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Suitable gauge conditions are fundamental for stable and accurate numerical-relativity simulations of inspi-
ralling compact binaries. A number of well-studied conditions have been developed over the last decade for
both the lapse and the shift and these have been successfully used both in vacuum and non-vacuum spacetimes
when simulating binaries with comparable masses. At the same time, recent evidence has emerged that the
standard “Gamma-driver” shift condition requires a careful and non-trivial tuning of its parameters to ensure
long-term stable evolutions of unequal-mass binaries. We present a novel gauge condition in which the damp-
ing constant is promoted to be a dynamical variable and the solution of an evolution equation. We show that this
choice removes the need for special tuning and provides a shift damping term which is free of instabilities in
our simulations and dynamically adapts to the individual positions and masses of the binary black-hole system.
Our gauge condition also reduces the variations in the coordinate size of the apparent horizon of the larger black
hole and could therefore be useful when simulating binaries with very small mass ratios.

PACS numbers: 04.40.-b,04.40.Dg,95.35.+d

I. INTRODUCTION

Five years after the first demonstrations [1–3] that the nu-
merical solution of the inspiral and merger of binary black
holes (BBHs) was within the technical and computational
capabilities of many numerical-relativity groups, our under-
standing of this process has expanded beyond the most opti-
mistic predictions. Numerical-relativity simulations of black-
hole binaries have been performed in a large region of the
possible space of parameters (see [4, 5] for two recent re-
views). In addition, the results of these simulations have been
exploited on several fronts. In gravitational wave data anal-
ysis, they have been used to produce template banks that in-
crease the distance reach of detectors [6–8] and to aid the cal-
ibration of search pipelines [9–11]. In astrophysics they have
been used to determine the properties of the final black hole
(BH) of a BBH inspiral and merger (see [12–14] and refer-
ences therein for some recent work) and hence assess the role
that the merger of supermassive BHs plays in the formation of
galactic structures [15, 16]. In cosmology they have been used
to study the electromagnetic counterparts to the merger of su-
permassive BH binaries and hence deduce their redshift [17–
20].

Despite this extensive and rapid progress, there are por-
tions of the space of the parameters that still pose challenges
for numerical simulations, in particular those involving bi-
naries with BHs that are maximally spinning (but see [21]
for some progress in this direction) or with small mass ra-
tios q ≡ M2/M1 ≤ 1. This latter problem is potentially a
rather serious one since the computational costs scale in gen-
eral quadratically with the inverse of the mass ratio of the sys-
tem. The inspiral timescale is inversely proportional to q (the
smaller BH spends more orbits per frequency interval during
its inspiral onto the larger BH) and the timestep limit in ex-
plicit numerical schemes also decreases linearly with the BH
size and hence inversely proportionally with q.

While some progress has been made recently when simu-
lating binaries with mass ratios as small as q = 1/10 [22, 23],

it is clear that some significant technical changes are needed
in order to tackle mass-ratios which are much smaller. One
of these changes may consist in adopting implicit numeri-
cal schemes in which the timestep limitation is set uniquely
by the truncation error and not by the smallest spacing of
the spatial numerical grid. Another improvement could come
from the use of better spatial gauge conditions that, by bet-
ter adapting the coordinates to the different curvatures of the
spatial slice, may reduce the numerical error and hence the
computational cost. Recent numerical simulations have re-
vealed that the standard “Gamma-driver” shift condition [24]
requires a careful tuning of its parameters to ensure long-term
stable BBH evolutions when considering unequal-mass bina-
ries. Work to alleviate some of these problems has been re-
cently started [25–27] and has so far concentrated on adapting
the damping term η in the shift condition (see Sect. II for a de-
tailed discussion of the gauge and of the damping term) to bet-
ter suit the uneven distribution of local curvature on the spatial
hypersurface as the binary evolves. In practice, while a con-
stant value of η has worked well for comparable-mass bina-
ries, the investigations reported in [25–27] have suggested the
use of damping factors that have a spatial dependence adapted
to the location of the BHs. The first non-constant prescrip-
tion for η [25] used an expression which adapts to the mass
of each BH via the conformal factor, but it was found to lead
to large errors at mesh refinement boundaries [26] and so was
replaced by a simpler analytical form containing constant pa-
rameters which need to be tuned to the masses of the BHs.
At present it is not clear whether the tuning made with mass
ratios q & 0.25 will be effective also for much smaller mass
ratios.

