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Scientifique, Université Pierre et Marie Curie, 98bis Boulevard Arago, 75014
Paris, France.
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Abstract. Within the framework of the scalar-tensor models of gravitation and
by relying on analytical and numerical techniques, we establish the existence
of a class of spherically symmetric spacetimes containing a naked singularity.
Our result relies on and extends a work by Christodoulou on the existence of
naked singularities for the Einstein-scalar field equations. We establish that
a key parameter in Christodoulou’s construction couples to the Brans-Dicke
field and becomes a dynamical variable, which enlarges and modifies the phase
space of solutions. We recover analytically many properties first identified by
Christodoulou, in particular the loss of regularity (especially at the center), and
then investigate numerically the properties of these spacetimes.

1. Introduction

The issue of the validity of the (weak version of the) cosmic censorship conjecture
remains one of the most important open problems in classical general relativity.
Roughly speaking, it says that physically admissible solutions to the Einstein equations
should not contain naked singularites, that is, all singularities formed in physically
reasonable scenarios of gravitational collapse should be surrounded by event horizons
and, hence, cannot send signals to far observers at future null infinity. A precise
formulation of the conjecture can be found in [28, 9], together with the properties
required on a solution to qualify as a physically “reasonable” process of singularity
formation. These properties concern the smoothness and genericity of the initial
conditions, and demand that the matter model undergoing collapse cannot form
singularities of non-gravitational origin.
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Even though the conjecture is still far from being proven in general, no definitive
counter-example has been found so far, neither in numerical simulations nor in
analytical investigations. An important step forward in this respect was the numerical
analysis of the threshold for black hole formation. After the pioneering work of
Choptuik [10] it has become clear that it is possible to form a naked singularity by fine-
tuning (smooth) initial conditions toward the vicinity of the threshold of formation of
arbitrarily small black holes. It turns out that the process is dynamically controlled by
an unstable exact solution –referred to as a critical solution– which, itself, does contain
a naked singularity. The fine-tuning is required to compensate for the instability of
this solution and achieve a continuous approach to that solution. In that set-up, there
is no dynamical formation of naked singularities and, therefore, this analysis does not
provide a genuine counter-example to cosmic censorship. (See [22] for a review.)

Simultaneously to Choptuik’s work on the critical collapse of a real massless
scalar field in spherical symmetry, Christodoulou [7] studied the Einstein-scalar field
equations from a fully analytical point of view. In a truly remarkable series of papers
about the global dynamics of solutions to this system, he constructed a family of exact
solutions parametrized by some reals k, a1 and showed that these spacetimes do contain
a naked singularity in certain range of a1, provided 0 < k2 < 1/3. Later, in [8], he
also established that these naked singularities are unstable under small perturbation.
Christodoulou’s work provided the first complete mathematical proof of the formation
of a naked singularity under gravitational collapse.

By construction, Christoudoulou’s spacetimes are homothetic, that is,
continuously self-similar and, therefore, do not contain any privileged scale (such as
a horizon of finite size), and so cannot contain a (finite) black hole. Consequently,
these spacetimes are a priori good candidates to contain naked singularities with a
central point of infinite curvature, denoted by O; see [19]. The critical solution found
by Choptuik also possesses self-similarity, but of a different type, known as discrete
self-similarity. Since the symmetries are different, Christodoulou’s solutions cannot
“relax” to the critical solution, and actually the relation between the two solutions is
unclear —a problem that would deserve further study.

The parameter k, whose origin is in the massless scalar field (which only enters via
its derivative in the Einstein equations), is essential in Christodoulou’s construction,
as well as the key restriction

0 < k2 < 1/3. (1.1)

Depending on the second parameter a1, an apparent horizon (rather than a naked
singularity) is also possible in this range of k. For

1/3 ≤ k2 < 1 (1.2)

the future light-cone of O collapses to a line, which provides an example of a null
singularity not preceded by an event horizon. For k2 ≥ 1 the spacetimes are rather
pathological (see [4] and the Carter-Penrose diagram in Figure 4 of [15]).

In all cases the parameter k generates a mild loss of regularity at the center, which
makes the curvature to be continuous but non-differentiable before the singularity at
O is formed. This implies that the past light cone of O is non-regular, hence the initial
conditions are not completely regular.

Note that, on the contrary, Choptuik’s critical solution is smooth everywhere
except at the central singularity at O and, as a matter of fact, the sole requirements
of regularity and discrete self-similarity select a unique solution, at least locally in the
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phase space; see [13, 14]. If the massless scalar field is taken to be complex then it is
possible to construct a continuously self-similar solution which shares the regularity
properties of the Choptuik spacetime, and also contains a naked singularity, but is not
critical [17].

Our main objective in the present work is to investigate whether the relevance of
k and the role played by the limiting conditions on k for the formation of naked
singularities are “structurally stable”, that is, whether spacetimes with the same
features can be constructed with extended models in which families of solutions
with an equivalent parameter are present. Indeed, the model we consider contains
Christodoulou’s model as a special case. Specifically, we work here within the scalar-
tensor theory of gravitation and, especially, within the so-called Brans-Dicke theory.

The model under consideration here effectively adds an additional scalar field to
Christodoulou’s system of equations, and makes k a dynamical variable, denoted by
K. Interestingly enough, our analysis leads to the same range in order to avoid the
pathological behavior referred to above, namely

0 < K2
∗ < 1, (1.3)

where now K∗ is the value of the field K at the past light cone of the singularity.
We also show that, starting from an arbitrary initial value for K, the system under
consideration dynamically evolves toward values K below the threshold 1. Therefore,
the introduction of extra degrees of freedom allows to avoid the pathological spacetimes
arising with the Einstein-scalar system.

Note that Liebling and Choptuik [21] have numerically shown the presence of
critical phenomena in the Brans-Dicke system, the critical solution being discretely
or continuously self-similar (depending a coupling constant). Again, being completely
smooth, such a critical solution is not related to the solutions we construct in this
article.

The system under study is significantly more involved than the one studied
analytically by Christodoulou [7] and, although we do follow and generalize several
important steps in the construction therein, we eventually must resort to numerical
investigations to reach our final conclusions. In fact, by relying on numerics, we arrive
at a better understanding of the class of solutions and are able to construct explicit
examples.

An outline of this paper is as follows. In Section 2, we introduce the model of
self-gravitating matter of interest, and we determine the general evolution equations
under the assumption of radial symmetry. In Section 3, we impose the self-similar
assumption and show that general solutions are parameterized by four functions of a
single variable, denoted by x, which obey a system of ordinary differential equations
(ODE). We construct solutions that are piecewise regular, with each piece separated
by singular points across which careful matching is required. Specifically, in Sections 4
and 5, we successively construct the interior and exterior part of the past light-cone
of the singularity. Finally, in Sections 6 and 7 we describe our numerical strategy and
present various results and conclusions.

