
HAL Id: hal-00654155
https://hal.science/hal-00654155

Submitted on 21 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The spatial relation between the event horizon and
trapping horizon

Alex B Nielsen

To cite this version:
Alex B Nielsen. The spatial relation between the event horizon and trapping horizon. Classical and
Quantum Gravity, 2010, 27 (24), pp.245016. �10.1088/0264-9381/27/24/245016�. �hal-00654155�

https://hal.science/hal-00654155
https://hal.archives-ouvertes.fr


The spatial relation between the event horizon and

trapping horizon.

Alex B. Nielsen

Max-Planck-Institut für Gravitationsphysik,

Albert-Einstein-Institut,

Am Mühlenberg 1, D-14476 Golm,

Germany

Abstract. The relation between event horizons and trapping horizons is investigated
in a number of different situations with emphasis on their role in thermodynamics. A
notion of constant change is introduced that in certain situations allows the location
of the event horizon to be found locally. When the black hole is accreting matter the
difference in area between the two different horizons can be many orders of magnitude
larger than the Planck area. When the black hole is evaporating the difference is small
on the Planck scale. A model is introduced that shows how trapping horizons can be
expected to appear outside the event horizon before the black hole starts to evaporate.
Finally a modified definition is introduced to invariantly define the location of the
trapping horizon under a conformal transformation. In this case the trapping horizon
is not always a marginally outer trapped surface.

PACS numbers: 04.70.-s, 04.70.BW, 04.70.Dy

1. Introduction

Black holes are defined by their horizons. There are different types of black hole horizons

that can be used in different situations. What type of horizon is relevant may depend

on the question being asked. In black hole thermodynamics the area of the black hole

plays a role analogous to entropy via the Bekenstein-Hawking relation. There has been

a rigorous attempt to understand whether this entropy has an underlying microscopic

explanation and it is hoped that the answer to this question will be an important clue

to a theory of quantum gravity.

The event horizon of future null infinity is most often associated with the boundary

of a black hole. It has however been suggested that trapping horizons play an important

role in black hole thermodynamics. It is possible that it is the trapping horizon area and

not the area of the event horizon that should be considered in black hole thermodynamics

[1, 2, 3] (for a dissenting view see [4, 5]). This raises the question of how different the

areas of the event horizon and trapping horizon can be. If the difference in areas is
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sufficiently large, much larger than the fundamental area in Planck units, then a theory

of quantum gravity should be able to tell us which area contains the black hole entropy.

Furthermore, from theories of semi-classical gravity with quantum fields on a

classical spacetime background, one expects black holes to emit Hawking radiation.

It has also been suggested that the trapping horizon plays a role in generating Hawking

radiation [6, 7] (for a dissenting view see [8]). In general numerical simulations the

trapping horizon always lies inside the event horizon. If the radiation comes directly

from the trapping horizon and the trapping horizon is hidden by the event horizon, then

the radiation will not be visible from infinity. In fact, no causal physical effects of the

trapping horizon will be visible from outside the black hole.

A theorem of Hawking and Ellis [9] implies that the apparent horizon always

lies behind the event horizon. In such cases the apparent horizon is never visible to

asymptotic observers and its physical properties cannot influence them. The theorem

depends on the validity of the null energy condition in the future of the region of the

event horizon. It is the same null energy condition that implies that the area of the

event horizon cannot decrease. If the area of the event horizon is to decrease, a scenario

that is envisioned in black hole evaporation through Hawking radiation, then the null

energy condition must be violated somewhere along the event horizon (actually the

null curvature condition, Rabl
alb ≥ 0, must be violated, which can be related to the

null energy condition, Tabl
alb ≥ 0, by the Einstein equations). The quantum fields

responsible for the Hawking radiation must be capable of violating the null energy

condition. In fact this scenario is borne out in explicit calculations in certain simplified

models [10].

If Hawking radiation violates the null energy condition then in certain stages of its

lifetime the apparent horizon can appear outside the event horizon. However, the null

energy condition does not need to be violated locally in order for this to happen. It is

sufficient that it be violated somewhere in the future, reflecting the teleological nature

of the event horizon. In this paper we give an explicit model to show this effect.