In this paper we propose a different approach to the prob-
lem of a dynamical damping term for symmetry seeking shift
conditions and promote η to be a fully dynamical variable, as
has proven very effective for the shift vector and for the Γ̃
variables. The resulting gauge condition dynamically adapts
to the individual positions and masses of the BBH system
without the need for special tuning and remains well-behaved
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(i.e., smooth and bounded) at all times. Considering three dif-
ferent options for the source term in the evolution equation
for η, we show that an expression which is very simple to
implement leads to numerical errors which are comparable to
or smaller than the constant η case. Furthermore, this choice
reduces the dynamics in the coordinate size of the apparent
horizon of the smaller BH and could therefore be useful when
simulating binaries with very small mass ratios.

The structure of the paper is as follows. In Sect. II we
summarise the numerical infrastructure and the mathemati-
cal setup used in our simulations, while Sect. III is dedi-
cated to a review of the slicing and spatial gauge conditions
and to the discussion of our novel approach. Sections IV
and V are dedicated to the discussion of the results of apply-
ing the new gauge to simulations of single nonspinning BHs
(Sect. IV) and to systems with BHs having either equal or
unequal masses (Sect. V). Finally, the conclusions and the
prospects for future work are detailed in Sect. VI. We use
a spacelike signature (−,+,+,+) and a system of units in
which c = G = M� = 1.

II. NUMERICAL SETUP

The numerical setup used in the simulations presented here
is the same one discussed in [28] and more recently applied
to the Llama code described in [29]. The latter makes use
of higher-order finite-difference algorithms (up to 8th order
in space) and a multi-block structure for the outer computa-
tional domain, which allows one to move the outer boundary
to a radius where it is causally disconnected from the binary.
We refer the reader to the papers above for details and here
simply note that we solve the Einstein equations in vacuum
with a conformal and traceless formulation of the equations,
in which the conformal factor has been redefined as W ≡
[(det(γab)]−1/6, or in terms of the metric γ̃ab = W 2γab. The
corresponding evolution equation is therefore

∂tW − βi∂iW =
1
3
WαK − 1

3
W∂iβ

i , (1)

where K is the trace of the extrinsic curvature (see [28]
and [29] for details on our specific implementation).

The computational infrastructure of the Llama code is
based on the Cactus framework [30, 31] and the Carpet
[32, 33] mesh-refinement driver, and implements a system
of multiple grid patches with data exchanged via interpola-
tion [29]. We use a central cubical Cartesian patch containing
multiple levels of adaptive mesh refinement, with higher res-
olution boxes tracking the location of each BH, i.e., “moving
boxes”. This is surrounded by 6 additional patches with the
grid points arranged in a spherical-type geometry, with con-
stant angular resolution to best match the resolution require-
ments of radially outgoing waves. This allows us to evolve
out to very large radii at a tiny fraction of the computational
cost which would be necessary to achieve the same resolution
with a purely Cartesian code. We use one patch for each of the
±x, ±y and ±z axes, which leads to an inner spherical inter-
patch boundary and to a spherical outer boundary. The latter

FIG. 1: Schematic diagram of a typical Llama grid setup in the
(x, y) plane. Note the inner Cartesian grid with box-in-box AMR
which is joined to a 6-patch multiblock structure (only 4 of these
patches are shown in the (x, y) plane).

can be placed at very large distances and we choose it to be it
causally disconnected from the surfaces on which we compute
the waveforms for the duration of the simulation. Figure 1
shows a schematic diagram of a typical Llama grid setup in
the (x, y) plane. Note the inner Cartesian grid with moving-
boxes which is joined to a 6-patch multiblock structure (only
4 of these patches are shown in the (x, y) plane). The detailed
grid structure used in each run is listed in Table I, and for the
purpose of comparison, the resolution of each simulation is
indicated by the grid spacing h0/M of the coarsest Cartesian
grid. The unit M is chosen such that each BH has mass 0.5M
in both the single and binary BH cases. In all cases the coars-
est resolution is also equal to the radial spacing in the angular
patches.