2. Scalar-tensor theories

2.1. Scalar-tensor gravity with scalar field

Scalar-tensor theories of gravity are alternative theories of gravity which are physically
strongly motivated and have a long history in the literature. The fundamental
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assumption of these theories is that the gravitational field is mediated by one (or
more) scalar field(s) in addition to the standard tensor field (gµν) of Einstein’s general
relativity. These theories satisfy the equivalence principle (since they are metric-
based theories), but do not satisfy the strong version of the equivalence principle.
The first theory of this kind was developed by Jordan [16], Fierz [12], and Brans and
Dicke [6], and contains an additional parameter defining the coupling of the scalar
field to the matter model. Later on, Bergmann [2], Nordtvedt [23], and Wagoner [27]
extended this approach to a coupling via a function of the scalar field. Next, Damour
and Esposito-Farèse [11] introduced a generalization based on an arbitrary number of
scalar fields. More recently, cosmological models based on the so-called f(R) gravity
theories have attracted a lot of attention, which found applications in the study of
relativistic stars [1]. These theories form a subclass of the scalar-tensor theories, and
it is interesting to look for a better understanding of the corresponding spacetimes
and, in particular as we do in the present work, to study the possible existence of
spacetimes containing naked singularities.

Specifically, we are going to investigate a generalization of Christodoulou’s model
when a a scalar field φ in coupled to a scalar-tensor theory of gravity for which the
action reads (see [11, 25] for details):

S = SG + Sm

=
1
4

∫

M

(
R − 2gµν∂µψ∂νψ

)√
−g d4x − 1

2

∫

M
g̃µν∂µφ∂νφ

√
−g̃ d4x.

We use a system of units for the gravitational constant G and the light speed c
such that 4πG

c4 = 1. The spacetime M is four-dimensional and is endowed with two
conformally-related metrics: the Einstein metric denoted by gµν , and the Brans-Dicke
(or physical) metric denoted by

g̃µν = a2(ψ)gµν .

In the latter, a(ψ) > 0 is a coupling function entering the theory, and one recovers
classical general relativity by choosing a(ψ) to be constant.

This theory admits two scalar fields: one of them, φ, represents the matter content
of the spacetime and the other, ψ, generates the gravitational field. When a is not
just a constant, the matter field φ does interact with the physical metric g̃µν , whereas
the gravitational field equations for gµν , ψ are formulated in terms of gµν , only.

2.2. Choice of coordinates

Throughout this paper we use a notation consistent with the one in Christodoulou [7],
in order to make easier the comparison between the two models. We consider a general
spherically symmetric spacetime whose metric is expressed in Bondi coordinates [3] as

g = −e2νdu2 − 2eν+λdudr + r2dΩ2,

in which the metric coefficients λ, ν depend on the coordinates u, r, only, and dΩ2

represents the unit round metric on the 2-sphere. The relevant components of the
Ricci tensor Rrr and Rθθ are found to be (see for instance [3, 24]):

Rrr =
2
r

(
∂λ

∂r
+
∂ν

∂r

)
,

Rθθ = r

(
∂λ

∂r
− ∂ν

∂r

)
e−2λ + 1 − e−2λ,
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with Rϕϕ = (sin θ)2 Rθθ. Observe that these formulas involve first-order derivatives of
the metric coefficients, only. For completeness, we also determine the other two non-
vanishing components of the Ricci tensor, which now involve second-order derivatives
of the metric, i.e.

Ruu = e2(ν−λ)

(
2
r

∂ν

∂r
− ∂λ

∂r

∂ν

∂r
+

(
∂ν

∂r

)2

+
∂2ν

∂r2

)

− eν−λ

(
2
r

∂λ

∂u
+
∂2ν

∂u∂r
+
∂2λ

∂u∂r

)
,

Rur = eν−λ

(
2
r

∂ν

∂r
− ∂λ

∂r

∂ν

∂r
+

(
∂ν

∂r

)2

+
∂2ν

∂r2

)
− ∂2ν

∂u∂r
− ∂2λ

∂u∂r
.

Note in passing the following simple relation:

eλ−νRuu − Rur = −2
r

∂λ

∂u
.

Alternatively, one may consider the Einstein tensor Gαβ = Rαβ − 1
2R gαβ for the

metric gαβ, and compute its essential components

Guu =
e2(ν−λ)

r

(
2
∂λ

∂r
+

e2λ − 1
r

− 2eλ−ν ∂λ

∂u

)
,

Gur =
e(ν−λ)

r

(
e2λ − 1

r
+ 2

∂λ

∂r

)
,

Grr =
2
r

(
∂ν

∂r
+
∂λ

∂r

)
.

2.3. Evolution equations

By varying the action of the theory with respect to both metrics, one gets two
conformally-related stress-energy tensors Tαβ and T̃αβ = a−6(ψ)Tαβ . Denoting by
T = gαβTαβ and T̃ = g̃αβ T̃αβ their traces, one can check that (cf. [11] for details):

Gαβ = 2Tαβ + 2
(
∂αψ∂βψ − 1

2
gαβgµν∂µψ∂νψ

)
(2.1)

and

T̃αβ = ∂αφ∂βφ− 1
2

g̃αβ g̃ρσ∂ρφ∂σφ,

Tαβ = a2(ψ)T̃αβ = a2(ψ)
(
∂αφ∂βφ− 1

2
gαβ gρσ∂ρφ∂σφ

)
.

Following Christodoulou [7], we use the future-directed null frame (n, l), defined
by

n = 2e−ν ∂

∂u
− e−λ ∂

∂r
,

l = e−λ ∂

∂r
.
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By contraction of the Einstein equations (2.1) with n, l, we obtain the following system:

∂λ

∂r
+
∂ν

∂r
= r

(
∂ψ

∂r

)2

+ r

(
a(ψ)

∂φ

∂r

)2

, (2.2)

∂λ

∂r
− ∂ν

∂r
=

1 − e2λ

r
, (2.3)

∂λ

∂u
= r

(
∂ψ

∂r

∂ψ

∂u
− e(λ−ν)

(
∂ψ

∂u

)2
)

+ ra2(ψ)

(
∂φ

∂r

∂φ

∂u
− e(λ−ν)

(
∂φ

∂u

)2
)

. (2.4)

Note that these equations involve only first-order derivatives of the metric and scalar
fields.

On the other hand, by defining the function

σ(ψ) =
a′(ψ)
a(ψ)

, (2.5)

the evolution equation for the scalar field ψ reads (cf. again [11])

!gψ = −σ(ψ)T = a′(ψ)a(ψ) gαβ ∂αφ ∂βφ,

where !g is the wave operator associated with the Einstein metric. In our gauge, this
equation is equivalent to

− 2
(
∂2ψ

∂r∂u
+

1
r

∂ψ

∂u

)
+ e(ν−λ)

(
∂2ψ

∂r2
+

2
r

∂ψ

∂r
+
∂(ν − λ)
∂r

∂ψ

∂r

)

= a′(ψ)a(ψ)

(
e(ν−λ)

(
∂φ

∂r

)2

− 2
∂φ

∂r

∂φ

∂u

)
.