Although quantum effects are implied by both these motivations, the relation

between the event horizon and trapping horizons can be studied in purely classical

relativity on Lorentzian manifolds. In principle the difference in areas can be arbitrarily

large. For example there are spacetimes that contain trapping horizons but not event

horizons [11, 12]. In some other models [13] there are no event horizons but there is

a region in which causally propagated signals cannot avoid a quantum non-manifold

region. In such cases a “quantum horizon” may replace the notion of an event horizon.

In the standard semi-classical model of black hole formation and evaporation [14] there

is both an apparent horizon and an event horizon. Causally propagated signals inside

the event horizon cannot reach future asymptotic observers. In such models one can

ask how large can the difference between the area of the event horizon and the area of

the apparent horizon be?

Apparent horizons can also appear outside the event horizon in non-Einstein models

of gravity. Stationary solutions are the same in Einstein and Brans-Dicke theory [15].
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If the spacetime is globally static then the event horizon and apparent horizon will

coincide. However, in dynamical situations the apparent horizon can appear outside

the event horizon and the event horizon area can decrease in the Jordan-string frame

in Brans-Dicke theory without the energy conditions being violated [16]. The location

of the apparent horizon changes under a conformal transformation of the metric. The

location of the event horizon does not change.

To study these issues we will present a number of different cases. Firstly, we will

examine the case of black holes that are accreting or evaporating at a constant rate.

With the implicit assumption that an event horizon does exist in the future, the constant

rate case implies certain conditions that enable us to solve for the location of the event

horizon without needing to solve for the full spacetime. In these simple cases we can

derive analytical formulae relating the areas of the event horizon and trapping horizons.

To extend this analysis to more realistic situations we will also consider the case

of a black hole that transitions from growing through matter accretion to evaporation.

This simple model is motivated by considering an isolated astrophysical black hole that

is initially accreting energy from the cosmic microwave background (CMB) until the

temperature of the CMB drops below that of the black hole and it starts to lose mass

through Hawking radiation. In this situation we will solve for the location of the event

horizon numerically assuming that the situation settles down in the far future to an

almost constant rate evaporating black hole. During the transition from accretion to

evaporation we will be able to follow the evolution of the apparent horizon and event

horizon and see that the apparent horizon appears outside the event horizon before the

black hole finishes accreting.

In the third part of the paper we will consider the issue of conformal

transformations. For a specific example we will consider black holes in Brans-Dicke

theory. We will show how the definition of a trapping horizon can be modified to

enable its location to be invariant under a conformal transformation. Interestingly, this

condition can be related to black hole thermodynamics and the gravitational entropy of

the black hole horizon. We also show how this new definition guarantees the entropy

increase theorem in Brans-Dicke theory.

2. Location of horizons

The trapping horizons [17] are three-dimensional surfaces, foliated by closed spacelike

two surfaces for which the future directed null normals la and na satisfy

θl = 0

θn < 0

Lnθl < 0. (1)

There is an implicit condition here in the choice of l and n. Each choice of l and n

defines a set of spacelike surfaces normal to them. Different choices of l and n will lead

to trapping horizons at different locations. This issue has been examined in [20] and
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can be formulated in terms of a choice of spacetime slicing into spacelike hypersurfaces.

A general spherically symmetric metric can be written in advanced null Eddington-

Finkelstein coordinates (v, r, θ, φ) as

ds2 = −e−2Φ(v,r)4(v, r)dv2 + 2e−Φ(v,r)dvdr + r2dΩ2. (2)

In this general spherically symmetric spacetime, for spherically symmetric slicings the

trapping horizon null normals will be radial null vectors and the location of the trapping

horizon is just given by

4(v, r) = 0. (3)

This is a spacelike surface for ṁ > 0, a null surface for ṁ = 0 and a timelike surface for

ṁ < 0. Choosing the conventional parametrization in terms of the Misner-Sharp mass,

4(v, r) = 1 − 2m(v, r)/r, the condition for the horizon is just

r = 2m(v, r). (4)

This implicit equation for r
AH

can be solved explicitly in simple cases such as the Vaidya

spacetime where m(v, r) = m(v). For a linear mass function of the form m(v) = mo+ṁv,

in terms of the timelike coordinate t = v − r, the horizons will be located at

r =
2mo + 2ṁt

1 − 2ṁ
. (5)

Due to results in [22] we expect that the non-spherically symmetric trapping horizons

will intersect the spherically symmetric ones. For further details see [20]. Since

it is spherically symmetric the trapping horizon located at r = 2m(v, r) has area

4πr2 = 16πm(v, r)2.