III. GAUGE CONDITIONS AND DYNAMICAL DAMPING
TERM

As mentioned in the introduction, for the formulation of the
Einstein equations we adopt, the use of suitable gauge con-
ditions was the last obstacle to overcome in order to obtain
long-term stable simulations of BBHs [2, 3]. In what is now
the standard moving-puncture recipe, the lapse α is evolved
using a singularity-avoiding slicing condition from the 1+log
family [34]

∂tα− βi∂iα = −2αK , (2)

while the shift vector βi is evolved using the hyperbolic
Gamma-driver condition [24]

∂tβ
a − βi∂iβa =

3
4
Ba, (3)

∂tB
a − βi∂iBa = ∂tΓ̃a − βi∂iΓ̃a − ηBa . (4)
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Configuration h0/M Nang. Rin/M Rout/M Nlev. rl/M

single BH 0.96 21 39.36 400.00 6 (12, 6, 3, 1.5, 0.6)

BBH, q = 1 0.96 21 39.36 1980.48 6 (12, 6, 3, 1.5, 0.6)

BBH, q = 1/4 (0.8, 0.96, 1.12) (23, 27, 33) 49.92 2545.92 (6, 8) (12, 6, 3, 1.5, 0.8, 0.4, 0.2)

TABLE I: Numerical grid parameters of each BH configuration studied. h0 is the grid spacing on the coarsest Cartesian grid, which is equal
in all cases to the radial grid spacing in the angular patches. Nang. is the number of cells in the angular directions in the angular patches. Rin

and Rout are the inner and outer radii of the angular patches. Nlev. is the number of refinement levels (including the coarsest) on the Cartesian
grid, and rl indicates that a cubical refinement box of side 2rl is centred on the BH on level “l”, with level 0 being the coarsest (in the case that
the boxes overlap, they are replaced with a single box enclosing the two). The unit M is chosen such that each BH has mass 0.5M in both the
single and binary BH cases.

We recall that the Gamma-driver shift condition is similar to
the Gamma-freezing condition ∂tΓ̃k = 0 which, in turn, is
closely related to the minimal distortion shift condition [35].
The differences between these two conditions involve the
Christoffel symbols and are basically due to the fact that the
minimal distortion condition is covariant, while the Gamma-
freezing condition is not (see the discussion in [36]).

The coefficient η of the last term in (4) is usually referred
to as the damping term and plays a fundamental role in our
investigation. It was originally introduced to avoid strong os-
cillations in the shift and experience has shown that by tuning
its value, it is possible to essentially “freeze” the evolution of
the system at late times [37]. In simulations of inspiralling
compact binaries this damping term is typically set to be con-
stant in space and time and equal to 2/M for BBHs and equal
to 1/M for binaries of neutron stars, where M is the sum
of the masses of the BHs or neutron stars [38, 39]. Similar
values have also been shown to yield stable evolutions in the
case of mixed binaries with mass ratios q ' 1/6 [40]. While
this choice works well for binaries with comparable masses, a
simple dimensional argument shows that it will cease to be a
good one for binaries with unequal masses. Since the dimen-
sion of η is inverse mass, and the relevant mass is the mass of
each individual BH, as the BH mass decreases a larger value
of η will be needed to maintain a similar damping effect. For
an unequal mass system, this is impossible with a constant η.

1. Position-Dependent Damping Term

To overcome the limitations imposed by a constant-in-
space damping term, various recipes have been proposed re-
cently in the literature. A first suggestion was presented in
Ref. [25], where the damping term was specified by the func-
tion

ηMB(r) = R0

√
γ̃ij∂iW∂jW

(1−W )2
, (5)

where γ̃ij is the inverse of the conformal 3-metric and R0 is
a dimensionless constant chosen in such a way that R0MBH

corresponds to the Schwarzschild radial coordinate for the sta-
tionary state, i.e., R0 ' 1.31241 [41]. However, as discussed
subsequently by the same authors [26], expression (5) leads
to sharp features (spikes) which can produce coordinate drifts

and affect the stability of the simulations. To remove these
drawbacks, alternative forms were suggested that read respec-
tively [26]