Finally, the equation for the matter field φ is obtained from the zero-divergence
law for the stress-energy tensor:

∇̃αT̃αβ = 0,

where ∇̃ is the covariant derivative associated with the physical metric. In terms of
the Einstein metric, the zero-divergence law for the stress-energy tensor reads

∇αTαβ =
a′(ψ)
a(ψ)

T ∇βψ,

where ∇ denotes the covariant derivative for the metric g. This equation is equivalent
to

!gφ = −2a′(ψ)
a(ψ)

gαβ ∂αφ ∂βψ,

a linear equation for φ which, in our gauge, becomes

− 2
(
∂2φ

∂r∂u
+

1
r

∂φ

∂u

)
+ e(ν−λ)

(
∂2φ

∂r2
+

2
r

∂φ

∂r
+
∂(ν − λ)
∂r

∂φ

∂r

)

= −2σ(ψ)
(

e(ν−λ) ∂ψ

∂r

∂φ

∂r
− ∂φ

∂r

∂ψ

∂u
− ∂φ

∂u

∂ψ

∂r

)
.
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2.4. Case of interest in this paper

For definiteness and simplicity, we study the case in which σ(ψ) = σ is a constant,
which corresponds to Brans-Dicke theory [6]. Integrating (2.5) we get

a(ψ) = a0 eσψ,

where a0 is a dimensionless constant (independent of ψ). Assuming that it does not
vanish, this constant can be eliminated by re-defining the matter field φ, and so we
end up with

a(ψ) = eσψ ,

which is the choice made in the rest of this paper.
Our equations can be easily compared with those used in other investigations of

the Brans-Dicke theory. For instance, Liebling and Choptuik [21] have (denoting their
variables with subindex LC)

φ = ψLC , σψ = −1
2
ξLC , 2σ2 = (4π)λLC ,

which imply a2 = e−ξLC . (Special care must be taken with the fact that, in [21], units
with G = c = 1 are used so that various factors like 4π arise in their equations.)

3. Self-similar assumption and the reduced system

3.1. Essential field equations

We now impose continuous self-similarity on the solutions, that is,

LSgµν = 2gµν (3.1)

for some (conformal) homothetic Killing field denoted by Sµ. To work with self-similar
solutions, it is convenient to use adapted coordinates, in which the integral lines of
Sµ are now coordinate lines. Every spherically symmetric and self-similar spacetime
(except Minkowski) has a singularity at a point on the central world-line, and we shall
use it to define the origin of time, so that u = 0 represents the future null cone of
the singularity. Moreover, since we are interested in the process of the formation of
singularities, we (principally) work in the past region u < 0.

We define Bondi’s self-similar coordinates by

x =
r

−u
, τ = − log(−u), (3.2)

where the sign in τ is chosen so that u and τ increase simultaneously toward the
future. The homothetic vector is now S = −∂τ , with integral lines x =const., and
points away from the singularity —which is now located at τ = +∞. Referring for
instance [15] for the general geometry of self-similar spacetimes, we note that in these
coordinates the metric reads

g = e−2τ
(
(−e2ν + 2xeν+λ)dτ2 − 2eν+λdτdx + x2dΩ2

)
, (3.3)

where ν and λ are functions of (τ, x). The Lie derivative LS is now simply −∂/∂τ
and, consequently, the symmetry condition (3.1) implies that all metric coefficients
depend on x, only, so

ν = ν(x), λ = λ(x).
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This implies similar conditions on the scalar fields and, since ψ arises in an
undifferentiated form, the relevant condition is

∂

∂τ
ψ = 0, implying ψ = ψ(x).

However, φ only enters the equations in differentiated form and hence the condition is
∂

∂τ
∂µφ = 0, implying φ = χ(x) + kτ,

where χ = χ(x) is a function of x, only, and k is a dimensionless real constant.

Remark. An interesting variant of the above symmetry assumption was adopted in
[17], where self-similar, complex-valued, scalar field solutions are constructed from the
ansatz eiωτ ξ(x), for some dimensionless real constant ω.

Following Christodoulou [7], we define

β = 1 − eν−λ

2x
,

θ = xχ′(x), (3.4)
ξ = xψ′(x),

and we emphasize that β will replace ν from now on. The Einstein equation (2.3)
becomes

x
dβ

dx
= (1 − β)(2 − e2λ)

and, by adding (2.2) and (2.3) together, we find

2x
dλ

dx
= ξ2 + e2σψθ2 − (e2λ − 1). (3.5)

The third Einstein equation (in combination with the other two equations) yields the
constraint equation

e2λ = 1 + k2 e2σψ +
β

1 − β
(
(θ + k)2e2σψ + ξ2

)
. (3.6)

Moreover, the wave equation for the matter field reads

βx
dθ

dx
+

(
1 − (1 − β)e2λ

)
θ + k = −σ(k + 2βθ)ξ, (3.7)

and the wave equation for the Brans-Dicke field is

βx
dξ

dx
+

(
1 − (1 − β)e2λ

)
ξ = σe2σψ(k + βθ)θ. (3.8)

(We emphasize that there is no factor 2 in the parenthesis of the right-hand side of
this last equation.)

In conclusion, using the constraint (3.6) to eliminate λ, we arrive at a system of
four ordinary differential equations:

x
dβ

dx
= 1 − k2e2σψ −

(
e2σψ(θ + 2k)θ + ξ2 + 1

)
β, (3.9)

βx
dθ

dx
= k(ke2σψθ − 1) − σ(k + 2βθ)ξ +

(
e2σψ(θ + 2k)θ + ξ2 − 1

)
βθ,

βx
dξ

dx
= k2e2σψξ + σe2σψ(k + βθ)θ +

(
e2σψ(θ + 2k)θ + ξ2 − 1

)
βξ,

x
dψ

dx
= ξ.
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The first two equations above reduce to Christodoulou’s equations (see (0.27a) and
(0.27b) therein) provided σ and ξ vanish identically. Note that we can simultaneously
change the signs of θ and k without changing the structure of the system. Hence,
without loss of generality, we can assume that k ≥ 0, while θ still can have any sign.

3.2. Reduced system

We have found it convenient to rescale θ with an exponential factor eσψ, which
compensates for the discrepancy by a factor 2 between equations (3.7) and (3.8) (as
pointed out earlier). We define

Θ = eσψθ,

and the remaining exponential terms can be combined with k into a single variable:

K = eσψk.

The notation is intended to compare with Christodoulou’s case, for which Θ and K
coincide with θ and k, respectively. Using the variable s = ln x and denoting d/ds as
a prime, the system (3.9) now reads

β′ = 1 − K2 −
(
2KΘ + Θ2 + ξ2 + 1

)
β,

βΘ′ = K
(
KΘ − 1

)
− σ

(
K + βΘ

)
ξ +

(
2KΘ + Θ2 + ξ2 − 1

)
βΘ,(3.10)

β ξ′ = K2ξ + σ
(
K + βΘ

)
Θ +

(
2KΘ + Θ2 + ξ2 − 1

)
βξ,

K ′ = σKξ.