The event horizon is defined as a connected component of the past causal boundary

of future null infinity and is generated by null geodesics that fail to reach infinity.

The event horizon is always a null surface since it is a causal boundary. In the above

spacetime (2) the coordinate v is constant on ingoing radial null geodesics. Any outgoing

radial null geodesic must satisfy

dr

dτ
=

e−Φ4
2

dv

dτ
, (6)

for some parameter τ along the curve. In particular, the null generators of the event

horizon must satisfy this condition. This first order ordinary differential equation

generates the path of all outgoing radial null geodesics. In order to give the location

of the event horizon it requires a boundary condition that corresponds to the known

location of the event horizon at some particular point. In practice this is usually given

by the position of the event horizon at some future point, either when the black hole

evaporates entirely or settles down to a stationary state. If the black hole at some point

settles down to a Schwarzschild black hole with no further matter accreting, then the

event horizon can be located by tracing back the null rays from the future Schwarzschild

radius. In the section below we will instead consider different conditions that allow the

approximate location of the event horizon to be found (other conditions have been

studied in [18] and [19].) The event horizon likewise has area 4πr2
EH

on spherically

symmetric slicings.
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3. Constant rate case

The difference in the areas between the event horizon and the apparent horizon, A
diff

,

is

A
diff

= 4πr2
EH

− 16πm(v, r)2, (7)

where the difference should be taken on some hypersurface representing “an instant in

time”. For the case where the black hole is evolving (either growing or shrinking) at

a constant rate we may guess that the difference in the areas of the trapping horizon

and event horizon should be constant. With respect to an arbitrary slicing with slices

labelled by τ this is

d

dτ
A

diff
= 0. (8)

This is not actually a very strong condition as the change of the area will depend on

the choice of constant τ surface. Expanding this condition with the area formulae gives

2r
EH

dr
EH

dτ
− 8m

AH

dm
AH

dτ
= 0. (9)

Or, substituting in for dr
EH

/dτ from (6),

r
EH

= 2m
EH

+ 4r
AH

ṁ
AH

eΦ
EH , (10)

where ṁ ≡ dm
dv

= dm
dτ

dτ
dv

. Since we are comparing areas on a slice of constant τ , we can

expand values at the event horizon in terms of values at the apparent horizon and r

m
EH

= m
AH

+ m′
AH

(r
EH

− r
AH

) +
m′′

AH

2
(δr)2 + O(δr3), (11)

Φ
EH

= Φ
AH

+ Φ′
AH

(r
EH

− r
AH

) +
Φ′′

AH

2
(δr)2 + O(δr3), (12)

where δr = (r
EH

− r
AH

). Substitute these expansions in to (10) to get

r
EH

= r
AH

+
m′′

AH(
1 − 2m′

AH

) (δr)2+...+
4r

AH
ṁ

AH
eΦAH

(
1 − 2m′

AH

) (
1 + Φ′

AH
δr + ...

)
,(13)

which is just

δr =
m′′

AH(
1 − 2m′

AH

) (δr)2 +

2ṁ
AH

κ
AH

(
1 + Φ′

AH
δr +

1

2

(
Φ′′

AH
+ Φ′2

AH

)
(δr)2

)
+ O

(
(δr)3

)
, (14)

where κ can be interpreted as a dynamical surface gravity [21]. Now solve this at linear

order in δr

δr =
2ṁ

κ

(
1 +

2ṁ

κ
Φ′

)
+ O(ṁ3), (15)

and thus, for κ > 0 to leading order in ṁ we expect that the event horizon will be

outside the spherically symmetric trapping horizon for ṁ > 0 but inside for ṁ < 0.

This is exactly as expected since for the metric (2) we have

Gabl
alb =

(
e−Φ

2r3

) (
4rṁ + e−ΦΦ′42

)
. (16)
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The null energy condition is governed by the sign of ṁ. The choice of slicing is embedded

in the values of κ and Φ′ since both are evaluated at constant τ .

