (2|B|)~!(f — fs)xB, where f =
sign (b — bg). Then, it is easy to see that a is a (H},d/2)-atom related to the ball
B. We next consider

p(x0) p(zo) )

) + X(r (o)) (|7 — o|) log (\:c — 2|

9o (%) = X0 (| = o] log (

Then, thanks to Lemma 2.5 in [35], one has ||g..|lBmo, < C. Moreover, it is
clear that g,,,(b—bg)a € L*(R?). Consequently, (9.21) together with the fact that
BMOp,(R?) is the dual of Hi(R?) allows us to conclude that

o2 () ot Blanr) < s (252 500, Bten )
(1 + m)

r

_ 6) / gmr(x)(b(x)—bB)a(:p)d:p’

IN

6/(9zo,rll Brr0, [|(b = bB)al

d
< C (HbHBMoL,e + > |Ib, Rj]HHﬁ@) :
j=1
where we used r < p(z¢)/2 and
1
b(xz) —b de = ——— b(z) — bp(zy.m|de.
J0te) = batertr = g [ ble) = bt
Rd B(zo,r)

This ends the proof.
O

9.3. Proof of Theorem 5.8. To prove Theorem 5.8, we need the following tech-
nical lemma.

Lemma 9.9. There exists a constant C > 0 such that

(9.23) (g — g8)Mfllz < Cllgllzao
and
(9.24) 19 — g8)M(R;(a))|2r < Cllgllmo

for all g € BMO(RY), classical (H',d/2)-atom f related to the ball B and general-
ized (H},d/2,08)-atom a related to the ball B.

Proof. The proof of (9.23) is classical. It can be found in [19] (see also [42], Chapter
V).
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Let us now look at (9.24). By Lemma 9.1 and Lemma 9.5, there exists a se-
quence of classical (H?', d/2)-atoms ay, as, ..., a, ..., related respectively to the balls
24B,2°B, ..., 23tk B, ..., such that

Rj ((l) = CZ Z_kéak.
k=1

Therefore, (9.23) implies that

Cllgllaro (i 27" + i 27k + 3))

(g = g)M(R;(@)]lr < C D 27"((g = gorrsn)Mar) |13 + gare55 — g5 M (ar) | 11)

IN

k=1 k=1
< Clgllzwmo-
]

Proof of Theorem 5.8. Similarly to the proof of Theorem 5.6, it is sufficient to show
that

(9.25) 1(b = bg)allm < C|bl|parores
and
(9.26) (b =bp)Rj(a)|m: < Cllbll Barores

for all generalized (H},d/2,d)-atom a related to the ball B.

Verifying (9.25) is similar to (9.26) but its proof uses an easier argument, we
leave the details to the interested reader. Let us now establish (9.26), namely, the
following

021 | [ (o) - gm)Ri@)@(@)ds] < Clgllsaonslol msio,

holds for all v € C®(RY) since H;(R?) is the dual of VMO (R?) the completion of
C>®(RY) in BMOr(R?). By Lemma 9.6, (g — gp)R;(a)v € L'(R?), moreover,
I(v = vB)(9 = g8)R;(a)llr < Cllgllsmollvllzrmo

(9.28) < Cligllsmors|vl saro..

Now, let us look at f :=wvgR;(a). From Lemma 9.9 and (4.6),

1972 f ] 1o [vM(R;(a)) = (v = vp)M(R;(a))| Lo

ClloMm(R;(a))l|pos + Cll(v — vp)M(R;(a))l| 1
ClIM(R; (@)l [[vll Baro, + Cllvllsmo

CllvllBao, -

IN A IA
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This together with the fact that BMO8(R?) is the dual of H'%(R?) (see Theorem
3.3 of [30]) allows to conclude that

(9.29)

| [(9l) = gmpvaRs @) @its] = | [(960) = g2) 1)

< Cllg = g8l Brrores [MF | pios

< Cllgll o ||| Baroy, -

Finally, (9.27) follows from (9.28) and (9.29). This ends the proof.
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