It is also convenient to make the change of variable

α =
1
β

,

such that the system under consideration becomes polynomial in all variables:
α′ =

(
αK2 + 2KΘ + Θ2 + ξ2 + 1

)
α− α2,

Θ′ =
(
αK2 + 2KΘ + Θ2 + ξ2 − 1

)
Θ − σ(αK + Θ)ξ − αK, (3.11)

ξ′ =
(
αK2 + 2KΘ + Θ2 + ξ2 − 1

)
ξ + σ(αK + Θ)Θ,

K ′ = σKξ.

From now on, we refer to these equations as the reduced system, which is our main
object of study. We sometimes use it in the form (3.10), evolving β instead of α.

Observe the combination
αK2 + 2KΘ + Θ2 + ξ2 = (α− 1)(e2λ − 1). (3.12)

We will later use the variable
L =

√
Θ2 + ξ2,

that obeys the evolution equation
1
2
(L2)′ =

(
αK2 + 2KΘ + L2 − 1

)
L2 − αKΘ. (3.13)

Remark. From Θ and ξ one can form a complex function Λ = Θ + iξ, with norm
|Λ| = L, which satisfies the differential equation

Λ′ = α (Z1 − Z0) (Z0Λ − 1) + |Λ|
(

Λ +
Z1

2

)
+

Λ2Z1

2
− Λ

with Z0 = K + iσ and Z1 = 2K + iσ.
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4. Interior solution originating at the center

4.1. Analytical strategy

The construction of our spacetimes, as solutions of the reduced system (3.11), will be
performed in several steps; a main difficulty stems from the fact that the equations
become singular for several values of the x-coordinate. This happens at the center of
spherical symmetry, x = 0, and at the self-similarity horizons corresponding to those
values of x for which the homothetic vector S becomes null. In our Bondi coordinates,
this corresponds to the condition g(∂τ , ∂τ ) = gττ = 0 for the past light-cone, which
reads (see (3.3))

−e2ν + 2xeν+λ = 0, or β = 0.

This section describes the construction of the past of the singularity, namely the region
between the center worldline and the past lightcone of the singularity, the first self-
similarity horizon. Following Christodoulou, we shall refer to this region as the interior
solution.

Interior

Exterior

Future

x = 0 x = x∗

x = +∞

Figure 1. Schematic representation of the different regions in which the the
solution is divided, matching at the past light-cone (x = x∗) and the future light-
cone (x = +∞). The dashed lines denote Bondi coordinate lines.

4.2. Critical points and regularity at the center

We begin by determining all critical points corresponding to equilibria of the reduced
system, provided σ '= 0. In view of the right-hand side of (3.11) and provided
the unknown functions α, Θ, ξ, K have vanishing derivatives, only the following
alternatives can arise:

(a) α = 0, Θ = 0, ξ = 0, K arbitrary,
(b) α = 1, Θ = −K, ξ = 0, K arbitrary,
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!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0

!1.5

!1.0

!0.5

0.0

0.5

1.0

1.5

Θ

ξ

Figure 2. Projection onto the plane (α = 0, Θ, ξ, K = 1/2) of streamlines of the
flow vector field of system (3.11) for σ = 1/3. We have marked the fixed point
(a) at Θ = 0, ξ = 0 and the projections at Θ = 0, ξ = ±1 of the exact solutions
mentioned in the text. We have also marked the points Θ = −K ±

√
K2 + 1,

which are fixed points in Christodoulou’s system, but are no longer fixed points
in our system. Those four points now form part of an unstable projected structure
that resembles a limit circle, though we do not know whether a true limit cycle
exists in the full phase space.

(c) α = 0, Θ = 0, ξ2 = 1, K = 0,
(d) α = 2, Θ = 0, ξ2 = 1, K = 0.

Points (c) actually belong to the exact solutions α = 0, Θ = 0, ξ = ±1, K = K0e±σs.
Note that this collection of fixed points is not an extension of Christodoulou’s result.
This is due to the fact that the condition ξ = 0 is not preserved by the evolution. In
fact, several fixed points in Christodoulou’s problem are no longer fixed in our case.
This is clear in Figure 2, which shows a projection of the evolution flow on a slice
(Θ, ξ) of phase space.

The center of symmetry must correspond to one of the above cases. We
need to rely on physically motivated regularity requirements, to select one of them.
Specifically, we impose that the center of symmetry is regular before the formation of
the singularity. Recall that the Hawking mass is determined from the metric coefficient
λ by the relation

1 − 2m

r
= e−2λ. (4.1)

In order to avoid a singular behavior at the center, we impose that the mass tends to
zero, which implies λ = 0 at the center. The equation (3.12) then selects the fixed
points (a) and (b), above.

Regularity at the center also requires that ν(x = 0) is finite, to avoid a coordinate
time singularity. However, the value of ν at the center is gauge-dependent and, by
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normalizing ν to vanish at the center, the coordinate time u in (3.2) coincides with the
proper time of the central observer. Consequently, β in (3.4) behaves like β ∼ −1/(2x)
and, equivalently α ∼ −2x at the center. In particular, this condition implies that
α = 0 at the center, which is consistent with the critical point (a) above, only.

In summary, we obtain the following values for the critical point of interest:

α = 0, Θ = 0, K = K0, ξ = 0 at the center x = 0, (4.2)

where K0 is an arbitrary non-negative constant.

4.3. Linear stability of the critical point at the center

After linearizing around the critical point (a), the Jacobian matrix of the system in
the linearized variables (δα, δΘ, δξ, δK) reads





1 0 0 0
−K0 −1 0 0

0 0 −1 0
0 0 σK0 0



 .

Its eigenvalues are 1,−1,−1, 0, with respective eigenvectors

e(1) =





1
−K0/2

0
0



 , e(2) =





0
1
0
0



 ,

e(3) =





0
0
1

−σk



 , e(4) =





0
0
0
1



 ,

respectively. (Figure 2 corresponds to the two negative eigenvalues.) The origin (a),
therefore, has an unstable branch, tangent to the vector e(1), and the corresponding
solutions in the neighborhood of (a) have the form





α
Θ
ξ
K



 =





0
0
0

K0



 + a1 es





1
−K0/2

0
0



 + o(es),

where a1 is a parameter.
Imposing the normalization αx−1 → −2 at (a), we get a1 = −2 and we obtain

an interior solution in the neighborhood of the center, satisfying




α
Θ
ξ
K



 =





−2es

K0es

0
K0



 + o(es). (4.3)

We now show that this implies that the spacetime is (mildly) singular at the
center. We start by taking the trace of (2.1), which gives the Ricci scalar

R = −2T + 2
(
gαβ∂αψ∂βψ

)
. (4.4)
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Taking the form (3.3) of the metric, we get

R = 2e2τ
(
−2e−(ν+λ)

(
a2∂τφ∂xφ+ ∂τψ∂xψ

)
(4.5)

+
(
e−2λ − 2xe−(ν+λ)

)(
a2 (∂xφ)

2 + (∂xψ)2
))

= −
2e2τ

(
ΘK + β

(
Θ2 + ξ2

))

x2 (2βΘK + K2 + β (Θ2 + ξ2 − 1) + 1)
. (4.6)

Using the reduced system (3.11) together with the expansion (4.3), we get (for the
first two variables)

α = − 2 es − 4e2s + o
(
e2s

)
,

Θ = K0 es +
4K0

3
e2s + o

(
e2s

)
.