In this case where the black hole is accreting matter at a steady rate and is a

suitably long way from changing to a different state one can also find the approximate

location of the event horizon by imposing the condition

d2r

dv2
= 0, (17)

on the horizon generators. This just reflects the fact that the event horizon is growing

at a steady rate. While the condition (8) compares values at two different points in the

spacetime, this condition is purely local on the event horizon. In this case, equation

(17) has the general solution

r
EH

=
m(v, r)e−Φ

4ṁ

(
1 −

√
1 − 16ṁeΦ

)
, (18)

which holds at the event horizon. We have chosen v such that Φ̇ = 0 and the negative

square root to ensure the value converges as ṁ → 0. For ṁ � 1 this gives

r = 2m(v, r)
(
1 + 4ṁeΦ + 32ṁ2e2Φ + O(ṁ3)

)
. (19)

In terms of the coordinate t = v − r for the linear mass function and Φ = 0, equation

(18) can be solved explicitly and the event horizon has radial coordinate

r ∼ 2mo + 2ṁt

1 − 2ṁ
+

8moṁ

1 − 2ṁ
. (20)

This is just the location of the spherically symmetric trapping horizon with a constant

offset of 8moṁ provided ṁ � 1. In this approximation the generators of both the

trapping horizon and the event horizon have the same components but the norm of the

generators is 4ṁ for the trapping horizon and zero for the event horizon. The trapping

horizon is spacelike for ṁ > 0 but the event horizon is still a null hypersurface.

In both constant change approximations the leading order contribution to δr is

8mṁ. In the case of (15) the values evaluated at the trapping horizon and in the case

of (19) at the event horizon.

4. Differences in areas

In terms of the difference between the areal radius coordinates, δr, defined in the last

section, the difference in the areas is

Adiff = 4π
(
2rAHδr + δr2

)
. (21)

To get an idea of the numbers involved in the dynamical accretion and evaporation

of mass by an astrophysical black hole we consider now the following very idealised

situations. The Eddington limit gives a good approximation of the rate at which black

hole accretion disks can be supported by their own self-generated radiation pressure.

The Eddington limit is given by

dE

dt
' 1.3 × 1031

(
M

M�

)
W. (22)
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The dimensionless mass accretion rate is calculated by

ṁ =
G

c5

dE

dt
. (23)

For typically observed values of a black hole accreting at a tenth of the Eddington rate

[23] the dimensionless accretion rate is approximately

ṁ ' 10−22

(
M

M�

)
. (24)

The matter falling into the black hole is ten times the energy being emitted as light.

Since this accretion is usually associated with a disk it will not be exactly spherically

symmetric, but the approximation is still often applied successfully.

For a black hole accreting purely from the isotropic CMB, and using the Stefan-

Boltzmann law, we have approximately that the area, A, is

A ' 16π
G2

c4
M2

�

(
M

M�

)2

, (25)

and so the dimensionless mass accretion rate is

ṁ ' 10−50

(
T

T3K

)4 (
M

M�

)2

. (26)

For a black hole whose dynamics are dominated by evaporation through Hawking

radiation with temperature

T
BH

=
1

8π

c3~
k

B
GM

, (27)

we have a (negative) mass accretion rate of

ṁ ' −10−81

(
M�

M

)2

. (28)

Using the leading order result from (21) the difference in areas can be computed as

A
diff

= A
EH

− A
AH

' 1078ṁ

(
M

M�

)2

l2
P
. (29)

The numerical factor is related to the solar Schwarzschild area in Planck units, 4.2×1077.

For a solar-mass black hole accreting at a tenth of the Eddington rate the difference

in areas between the event horizon and the spherically symmetric trapping horizon will

be around 1056 in units of Planck area, while for a supermassive black hole of mass 108

solar masses, accreting purely form the CMB, the difference in areas will be around 1060

in Planck units.

The exact formula for the area difference for the case where the black hole is

evaporating purely through Hawking radiation ((28) into (29)) turns out to be

A
diff

= − 1

120

G~
c3

= − 1

120
l2
P
. (30)

Thus in the case where an otherwise isolated black hole is evaporating at an almost

constant rate due to Hawking radiation, in the conventional picture of black hole
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evaporation [14], the difference in the area of the event horizon and trapping horizon

is not resolvable at the Planck scale (although the trapping horizon is outside the

event horizon). For any of the astrophysical accreting black holes considered above,

the difference is many orders of magnitude of the Planck area.