ηMGB = A+
C1

1 + w1 (r̂21)n
+

C2

1 + w2 (r̂22)n
, (6)

and

ηMGB = A+ C1e
−w1 (r̂21)n

+ C2e
−w2 (r̂22)n

, (7)

where w1 and w2 are positive parameters chosen to change
the width of the functions based on the masses of the two
BHs. The power n is a positive integer which determines the
fall-off rate, while the constants A, C1, and C2 are chosen
to provide the desired values of η at the punctures and at in-
finity. Finally, the dimensionless radii r̂1 and r̂2 are defined
as r̂i = |~ri − ~r|/|~r1 − ~r2|, where i is either 1 or 2, and ~ri is
the position of the i-th BH. In addition to the new prescrip-
tions (6)–(7), which provide appropriate values both near the
individual punctures and far away from them with a smooth
transition in between, there is evidence that they also lead to
a smaller truncation error. In particular, when examined for
w1 = w2 = 12, n = 1, the waveforms produced when us-
ing Eq. (6) showed less deviation with increasing resolution
than using a constant η. Similar results were found when us-
ing Eq. (7), leading the authors to the conclusion that the pre-
ferred definition for the damping term is Eq. (6) because it is
computationally less expensive.

It was shown recently [27] for the Gamma-driver shift con-
dition that there is a stability limit on the time step size which
depends on η. This limitation comes from the time integrator
only and is not dependent on spatial resolution. One of the
proposed solutions to this problem is to taper η with a func-
tional dependence of the type

ηS(r) = η0
R2

r2 +R2
, (8)

where r is the coordinate distance from the centre of the BH
and R is the radius at which one makes the transition between
an inner region where ηS is approximately equal to η0 and an
outer region where ηS gradually decreases to zero. We find
that this form does indeed help in removing potential insta-
bilities and, as we will discuss in the following section, can
be used also for a fully dynamical definition for the damping
term.
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2. Evolved Damping Term

While the analytic prescriptions discussed in the previous
section have been shown to be effective when suitably tuned,
it is not clear whether they will be equally effective for dif-
ferent mass ratios, nor how to choose the parameters without
case-by-case tuning. In view of this and in order to derive
an expression which adapts dynamically in space and time to
the local variations of the shift vector, we have promoted the
damping term to be an evolved variable with the simple equa-
tion

∂tη − βi∂iη =
1
M

(−η + S(r)) . (9)

The function S(r) is a position-dependent source term which
can be chosen freely. The first term on the right-hand-side
is introduced to induce an exponential decay of the damping
term towards S(r) such that in the steady state, η → S(r).
The advective derivative term βi∂iη ensures that the motion
of the punctures, which are locally advected by βi, is taken
into account in the driving of η → S(r) (we want to drive η to
a specific behaviour in the neighbourhood of the punctures).
To better interpret our suggestion for the dynamical gauge (9),
it is useful to compare it with a simpler ordinary differential
equation

τ
dη

dt
= −η + S(t) . (10)

Setting now η0 ≡ η(t = 0), S0 ≡ S(t = 0), and assuming
that τ(dS/dt) � 1 so that it can be neglected at first order,
Eq. (10) would have solution

η ' S + (η0 − S0)e−t/τ , (11)

and thus η → S as t→∞. Although in the case of our gauge-
evolution equation (9), the source term is time-dependent and
sometimes the time derivative can be rather large, especially
near the punctures, equation (10) is useful to recognise that
the damping term is itself damped and driven to the solution
given by the source function S.

The arbitrariness in the form of S(r) is removed in part by
the works discussed in the previous sections and hence a first
possible form is inspired by (5) and thus given by

S1(r) = ηMB(r) = R0

√
γ̃ij∂iW∂jW

(1−W )2
. (12)

As we will discuss in the next sections, this choice works very
well for single BHs, leading to smoother profiles for η and
consequently more stable evolutions. Similarly, another con-
venient choice for the source is a combination of expression
(5) and (8)

S2(r) = ηMB(r)ηS(r) =

(
R0

√
γ̃ij∂iW∂jW

(1−W )2

)(
R2

r2 +R2

)
,

(13)
This choice ensures that η is dynamically adapting in the in-
ner region due to the ηMB factor, while in the outer region the

ηS factor ensures minimal dynamics and implements the sug-
gestion of Ref. [27] that η → 0 at large radius to avoid the
instability there.

The generalisation of the source term (13) to the case of a
binary system is straightforwardly given by

S3(r) =

(
R0

√
γ̃ij∂iW∂jW

(1−W )2

)(
R2

r21 + r22 +R2

)
, (14)

where ~r1, ~r2 are the distances from ~r to the individual BHs
centres.