Therefore, the local expression for the Ricci scalar becomes (we have replaced es with
x)

R = e2τ
(
−2K2

0 − 4K2
0x + o

(
x2

))
, (4.7)

where we have used limx→0 ν(x) = limx→0 λ(x) = 0.
Consequently, the presence of a non-vanishing linear term −4K2

0x in (4.7) shows
that, when viewed as a geometric object in a spherically symmetric spacetime, the
scalar curvature R is continuous but not differentiable at the center x = 0. (Only
even powers of x should, otherwise, be allowed.) Hence, the spacetime contains a
(mild) singularity before the central curvature singularity forms at u = 0.

4.4. Integration in the interior region

We denote by (−∞, s∗) the maximal interval on which the solution is defined, and
now check that, provided s∗ is finite, α must blow-up.

Claim 1. Either the solution is defined and regular up to s∗ = +∞, or else
α(s) → −∞ but Θ, ξ and K remain bounded as s → s∗.

Indeed, se suppose that s∗ is finite and we are going to prove that both Θ and
ξ are bounded. First, α < 0 for all s < s∗. Indeed, α(s) < 0 at least for an interval
of the form (−∞, s0] with s0 < s∗. Thus, β(s) = 1/α(s) is negative and finite on the
same interval. Also, setting B = 2KΘ + Θ2 + ξ2 + 1 and C = 1 − K2, from the first
equation of (3.10) we deduce that (for s0 ≤ s < s∗)

β(s) = β(s0)e
−

R s
s0

B(u)du +
∫ s

s0

C(u)e−
R s

u B(t)dtdu.

Thus, β(s) remains finite on (−∞, s∗) so that α(s) = 1/β(s) can not vanish in this
interval and remains negative. Now, the equation (3.5) reads

2λ′ = (ξ2 + Θ2
)
− (e2λ − 1)

= L2 − (e2λ − 1),

thus we have
e2λ =

esg(s)∫ s
−∞ es′g(s′) ds′

, g(s) = e
R s
−∞ L2(s′) ds′

.
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But, L can not vanish, except at an isolated point. Indeed, if there is s1 < s∗
such that L(s1) = 0, then Θ(s1) = 0 with Θ′(s1) = −α(s1)K(s1) > 0. Thus, functions
Θ and L are both different from zero in the neighborhood of s1. We obtain that the
function g is strictly monotone increasing,

∫ s

−∞
es′

g(s′) ds′ < g(s)
∫ s

−∞
es′

ds′ = esg(s),

so that e2λ > 1, i.e., λ(s) > 0 for all s < s∗. Setting

Γ = αK2 + 2ΘK + L2,

and using (3.6), we obtain

e2λ − 1 =
Γ

α− 1
.

Since α < 0 for s < s∗, we get Γ(s) < 0 for all s ∈ (−∞, s∗).
Let us introduce now the quantity

H = Θ2 + ξ2 + 2
ξ

σ
= L2 + 2

ξ

σ
.

Using (3.13) and the third equation in (3.11), we obtain

H ′ = ΓH + ΓL2 − 2(ξ2 +
ξ

σ
).

Then, completing the square in the last term,

H ′ ≤ ΓH +
1

2σ2
.

Now, fix s0 < s∗. Using the Gronwall inequality, we get for s ∈ [s0, s∗),

H(s) ≤ H(s0)e
R s

s0
Γ(u)du +

1
2σ2

∫ s

s0

e
R s

u Γ(t)dtdu

≤ H+(s0) +
1

2σ2
(s − s0) ≤ H+(s0) +

1
2σ2

(s∗ − s0),

where H+(s0) = max(0, H(s0)). We deduce that both Θ and ξ are bounded, and
since K(s) = K(s0)e

R s
s0

ξ, K is also bounded. We conclude that necessarily α→ −∞,
as s → s∗.

Claim 2. Assume that s∗ < +∞. Then, there exists a real 0 < K∗ < 1 such that,

lim
s→s∗

K(s) = K∗,

lim
s→s∗

Θ(s) =
K∗

K2
∗ + σ2

,

lim
s→s∗

ξ(s) = − σ

K2
∗ + σ2

.

To establish this claim, we proceed as follows. First, since ξ remains bounded,∫ s∗
−∞ ξ(s)ds = Ξ, where Ξ is some real constant, so that

lim
s→s∗

K(s) = K0e
σΞ = K∗,
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with K∗ > 0. Also, the first equation of (3.10) gives β′(s) → 1 − K2
∗ , and we obtain

β(s)
s∗ − s

→ K2
∗ − 1. (4.8)

But since β(s) < 0 for s < s∗, we get that necessarily K∗ ≤ 1. The case K∗ = 1 will
be excluded at the end of the argument.

Now, let us introduce the new variables

δ1 = KΘ − σξ − 1, δ2 = Kξ + σΘ. (4.9)

Thus, the expressions of Θ′ and ξ′ in (3.11) become

Θ′ =
K

β
δ1 + h1, ξ′ =

K

β
δ2 + h2, (4.10)

where

h1 = (2KΘ + Θ2 + ξ2 − 1)Θ − σξΘ,

h2 = (2KΘ + Θ2 + ξ2 − 1)ξ + σΘ2.

Using (4.9), (4.10) and the last equation in (3.11), we get

δ′1 =
K

β
(Kδ1 − σδ2) + l1, δ′2 =

K

β
(σδ1 + Kδ2) + l2, (4.11)

where

l1 = σKξΘ + Kh1 − σh2, (4.12)
l2 = σKξ2 + Kh2 + σh1. (4.13)

Thanks to (4.11), the quantity δ = (δ21 + δ22)1/2 satisfies

δ′ =
K2

β
δ + l, (4.14)

where
l =

l1δ1 + l2δ2
δ

.

By assumption, l1 and l2 are bounded on (−∞, s∗) so that l is bounded too.
Choosing s < s∗, and integrating (4.14) over [s0, s] we obtain

δ(s) = e−ζ(s)
(
δ(s0) +

∫ s

s0

eζ(s
′) l(s′)ds′

)
,

where
ζ(s) = −

∫ s

s0

K2(s′)
β(s′)

ds′.