5. Varying rate case

To see the transition of a trapping horizon from inside the event horizon to outside,

we need to look at black holes where the rate of change is changing and the horizons

intersect. One example of this is an otherwise isolated black hole that accretes matter

from the cosmic microwave background that fills all of the universe. A static solar-mass

sized black hole has a Hawking temperature of about TBH = 10−8K. The temperature

of the CMB is currently about TCMB = 3K. The temperature of the black hole changes

as its mass changes and the temperature of the CMB changes as the universe expands.

Roughly speaking, if the temperature of the CMB is larger than the temperature of the

black hole, it will accumulate mass and grow. If the temperature of the black hole is

greater than the temperature of the CMB it will lose mass and shrink.

Black holes of mass > 10−7M�kg have a temperature today lower than the CMB.

Primordial black holes of initial mass ∼ 1013kg should be evaporating today [24]. Their

mass density however must be Ω
PBH

< 10−8 [25].

If we assume that the universe is dominated by a cosmological constant with

Λ ∼ 10−35s−2 the temperature of the CMB will equal 10−8K in about 1018seconds

or 1011years. During this time the black hole will accrete about 1 kg of photonic matter

from the CMB. Since the mass of a solar-sized black hole is about 1030kg it’s percentage

increase in mass will be tiny.

In a similar length of time the mass lost to Hawking radiation will be even smaller,

about 10−25kg. Therefore, during the time that the CMB temperature falls to the black

hole temperature, one can consider the black hole size as roughly constant.

Consider a simple toy model consisting of a spherically symmetric black hole

that absorbs radiation from the CMB and also emits Hawking radiation. One way

of modelling the Hawking radiation is to implement it as inflowing negative energy [26]

or with a region of outflowing positive energy but negative energy onto the black hole

[12]. The Vaidya solution for infalling radiation is

ds2 = −
(

1 − 2m(v)

r

)
dv2 + 2dvdr + r2dΩ2. (31)

For a black hole that accretes purely from the CMB and then evaporates via Hawking

radiation we can write a mass function as

m(v) = mo − k1(v − vo) − k2exp

(
−(v − vo)

λ

)
+ k2, (32)

where k1, k2 and λ are constants. The second term given the mass lost due to Hawking

radiation and the third term gives the mass gained by accretion from the CMB in a de
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Sitter (cosmological constant dominated) universe. Interpreting the terms as accretion

from the CMB and evaporation through Hawking radiation we would have

k1 =
σ

256

1

m2
o

, (33)

k2 = 4πσm2
oT

4
o

√
3

Λ
, (34)

λ = 4

√
Λ

3
, (35)

where σ is the Stefan-Boltzmann constant, mo is the mass of the black hole at v = vo,

To is the temperature of the CMB at v = vo and Λ is the cosmological constant. Since

it is based on the Vaidya solution this model does not embed the black hole in a true

cosmological background either de Sitter-like or otherwise and is only intended to hold

in a small region near the horizons to illustrate the potential behaviour in more exact

models. The accretion from CMB part acts like a heat bath at a given temperature

rather than true accretion from a Robertson-Walker spacetime.

The trapping horizon reaches its maximum area where ṁ = 0. This corresponds to

v
THmax

− vo = λ ln

(
k2

λk1

)
. (36)

The trapping horizon crosses the event horizon roughly when

vcross − vo = λ ln

(
k2

4mok1

)
. (37)

Therefore the time (elapse of the v coordinate) between the trapping horizon passing

outside the event horizon and the area of the trapping horizon starting to decrease

(where the NEC is locally violated), is

v
THmax

− vcross = λ ln

(
4mo

λ

)
. (38)

An example for the case mo = 1.0 k1 = 0.0002, k2 = 0.005 and λ = 0.05 is shown in

Fig.(1). The location of the event horizon is found by tracing back from the value given

by (18). The difference in radial coordinate at v ∼ 1 is due to the fact that the black

hole is still dynamical when it settles down to “constant” evaporation. From this point

we expect the difference in horizon location to be as (15) on constant v slices.