The following sections will be dedicated to the results of
simulations performed with the evolution equation for the
damping term (9) to study nonspinning single BHs via the
source terms (12)–(13), and to evolve BBHs via the source
term (14). As a final remark we note that although our dy-
namical gauge requires the numerical solution of an additional
equation [i.e., Eq. (9)], the associated computational costs are
minimal, given that we are evolving a scalar quantity and that
the evolution equation is very similar to those already imple-
mented within the Gamma-driver condition. More specifi-
cally, the added computational costs range from 1 to 2% de-
pending on the complexity and length of the simulation (the
longer the simulation, the larger the impact of frequent restarts
and thus the smaller the impact of the additional evolution
equation).

IV. APPLICATION OF THE NEW GAUGE: SINGLE
BLACK HOLES

We next examine the properties of the new dynamical
gauge (9) for the damping factor and present its advantages
when compared with the other position- and mass-dependent
suggestions presented in the previous section. Specifically, we
will study the ηMB(r) and ηS(r) prescribed forms for η, and
compare them with both the S1(r) and S3(r) variants of the
evolved gauge condition (9). We will start by considering the
simple case of a single nonspinning puncture.

Fig. 2 shows a comparison between an evolution using the
prescription ηMB(r) provided by Eq. (5) (red dashed lines) and
the new gauge using as source S1(r) from Eq. (12) (blue solid
lines). In both cases, the value of the damping factor at the
puncture adapts automatically to the mass of the BH, due to
its dependence on the conformal factor. However, when the
damping term is given the form ηMB(r), large spikes develop
at the origin at late times and noise travels outwards as the
gauge settles (cf. left panel of Fig. 2). These large noise pulses
leave sharp features in η which might lead to coordinate drifts
and eventually affect the stability when simulating BBHs. On
the other hand, when evolving the damping factor and using
ηMB(r) as a source, it is possible to avoid any forcing of the
damping term, which is instead always the solution of the dy-
namical driver. This, in turn, reduces the noise and ensures
long-term stability of the simulation as shown by the right
panel of Fig. 2.

We can further improve the stability properties of the damp-
ing factor in the outer wave region by matching it with a
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FIG. 2: Profiles along the z-axis of the damping term η for an isolated Schwarzschild BH. Different lines refer to the case when η is prescribed
using Eq. (5) (red dashed line) or when evolved in time using Eq. (9) with source given by (12) (blue solid line). The left panel refers to
an earlier time and focuses on the central region of the grid. The right panel refers to a later time and shows a larger portion of the grid,
highlighting that in contrast to the dynamical η, the evolved one leads to smooth profiles at the patch boundary (see inset). Note that the outer
boundary is at 400M and cannot be responsible for the appearance of the spikes via reflection.

function which drives it smoothly to zero. Fig. 3 shows a
comparison between a BH evolution using the prescription
ηMB(r)ηS(r) given by Eqs. (5) and (8) (red dashed lines),
and the evolved η using as source Eq. (13) (blue solid lines).
Note that in the case of the prescribed ηMB(r)ηS(r), the out-
going gauge pulses still produces sharp features near the BH
at z ∼ 3M , which are neither propagated away nor damped
in-place. Moreover, sharp features far from the BH continue
to be produced as the initial spikes pass through the interpatch
boundaries.

Smoother profiles can instead be obtained by evolving the
damping factor, using ηMB(r)ηS(r) as a source. This is es-
pecially true near the BH, while large variations but of small
amplitude are still produced as the gauge pulses pass through
the interpatch boundaries. Finally we note that in contrast to
all the other evolution variables in our code, no artificial dis-
sipation is imposed on the damping term so that the features
of its evolution equation can be better appreciated.

V. APPLICATION OF THE NEW GAUGE: BLACK-HOLE
BINARIES

As shown in the previous section, our evolved damping fac-
tor leads to smoother profiles and consequently to stable BH
evolutions, free of coordinate drifts. In this subsection, we
study the effect of using different functional forms for the
sources in the evolution equation (9).

A. Equal-mass binaries

We first consider the evolution of an equal-mass nonspin-
ning BH binary, whose properties can be found in Table II.
For simplicity we have considered a system with small sep-
aration D = 7M , so that overall the binary performs only
about 3 orbits before merging and settles to an isolated spin-
ning BH after about 200M .