Function ζ is increasing, and by (4.8), it tends to +∞ as s → s∗, together with its
derivative ζ′. Thus,

e−ζ(s)

∫ s

s0

eζ(s
′)ds′ → 0 as s → s∗,

and since l is bounded we obtain

lim
s→s∗

δ(s) = 0.
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Finally, we can rewrite (4.9) in the form

Θ =
1

σ2 + K2
(K(δ1 + 1) + σδ2), ξ =

1
σ2 + K2

(−σ(δ1 + 1) + Kδ2),

and we get

lim
s→s∗

Θ(s) =
K∗

K2
∗ + σ2

, lim
s→s∗

ξ(s) = − σ

K2
∗ + σ2

.

Now, it remains to prove that K∗ < 1, i.e., K∗ = 1 is excluded when s∗ < +∞,
as well as K∗ > 1. So, assume by contradiction that K∗ = 1. Thus, the last equation
in (3.11) reads

K(s) = 1 − σ2

σ2 + 1
(s − s∗) + o(|s − s∗|), (4.15)

Also, (3.10) gives β′(s) → 0 as s → s∗, so that β(s) = o(|s∗ − s|). More precisely,
using (4.15) in the first equation of (3.10) we obtain the following expansion

β′(s) = 2
σ2

σ2 + 1
(s − s∗) + o(|s − s∗|).

Thus, β is decreasing in the neighborhood of s∗ which is impossible since β < 0 and
β(s) → 0 as s → s∗.

4.5. Conclusions for the interior region

In the interior region, the situation is similar to that of Christodoulou, in the sense
that the presence of a first self-similarity horizon, the past light-cone of the singularity,
is determined by the value of a constant K∗, which must be below the threshold 1. The
main difference is that in Christodoulou’s case this constant is the parameter k, fixed
throughout the problem, while in our case the constant K∗ is dynamically determined
by the evolution and, so, depends on the set of initial conditions, especially the initial
value K0 of the variable K.

We have performed numerical integrations of the reduced system of equations
to investigate how K evolves. The results are summarized in Figure 3, which shows
several evolutions of K starting from different values at the center. In all cases we see
a decrease of K until values below 1 are reached, and then we reach the singular point
x∗ = es∗ , where the integration is stopped. We have found this behavior in all tested
cases, including cases with large values of the initial K0 (above 1000, say). The value
of σ does not alter the qualitative picture, though the decay of K is faster for larger
values of σ. Interestingly enough, for large values of K0 the final value K∗ is almost
independent of that initial value. For sufficiently large values of σ we find numerically
that K∗ tends to 4/(3σ).

In other words, we can have solutions in which the central singularity has a past
light-cone for initial values of the constant k for which Christodoulou’s corresponding
solution would be more pathological, with that light-cone becoming actually a border
of the spacetime.
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x

K

Figure 3. Evolution of K(x) starting from values K0 ranging from 0 to 7 in
steps 1/2, hence 15 curves. The coupling constant is σ = 3/2 in all cases. Each
evolution stops when reaching the singular point x∗, which for K0 = 0 corresponds
to Minkowski, with x∗ = 1/2. For reference, a dashed line represents the value
K = 1.

5. Extension to the exterior region

5.1. The singular points

According to the previous section when s∗ < +∞, the solution of (3.11) converges to
a singular point of the form (β, Θ, ξ, K) = (0, Θ∗, ξ∗, K∗) = UK∗ , where 0 < K∗ < 1,
Θ∗ = K∗

K2
∗+σ2 , ξ∗ = − σ

K2
∗+σ2 . To treat the solutions in the neighborhood of such

singular point, and following [7], we introduce a new independent variable t satisfying
ds

dt
= β,

which converts the singular point at finite s into a critical point at t → −∞.
Thus, by using (3.10), the variables β, Θ, ξ, and K satisfy the system

dβ

dt
= (1 − K2)β − (2KΘ + Θ2 + ξ2 + 1)β2,

dΘ
dt

= βΘ(2KΘ + Θ2 + ξ2 − 1 − σξ) + K2Θ − K − σKξ, (5.1)

dξ

dt
= β ξ (2KΘ + Θ2 + ξ2 − 1) + σ βΘ2 + K2ξ + σKΘ,

dK

dt
= σKβ ξ.
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The singular point UK∗ is an equilibrium point of the previous system, and the
Jacobian matrix at this point reads

A(UK∗) =





1 − K2
∗ 0 0 0

K2
∗(K2

∗+1)
(K2

∗+σ2)2 K2
∗ −σK∗

K2
∗

K2
∗+σ2

σ(1−σ2)
(K2

∗+σ2)2 σK∗ K2
∗ − σK∗

K2
∗+σ2

− σ2K∗
K2

∗+σ2 0 0 0





.

The spectrum of A(UK∗) is given by
Sp(A(UK∗)) = {0, 1 − K2

∗ , K2
∗ − iσK∗, K2

∗ + iσK∗}.
The eigenvalue 0 corresponds to the fact that the set C∗ = {UK∗ , 0 < K∗ < 1}
defined by the equilibrium points of the form UK∗ , with 0 < K∗ < 1, is a (one-
dimensional) curve. Each point UK∗ has an unstable manifold WK∗

i of dimension three,
corresponding to the three other eigenvalues having a positive real part. Naturally,
WK∗

i must be transverse to C∗.
We also observe that all solutions originating at UK∗ and extending from the

interior to the exterior region, admit the following expansion (when t → −∞):




β
Θ
ξ
K



 = UK∗ + a1e
(1−K2

∗)tC1 + a2e
K2

∗tC2(t) + a3e
K2

∗tC3(t)

+ o(eK2
∗t, e(1−K2

∗)t),
where C2(t) and C3(t) are (bounded) periodic-rotating vector-valued functions, and C1

a fixed eigenvector of the matrix A(UK∗) corresponding to the eigenvalue λ1 = 1−K2
∗ .

The three vectors C1, C2(t) and C3(t) are linearly independent for all t. Up to a
translation in t, we can assume that a1 = 1 and, thus, we obtain a two-parameter
family of solutions.

The expansion above shows that the functions on the left-hand-side are continuous
at the past light-cone, but not differentiable in s there for 0 < K∗ < 1, since they will
generically contain terms of the form (s−s∗)K2

∗/(1−K2
∗) or (s−s∗)1−1/K2

∗ . In particular
Θ will be only continuous, and hence curvature will be discontinuous, though still
finite, at the past light-cone.

5.2. Exterior solutions

We computed in Section 4.2 the fixed points of our dynamical system. In the interior
the relevant point was (a), but now we will study (b) and (d). We first focus our study
of the exterior region on an equilibrium point of the form (b), namely

PK∗ = (1,−K∗, 0, K∗) for a fixed 0 < K∗ < 1.