In this example the trapping horizon starts off inside the event horizon and grows

rapidly as the black hole accretes matter. The trapping horizon crosses the event horizon

just as the event horizon starts to decrease in area. In the example this occurs at

v = 0.09 and m(v) = 1.0042. At this point the accreting “CMB” flux is still higher than

the “evaporation” flux and we have ṁ > 0 implying that the null energy condition is

still satisfied. The apparent horizon grows to a maximum size of r = 2.0099 before the

“evaporation” flux starts to dominate and the hole starts to shrink.

This example shows that it is possible, even likely, that the trapping horizon will

appear outside the event horizon before the trapping horizon starts to shrink. The
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Figure 1. The coordinates of the event horizon (solid line) and trapping horizon
(dashed line) for an example model with mo = 1.0 k1 = 0.0002, k2 = 0.005 and
λ = 0.05. The trapping horizon moves outside the event horizon while the trapping
horizon is still growing.

crossing occurs precisely where the area of the event horizon starts to decrease. The

time between these two events for a solar sized black hole in our universe is approximately

1−−17s, significantly longer than the Planck time but shorter than the “light crossing

time” of such a black hole.

This means that the trapping horizon becomes visible to asymptotic observers even

before the energy conditions are violated and before its dynamics are dominated by

Hawking radiation. If the trapping horizon starts to produce Hawking radiation in its

near vicinity after this time the Hawking radiation can escape to infinity. The event

horizon’s area starts to decrease, not because of some causal signal such as local violation

of the energy conditions, but in anticipation of future violation. This is then consistent

with the violation of energy conditions being associated with a Hawking flux from the

trapping horizon and mass loss to infinity which causes the black hole to shrink.

6. Conformal rescaling

Under a conformal transformation the relative position of the event horizon and the

trapping horizon can also change. The use of conformal transformations is fairly common
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in looking at black holes solutions. This is particularly true in string theory where

conformal transformations are used to relate the string frame, with a non-minimally

coupled dilaton field, to the Einstein frame. It has been argued in the literature that

classically the two frames are physically equivalent [27]. The conformal transformation

rescales lengths and areas as measured by the metric. The physical effect of this rescaling

is, for example, to change the meaning of mass since the norm of the four-momentum,

papa, will no longer be constant from point to point or time to time.

It has been observed in numerical simulations of black hole collapse in Brans-Dicke

theory, that the trapping horizon can appear outside the event horizon [16]. This

occurs despite the fact that the string frame of Brans-Dicke theory can be related via

a conformal transformation to Einstein theory with a scalar field that obeys the null

energy condition. In the Einstein frame the trapping horizon appears exclusively behind

the event horizon, in accordance with the theorem of Hawking and Ellis [9].

Two issues are involved here. Firstly, unlike the event horizon, the location of the

trapping horizon changes under a conformal transformation. Secondly, the trapping

horizon can appear outside the event horizon in the string frame because the Einstein

equations do not hold in this frame [16].

To relate the two frames the metric is scaled by a conformal factor that can vary

with spacetime point

gab → g̃ab = W (x)gab. (39)

The geometric expansion of a null vector la in any frame is given by

θl = qab∇alb =

(
gab +

lanb

(−ncldgcd)
+

nalb

(−ncldgcd)

)
∇alb, (40)

where qab is a projection tensor onto the two-dimensional spacelike surface to which la

and na are normal. (If la is defined as globally null then the third term of the right

hand side vanishes identically.) This is a result that holds for a Lorentzian signature

manifold independently of whether the Einstein equations hold. In general there is a

freedom to rescale null vectors even without rescaling the metric. The vanishing of the

expansion does not depend on a pure rescaling of the null vector la → Wla, although

its value does since under this rescaling we have

θl → Wθl. (41)

Under a conformal transformation of the form (39) we have g̃ab = W−1gab and

qab → W−1qab. We can fix the normalization of la by requiring l̃a = la with l̃a = Wla
and thus

∇̃al̃b = W∇alb + lb∇aW − 1

2
(la∇bW + lb∇aW − gabl

c∇cW ) , (42)

therefore

θ̃l = θl +
la∇aW

W
. (43)

The vanishing of θl for a given surface is therefore not necessarily invariant under a

conformal transformation. And thus the location of a marginally outer trapped surface
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satisfying θl = 0 is not necessarily invariant. The conformal transformation does not

change the coordinates of a given spacetime event nor the path of null rays. The location

of the event horizon is unchanged. In one frame the solution of θl = 0 may lie inside

the event horizon and in another frame outside.