Fig. 4 shows a comparison of the profile of the damping
term on the z-axis when using the evolution equation (9) and
the source term given either by S1 [cf. Eq. (12); red dashed
line], or by S3 [cf. Eq. (14); blue solid line]; in both cases we
have set R = 20M .

It is clear that when using either expression for the source
function, the value of η at the location of the punctures adapts
in time through the coupling with the conformal factor W ,
which tracks the position and the masses of the two BHs. It
is also worth noting that near the two punctures, the two evo-
lution equations yield very similar solutions for the damping
factor as one would expect since R0 � D. However, when
using the source (12) (red dashed line), the evolution of the
damping term produces large gauge pulses which travel out-
wards and are amplified by the mesh-refinement and the in-
terpatch boundaries. This is particularly evident in the right
panel of Fig. 4 which refers to a later time when the BHs have
already merged. These undesirable features are very effec-
tively removed by adopting the source term (13) (blue solid
line), which provides a natural fall-off for the damping term
as this propagates towards the outer boundary.
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FIG. 3: The same as in Fig. 2, but the prescribed damping term Eq. (5) is tapered with a function Eq. (8), while the source term for the evolution
equation is given by (13). Note that in this case the damping term falls off as expected but that in the case of the prescribed ηMB(r)ηS(r),
the outgoing gauge pulses still produces sharp features near the BH at z ∼ 3M , which do not propagate away. Moreover, sharp features
are produced as the initial spikes pass through the interpatch boundaries located at z ∼ 40M . Smoother profiles can instead be obtained by
evolving the damping factor.

FIG. 4: Profiles along the z-axis of the damping term η for an equal-mass BBH system. Different lines refer to the case when η evolved
with sources given respectively by (12) (red dashed line) or by (13) (blue solid line). The left and right panel refers to two different times and
highlight the importance of the fall-off term to avoid reflections at mesh boundaries. Note that the outer boundary is at ' 2000M and cannot
be responsible for the appearance of the spikes via reflection.

B. Unequal-mass binaries

We next consider the evolution of an unequal-mass non-
spinning BH binary with mass ratio q = 1/4, initial separation
D = 8M and which performs about 4 orbits before merging

and settling to an isolated spinning BH after about 600M . A
complete list of the binary’s properties can be found in Ta-
ble II. We find that an evolution equation for η is a very con-
venient choice also for unequal mass binary simulations.
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Configuration m1/M m2/M x1/M x2/M P x
1 /M P y

1 /M

single BH 0.5 −− 0.0 −− 0.00000000 0.00000000

BBH, q = 1 0.5 0.5 3.5 −3.5 −0.00335831 0.12369380

BBH, q = 1/4 0.8 0.2 1.6 −6.4 −0.00104474 0.07293950

TABLE II: Initial data parameters for the configurations studied. Expressed in units of the total mass M are: the initial irreducible masses of
the BHs (obtained by iterating over bare mass parameters) mi, the coordinates of the BHs on the x-axis xi, the momentum of BH 1 P i

1 (the
momentum of BH 2 is equal and opposite, P i

2 = −P i
1). The unit M is chosen such that each BH has mass 0.5M in both the single and binary

BH cases.

1. Spatial Dependence

Fig. 5 shows the spatial dependence of the damping term at
some representative times. The two top panels refer to when
the punctures are close to the x-axis for the cases where η is
kept constant in space and time (red dashed line) and where
it is evolved in time with a source given by (14) (blue solid
line). Clearly, also in the unequal-mass case the new gauge
drives the damping term to follow the BHs and to be smooth
elsewhere. The bottom left and right panels show the damping
term on the (x, y) plane at two times which are similar to those
shown in the top panels and show the non-trivial but smooth
distribution of the damping term which adapts to the motion
of the punctures (the latter are near the maxima of the η). The
value of η is ∼ 1.5/M near the large BH and ∼ 4.5/M near
the small BH, leading to a value for mi η ∼ 1 for both BHs,
where m1 = 0.8M and m2 = 0.2M are the irreducible
masses of each BH. This demonstrates that the gauge con-
dition is adapting the value of η to the mass of the BH. As an
aside, we note that there is a region between the BHs where η
drops nearly to 0, and a “wake” of low η which follows behind
the motion of the smaller BH.