The Jacobian matrix of system (3.11) at this point is given by

A(PK∗) =





K∗2 − 1 0 0 0
−K∗3 − K∗ −1 0 −1
−σK∗2 −σK∗ −1 −σK∗

0 0 σK∗ 0



 .
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The spectrum of this matrix is given by

Sp(A(PK∗)) = {0, K∗2 − 1, −1 − iσK∗, −1 + iσK∗},
which gives the asymptotic behavior





α
Θ
ξ
K



 = PK∗ + a1e
(K∗2−1)sC1 + a2e

(−1−iσK∗)sC2(t)

+ a3e
(−1+iσK∗)sC3(s) + o(e−s, e(K∗2−1)s), (5.2)

The eigenvalue 0 corresponds to the fact that the set C∗ = {PK∗ , 0 < K∗ < 1}
defined by the equilibrium points of the form PK∗ , is a (one-dimensional) curve. Each
point PK∗ has a stable manifold WK∗

s of dimension three, corresponding to the three
other eigenvalues having a negative real part. Naturally, WK∗

s must be transverse to
C∗.

Consider now the two isolated critical points of form (d)

Vε = (2, 0, ε, 0), ε = ±1

The Jacobian matrix of system (3.11) at Vε reads

A(Vε) =





−2 0 4ε 0
0 −σε 0 −2(σε+ 1)
0 0 2 0
0 0 0 σε



 .

The spectrum of the previous matrix is given by

Sp(A(Vε)) = {−2, −σ, σ, 2}.

Each point Vε, ε = ±1 has a stable manifold W (ε)
s and an unstable manifold W (ε)

i ,
both of dimension two.

The points PK∗ are attractors (except for the marginal direction connecting
them), and our numerical simulations below will show that it is indeed possible to
evolve from points UK∗ at the past light-cone to points PK∗ at the future light-cone.

In this section, in order to establish that this is indeed the future light-cone
u = 0 of the singularity, we investigate the behavior of exterior incoming null rays for
solutions terminating at such point PK∗ . The exterior condition means that we work
with β > 0. Evolving towards a fixed point means that we can approach x = +∞,
and hence this is either r = +∞ or u = 0. Therefore we need to show that incoming
null rays can reach x = +∞ at finite r. In self-similar coordinates (τ, s) the equation
of incoming null rays is

dr

du
= −1

2
eν−λ, ⇒ ds

dτ
= β,

and hence, for a given ray originating at (τ0, s0),

τ − τ0 =
∫ s

s0

α(s′)ds′.
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From (5.2) we get that

(α(s) − 1)e(1−K∗2)s → c as s → +∞

for some constant c. Therefore,

log r = s − τ = s0 − τ0 −
∫ s

s0

(α(s′) − 1)ds′

converges to a finite quantity as s → +∞.
Finally, it remains to show that the future light-cone is not a curvature singularity,

so that the spacetime can be continued beyond it. Indeed, while the self-similar
coordinate system (τ, x) becomes singular on the future light-cone, we still can take
the limit x → +∞ in the formula (4.6), replacing the results in (5.2). The result for
the Ricci scalar R of the spacetime metric is

r2R → − 2K∗2

(1 + K∗2)(K∗2 + σ2)
as x → +∞.

Hence R is finite everywhere on the future light-cone —except of course at r = 0
(which is a curvature singularity). Similar expressions can be derived for the Gauss
curvature of the two-dimensional reduced spacetime, or for the Kretchmann scalars of
the four-dimensional and two-dimensional metrics.

Our points PK∗ = (1,−K∗, 0, K∗) play the same role as Christodoulou’s point
P0 = (1,−k), and we see that they are indeed closely related since the field ξ vanishes
at our points PK∗ . This can be interpreted as a sign that the Brans-Dicke field is
becoming irrelevant on the future light-cone of the singularity and, therefore, that the
spacetime has the same properties as the ones of Christodoulou’s solutions within a
small neighborhood of the light-cone.

An important difference between our construction and Christodoulou’s one is
that he can construct time-symmetric solutions, since the data on the past and future
light-cones coincide. But, such construction is not possible here precisely because the
point UK∗ has a non-vanishing field ξ while the point PK∗ has ξ = 0.

Christodoulou uses the above fact to “copy” the past region of the spacetime onto
the future region (cf. Fig. 1), finding a possible complete spacetime containing the
naked singularity, with a center which is only mildly singular. In our case, to have a
complete spacetime, we would need to evolve (numerically) further from data on the
future light cone —but we shall not do that here, as we decided focus on establishing
the presence of the singularity, only.

Finally, the structure of phase space around this point is quite different in our
system. There is no equivalent of Christodoulou’s points P+ and P−, due to the
general tendency of the variables Θ and ξ to “rotate” among them (which is the
same phenomenon as the one discussed in Figure 2). The two-dimensional funnel in
Christodoulou’s pictures is converted here into a higher-dimensional analogue. In the
following section we use numerical evolutions to demonstrate this behavior.

6. Numerical investigations

6.1. Numerical strategy

We perform a numerical integration of the system (3.11) using a fourth-order Runge-
Kutta scheme. This is done in four steps:
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(i) Using the coordinate x = es, from x = 0, with α = 0, Θ = 0, K = K0, and ξ = 0,
we integrate the equation (4.2) up to some finite value x0 = es0 .

(ii) Then, switching to the reduced system (3.11) in the coordinate s we use an
adaptive-step approach to integrate on the interval [s0, s∗) and get as close as
possible to s∗, where lims→s∗ α = −∞.

(iii) Next, starting again from s1 > s∗, we integrate the system (3.11) backward to
reach s∗. At s1, we have two new parameters, namely Θ1 = Θ(s1) and ξ1 = ξ(s1),
whereas α(s1) and K(s1) are determined so that all quantities (β, Θ, ξ, K) match
at s = s∗.

(iv) Finally, from s = s1, we integrate forward with a constant step-size and check
whether the system (3.11) converges to a stationary point or diverges.

A first step is needed to start from the accurate values at the central singularity, as
defined in Section 4.2; the matching with the second step at s = s0 is straightforward,
since the transition is done at a point at which all quantities have regular behavior
and we only make a change of coordinate from x to s. The matching at s∗ is much
more complicated and we first explain now the technique used to recover the results
by Christodoulou [7].

6.2. Numerical integration of Christodoulou’s system

In his study, Christodoulou solves the equivalent of our two first equations (for
α = α(s) and Θ = Θ(s)) in the reduced system (3.11):

dα
ds

= α
(
(θ + k)2 +

(
1 − k2

)
(1 − α)

)
, (6.1)

dθ
ds

= kα (kθ − 1) + θ
(
(θ + k)2 −

(
1 + k2

))
. (6.2)

(Cf. the equations (1.1a) and (1.1b) in [7].) In a neighborhood of s∗, for s > s∗,
Christodoulou finds that the solution θ depends on a real parameter a1 (see (2.13)
and (2.14) in [7]), but one always has

lim
s→s∗

θ =
1
k

.