Brans-Dicke theory is the prototype alternative theory of gravity with scalar and

tensor modes. The action, in the string frame is given by

L =
1

16π

(
φR − ω

φ
∇aφ∇aφ

)
+ Lmatter. (44)

Variation of this action with respect to the metric gives the gravitational field equations

Gabφ = 8πT matter
ab +

ω

φ

(
∇aφ∇bφ − 1

2
gab∇cφ∇cφ

)
+∇a∇bφ−gab∇c∇cφ.(45)

The proof that the apparent horizon cannot lie outside the event horizon, the apparent

horizon theorem [9], is a purely geometric proof that only relies on the validity of the null

Raychaudhuri equation and the geometrical condition Rabl
alb ≥ 0, the null curvature

condition. This condition can be directly related via the Einstein equations to the null

energy condition, Tabl
alb. Contracting the Ricci tensor with la for the above gives

Rabl
alb =

8π

φ
Tabl

alb +
ω

φ2
(la∇aφ)2 +

lalb∇a∇bφ

φ
, (46)

where Tab is the energy-momentum tensor of the non-gravitational matter fields. Even

if the matter obeys the null energy condition Tabl
alb ≥ 0, the sign of the last term is

indeterminate and therefore we may have a violation of the null curvature condition.

This is in fact what happens for the surfaces found in [16]. Brans-Dicke theory can be

recast in the Einstein frame via the conformal transformation

gab → g̃ab = φgab. (47)

In the Einstein frame the null tangent vectors are unchanged, l̃a = la, and they are

null with respect to the new metric as well as the old one. In the Einstein frame the

gravitational field equations are

G̃ab = 8πT̃ab +
3 + 2ω

16πφ2

(
∇̃aφ∇̃bφ − 1

2
g̃ab∇̃cφ∇̃cφ

)
, (48)

and thus

R̃abl
alb = 8πT̃abl

alb +
3 + 2ω

16πφ2

(
la∇̃aφ

)2

. (49)

Provided the matter obeys the null energy condition and ω > 0 the geometry will also

obey the null curvature condition in the Einstein frame.

The vanishing of the expansion is equivalent to the statement that the area is

unchanged under infinitesimal translations along la via the relation la∇aA = θlA. Since

the conformal factor changes how areas are measured this no longer selects out the same

horizon in the two frames. The area two-form changes as qab → Wqab. The condition

that the Lie derivative of this “conformally transformed area” be zero is

Ll (WA) = WA

(
θl +

LlW

W

)
= 0. (50)
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This is the same as the transformation in (43). In theories with gravitationally non-

minimally coupled scalar fields, such as Brans-Dicke theory, the gravitational entropy

is not always equal to the area. This follows from, for example, the Noether-charge

entropy [28]. Thermodynamically it has been argued that in Brans-Dicke theory the

quantity Aφ is non-decreasing on the event horizon [29], even when the area is decreasing.

This suggests that in non-minimally coupled theories (or in a frame where the metric

tensor doesn’t satisfy the Einstein equations) the horizons should be defined not by

the vanishing of the area along normal null directions, but by the vanishing of some

gravitational entropy, Sg, along null directions. The three conditions for a trapping

horizon would then be

la∇aSg = 0

na∇aSg < 0

na∇a (la∇aSg) < 0. (51)

In the Einstein frame this would reduce to the ordinary requirements on the null

expansions for a trapping horizon, since in this case Sg = A/4. If a field redefinition can

be used to relate the actions of two theories then the black hole entropies in these theories

are related by the same field redefinition, at least when applied to event horizons [30]. If

this is also true of the gravitational entropies of trapping horizons then the above gives a

way of identifying the relevant trapping horizon in all theories for which a gravitational

entropy can be defined. For the location of the horizon to remain invariant one would

need something like S = A/W .