2. Waveforms and Errors

One of the most useful quantities calculated from a BBH
simulation is the gravitational waveform. The physical wave-
form is that measured at future null infinity, and is indepen-
dent of the gauge condition used for the evolution. In practice,
waveforms are often computed at finite radii and extrapolated
to future null infinity, and the gauge condition can have an
effect on the extrapolation error. More importantly, different
gauges can lead to different truncation errors in the evolution
of the BH motion depending on how well we can reproduce a
given field variable at the chosen resolution, and these errors
will be reflected in the waveform errors. As a result, differ-
ent gauges can in practice lead to small differences also in
the calculation of the waveforms, and it is important to study
the impact of the different gauges on the waveforms and their
truncation errors.

In Fig. 6 we show the real part of the ` = 2,m = 2 mode
of the gravitational waveform Ψ4 as extracted at r = 100M .
Different lines (dotted, dashed, solid) refer to the different res-
olutions reported in Table I, while the two panels refer to the
cases where η is kept constant in space and time (upper panel)
and where it is evolved with a source given by S3 [cf. Eq. (14)]

(lower panel). As expected, the differences in the waveforms
due to the different truncation errors for the two gauges are
very small and confirm that a different prescription for the
gauges does not influence the gravitational-radiation signal.
Figure 7 offers a different view of the gravitational-wave sig-
nal by showing the phase difference in the ` = 2,m = 2
mode, ∆φ22, of the waveforms as computed between the low
and medium resolutions (red dashed line) and between the
medium and high resolutions (blue solid line). The latter
has been scaled to compensate for an 8th-order convergence
which is indeed obtained as shown by the very good overlap
between the dashed and solid curves during all of the inspiral,
being slightly worse during the merger, when the convergence
order drops. The left panel refers to the case when η is kept
constant in space and time, while the right one refers to when
it is evolved with a source given by (14) andR = 20M . Once
again the phase errors are comparable between the two gauge
conditions.

We see that adopting an evolution equation for the damping
term allows one to reproduce with a comparable accuracy the
numerical results obtained with the more standard prescrip-
tion of a constant value for η. At the same time, however, it
also shows that in this way no special tuning is required and
the prescription that works well for equal-mass binaries is also
very effective for an unequal-mass case with q = 1/4. We ex-
pect this to be true also for much smaller mass ratios, whose
investigation goes beyond the scope of this paper but will be
pursued in our future work.

3. Impact on the Apparent-Horizon Size

Some final consideration will now be given to the effect
that the new gauge condition has on the apparent horizon
(AH) coordinate size as it varies during the simulation. We
recall that numerical simulations of moving punctures have
routinely reported a certain dynamics in the coordinate size
of the AH. This dynamics takes place during the early stages
of the evolution, as the gauges evolve rapidly from their ini-
tial conditions and reach the values they are brought to by the
time-dependent drivers. Although these changes are of purely
gauge nature and do not influence the subsequent evolution of
gauge-invariant quantities, they represent nevertheless a com-
putational nuisance as they require a high-resolution mesh-
refinement box (i.e., the one containing the BH) to be suf-
ficiently large so as to accommodate the AH as it grows.
Clearly, this requirement becomes particularly important for
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FIG. 5: Spatial dependence of the damping term η for an unequal-mass BBH system with q = 1/4. Different lines refer to the case when η is
kept constant in space and time (red dashed line) or when it is evolved in time using Eq. (9) with source given by (14) (blue solid line). The
top left and right panels refer to two different times when the punctures are close to the x-axis and show that the new gauge drives the damping
term to follow the BHs and be smooth elsewhere. The bottom left and right panels, instead, show the damping term on the (x, y) plane at two
representative times and show the non trivial but smooth distribution of the damping term which adapts to the motion of the punctures (the
latter are near the maxima of the η).

binaries with very small ratios, as in this case it is desirable
to have the least dynamics and thus reduce the computational
costs.