On the other hand, the solution β = α−1 has the following behavior:

β = (1 − k2) (s − s∗) + O
(
|s − s∗|2

)
. (6.3)

With these information, we devise the numerical integration strategy as follows. Given
a value of k, we integrate the system (6.1)–(6.2) until s → s∗, and thus determine the
approximate value of s∗ up to high accuracy. We then define

s1 = (1 ± ε)s∗, (6.4)

with the sign chosen so as to s1 > s∗ and ε ∼ 0.03 for numerical convenience. We
then set

α(s1) =
1

(1 − k2)εs∗
, (6.5)

θ(s1) = θ1, (6.6)

with θ1 a new parameter than can be freely chosen and is to represent the degree
of freedom, induced by the parameter a1 of Christodoulou’s study (see Section 2
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Figure 4. Solutions β(s) = α(s)−1 and θ(s) in the case of Christodoulou’s
system (6.1)–(6.2). The matching of the solution at s = s∗ is shown for two
different values of the parameter θ1 = θ(s1).

and Eqs. (2.13b)-(2.14c) of [7]). From the two points (s1, α1), (s1, θ1), we integrate
backward toward s∗ and α(s) → +∞. When doing so, we find numerically that, in
most cases, α is diverging at some value s′∗ '= s∗. This is due to the approximate value
of α1 in (6.5) that was chosen to initiate the integration. Since we are dealing with
an autonomous system, we can perform a slight shift ∆s = s′∗ − s∗ in the variable s,
so that lims→s+

∗
α(s) = +∞.

In Figure 4 are shown the numerical solutions of the differential system (6.1–
(6.2), for K0 = 0.3 and with two different values of θ1 = θ(s1). We have numerically
observed that, if the parameter ε was small enough and for any value of θ1, the
backward integration detailed here-above would always bring back to the solution
β(s∗) = 0 and θ(s∗) = 1/k. We were thus able to numerically recover the result
by Christodoulou [7] that, for a given k < 1, each solution of the system (6.1)–(6.2)
connects to a one-parameter family of solutions at s = s∗.

By varying the parameter θ1, one can reach different asymptotic regimes, when
s → +∞: both fields α and θ can diverge or they can converge to the stationary point
P0 : (α = 1, θ = −k). This last case is displayed in Figure 5, with the trajectories of
the solutions in the (θ, α) plane. (This is to be compared with Figure 4 in [7].)

6.3. Numerical solutions of the reduced system

In the case of interest in this paper, we have to deal with the matching of four fields
(α, Θ, ξ, K) at s = s∗. We use the same numerical technique, with the four steps
described at the beginning of this section. We have numerically observed that here, in
addition to θ1(Θ1 = Θ(s1)), we need to specify the value of ξ1 = ξ(s1). On the other
hand, near an equilibrium point UK∗ , with 0 < K∗ < 1 we get from the first and last
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Figure 5. Trajectories in (θ, α) plane of the two solutions shown in Figure 4. In
both cases, the stationary point P0 : (1,−k) is reached as s → +∞.

equations in (3.10):

β′(s) ∼ 1 − K2
∗ , K ′(s) ∼ σK∗ξ∗,

so that we can write the following expansions:

β(s) =
(
1 − K2

∗
)
(s − s∗) + o (|s − s∗|) , (6.7)

K(s) = K∗ −
σ2K∗

K2
∗ + σ2

(s − s∗) + o (|s − s∗|) . (6.8)

We can therefore obtain numerical estimations of the values of these two fields at
s = s1 and perform the integration backward, from s1 toward s∗. We again do the
shift in s to match β up to machine precision at s = s∗, but doing so does not allow
for an accurate matching of K(s). We then do several (usually no more than five)
integrations from s1 toward s∗, correcting each time the starting value K(s1) in such
a way that, at the end, the function K(s) is continuous at s∗, up to machine precision.

Results are displayed in Figure 6, where we have taken K0 = 0.3 and σ = 0.1. The
matching of all four fields are done with the setting of two new parameters (Θ1, ξ1),
which seems to indicate that a solution starting from the interior region (s < s∗)
connects to a two-parameter family of solutions in the exterior region (s > s∗).
Depending on these two parameters (Θ1, ξ1), we numerically recover a behavior similar
to that of Christodoulou’s system [7]: for some values of k, σ, Θ1 and ξ1, the system
can converge to the stationary point (b) of Section 4.2, that is, (1,−K∗, 0, K∗) with

K∗ = lim
s→+∞

K(s). (6.9)

Part of this behavior is displayed in Figure 7, where the trajectories in the (θ, α, ξ)
space, for three sets of parameters (Θ1, ξ1). Each set of parameters can lead a priori to
a different limit PK∗ . If these trajectories were projected onto the (α, Θ) plane, they
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,Θ, ξ and K of the reduced system (3.11). The

matching of the fields at s = s∗ are shown for three sets of the parameters
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Figure 7. Trajectories of the solutions of the reduced system (3.11) in the (θ, α, ξ)
space, for three different sets of parameters (Θ1, ξ1).
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would resemble a lot the ones of the general-relativistic system of Figure 5, studied by
Christodoulou [7], with the noticeable difference that we no longer have a single limit
P0, but the endpoint depends in general on the value K∗ (see (6.9)), which changes
from one set of parameters to another.

7. Conclusions

We have studied the formation of naked singularities in the process of the gravitational
collapse of a real massless scalar field, and have generalized Christodoulou’s
construction of a family of spacetimes containing a naked singularity. While
Christodoulou worked within the classical Einstein theory, we have here considered
the Brans-Dicke theory. This effectively led us to deal with a new scalar field and to
promote Christodoulou’s constant parameter k to a dynamical variable K.

We were able to fully analyze the interior region and rigorously justify the
matching across the past light-cone of the naked singularity. Partial analytical
information was also obtained in the exterior region, and we finally completed our
study with numerical simulations. We could show that the variable K always decreases
from any initial value to a value K∗ smaller than 1 at the past light-cone. This
eliminates the possibility in Christodoulou’s work of forming pathological solutions
without a past light-cone. In that sense the addition of the Brans-Dicke field has a
“regularizing” effect. The behavior of the solutions in the exterior region is similar
to the one of Christodoulou’s solution and, in fact, the Brans-Dicke field vanishes on
the future light-cone of the singularity (a Cauchy horizon). However, the dynamical
structure of the phase space is quite different, as our phase space is much larger and
does not contain Christodoulou’s case as a subspace.

Like Christodoulou established for solutions to the classical Einstein equations,
our solutions are probably highly unstable against small (radially symmetric, for
instance) perturbations.

It is quite reasonable to expect that more general scalar-tensor theories would
exhibit a similar behavior. In particular, it would be interesting to extend our
conclusions to the more general models arising in the so-called f(R) theories of gravity
when the action involves a nonlinear function of the Ricci scalar.
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