With these conditions one can then examine how the generalised Noether-charge

entropy evolves along a horizon with tangent ra = Bla + Cna. The variation of the

generalised entropy is

ra∇aS = Bla∇aS + Cna∇aS. (52)

The first term on the right hand side is zero by assumption. Since we require the tangent

ra to generate evolution along the generalised trapping horizon we have

ra∇a

(
lb∇bS

)
= 0. (53)

This can be rearranged to give

C = −
Bla∇a

(
lb∇bS

)

nc∇c (ld∇dS)
, (54)

and so the change of the generalised entropy along the horizon can be written as

ra∇aS = − Bna∇aS

nb∇b (lc∇cS)
ld∇d (le∇eS) . (55)

With the sign of B, assumed positive, setting the orientation of ra, and the sign of na∇aS

and nb∇b (lc∇cS) both negative by assumption on the horizon, whether the generalised

entropy is increasing is just determined by the last term, ld∇d (le∇eS).

In the Brans-Dicke case, in the string frame, we have S = φA [29]. For the entropy

to be positive we require φA > 0 and since the area is positive, A > 0, we require φ > 0
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too (note that if φ = 0 anywhere in the spacetime then the conformal transformation

(47) becomes illdefined.) The variation of this entropy in the outgoing null direction is

then

la∇aS = A (φθl + la∇aφ) , (56)

and

la∇a (la∇aS) = −Aφ

(
3

2
θ2

l + σ2 +
8πG

φ
Tabl

alb
)
− Aω

φ
(la∇aφ)2 . (57)

where the outgoing normals la are assumed geodesic and twistfree but not necesaarily

affinely parameterised. Thus for ω > 0 and matter obeying the null energy condition,

Tabl
alb > 0, the generalised entropy is guaranteed to increase along the generalised

trapping horizon.

7. Conclusion

We have seen how the location of the trapping horizon can be related to the location of

the event horizon for several different cases. For accreting black holes the difference in

areas can be very large relative to the Planck scale. This means that the microscopic

degrees of freedom responsible for this entropy are likely to be very different in these

cases. For evaporating black holes the difference in area is not resolvable on the Planck

scale.

This can be taken as evidence that the difference between the event horizon and

trapping horizon is not important for evaporating black holes. However, both these

cases assume the standard picture of black hole evaporation that includes both an event

horizon and a trapping horizon. In some models there is only a trapping horizon and

no event horizon. Whether there is an event horizon or not is virtually undecidable by

experiment though, which is one of the key reasons why some authors have preferred

to concentrate on trapping horizons. In the case of mini black holes inside larger

supermassive black holes the difference is still quite evident, even on macroscopic scales.

We have also presented a simple model of a black hole that transitions from

accreting to evaporating. The model is inspired by an otherwise isolated black

hole accreting from the CMB and subsequently beginning to evaporate as the CMB

temperature falls. In this case the trapping horizon appears outside the event horizon

before the evaporation becomes dominant and before the null energy condition is

violated.

The change in area of the event horizon is related to the expansion of its null

generators. The change of the expansion of the generators responds to the local geometry

through the Raychaudhuri equation and Rabl
alb. But the location of the event horizon

is determined non-locally. Its area can be increasing even when the space it is passing

through is static vacuum [5]. Its area is decreasing when θl < 0 and this is also the

condition for it to pass inside the trapping horizon.

The area of the trapping horizon can also be increasing even when the local

geometry is static vacuum. This is because the horizon can acquire shear. The shear
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obtains from the requirement that the surface be closed. Imagine the case where a

thin, high speed, pencil of matter is sent into a black hole. The trapping horizon will

increase in area even in regions that are initially causally disconnected from the incoming

matter, since the horizon develops shear and shear is enough to increase the area of the

trapping horizon. Shear is a property of the null rays normal to the surface and hence

depends on the surface, not the local geometry. This indicates that there is an element

of non-locality in trapping horizons too.

We have also suggested a redefinition for trapping horizons outside of the Einstein

conformal frame. The definition relies on the notion of dynamical gravitational entropy.

We are also able to demonstrate that the gravitational entropy will be non-decreasing

on this horizon if the matter obeys the null energy condition. In non-Einstein frames

the generalised trapping horizon will no longer be a marginally outer trapped surface.
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