To report the ability of the new gauge to reduce the varia-
tions in the AH size, we show in the left panel of Fig. 8 the
time evolution of the average radii of the unequal-mass binary
on the (x, y) plane before and after the merger. We recall that
during the inspiral and merger we follow three different AHs,

two corresponding to the initial BHs (i.e., AH1 and AH2) and
a third one, which is produced at the merger and contains the
first two (i.e., AH3). We also note that the two initial AHs
can still be followed for a certain amount of time after a sin-
gle AH is found comprising the two. Shown in the left panel
of Fig. 8 with red long-dashed (large BH), dot-dashed (small
BH) and dashed lines (merged BH) are the radii obtained for
the case in which η is kept constant in space and time. The
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FIG. 6: Real part of the ` = 2,m = 2 mode of the gravitational
waveform Ψ4 for the unequal-mass black-hole binary. Different lines
refer to different resolutions (see text for details) and the two panels
refer to the case when η is kept constant in space and time (upper
panel) or when it is evolved with source given by (14) (lower panel).

radii obtained when η is evolved with source given by (14)
are shown with blue solid (large BH), dotted (small BH) and
short-dashed lines (merged BH).

In each case, the individual AHs first grow in radius as they
initially adapt to the chosen gauge, i.e., for t . 20M . Af-
ter this initial stage, however, the two gauges show a differ-
ent behaviour and in the new gauge the AHs tend to main-
tain their coordinate size more closely than in the constant-η
case (cf. blue solid and red long-dashed lines). This ability
to conserve the original size is evident also after the forma-
tion of the common AH at t ' 520M , where the new gauge
shows an average radius for AH3 which is essentially constant
for t ∼ 200M , while it grows of about 10% over the same
timescale when using a constant η gauge. These effects pro-
vide benefits for the mesh-refinement-treatment in our BBH
simulations. Namely, they allow us to reduce the extent of
the finest mesh-refinement levels containing the AHs and re-
duce therefore the computational cost of the simulations while
keeping a given resolution.

Besides the changes in the overall coordinate size of the
AHs discussed above, it is interesting to consider how much
their shape changes in time in the two gauges and this is sum-
marised in the right panel of Fig. 8, where we show the evo-
lution of the ratio of the AHs’ proper circumferences on the
(x, z) and (x, y) planes, Cxz/Cxz , as computed for the three
BHs (the first two panels from the top refer to the AHs of
the binary, while the third one to the merged AH and thus
a different time range). Overall, in both gauges the merging
BHs remain spherical to a few parts per thousand. We have
also verified that the masses of the BHs as computed from the
AHs are consistent between the two gauges within numeri-

cal errors. Interestingly, the new gauge leads to smaller os-
cillations in the ratio for the smallest of the BHs. This is a
very small improvement, which however minimises spurious
gauge-dynamics and helps when making AH-based measure-
ments.

VI. CONCLUSIONS

Even with a complete computational infrastructure,
numerical-relativity simulations of inspiralling compact bi-
naries would not be possible without suitable gauge condi-
tions. A large bulk of work developed over the last decade
has provided gauge conditions for the lapse and the shift
which have been used with success both in vacuum and non-
vacuum spacetimes when simulating binaries with compara-
ble masses. However, as the need to investigate black-hole bi-
naries with small mass ratios increases, evidence has emerged
that the standard “Gamma-driver” shift condition requires a
careful and non-trivial tuning of its parameters to ensure long-
term stable evolutions of such binaries.

As a result, a few different suggestions have been made re-
cently in the literature to improve the Gamma-driver condi-
tion for the shift and these have focused, in particular, on the
specification of a spatially dependent damping term η. This
approach has been shown to work well under some conditions
but not always and prescriptions which are effective in some
cases can lead to instabilities in others. In addition, the pre-
scriptions require the specification of coefficients whose tun-
ing may be dependent on the mass ratio in a way which is not
trivial.

Following a different approach, we have presented a novel
gauge condition in which the damping constant is promoted
to be a dynamical variable and the solution of an evolution
equation. We show that this choice removes the need for spe-
cial tuning and provides a shift damping term which is free
of instabilities for all of the spacetimes considered. Although
rather trivial, our gauge condition has a number of advantages:
i) it is very simple to implement numerically as it has the same
structure of the other gauge conditions; ii) it adapts dynami-
cally to the individual positions and masses of the BBH sys-
tem and could therefore be used also for binaries with very
small mass ratios; iii) it reduces the variations in the coordi-
nate size of the apparent horizon of the larger black hole thus
limiting the computational costs; iv) all of the complexity in
the new gauge is contained in the source function which can
be easily improved further. This last point will be part of our
future research in this direction.
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