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Abstract. Compact, flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) models
have recently regained interest as a good fit to the observed cosmic microwave
background temperature fluctuations. However, it is generally thought that a globally,
exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a
probability space on the set F of compact, comoving, 3-spatial sections of FLRW
models, a physically motivated hypothesis is proposed, using the density parameter Ω
as a derived rather than fundamental parameter. We assume that the processes that
select the 3-manifold also select a global mass-energy and a Hubble parameter.
The requirement that the local and global values of Ω are equal implies a range in Ω
that consists of a single real value for any 3-manifold. Thus, the obvious measure over
F is the discrete measure. Hence, if the global mass-energy and Hubble parameter are
a function of 3-manifold choice among compact FLRW models, then probability
spaces parametrised by Ω do not, in general, give a zero probability of a flat model.
Alternatively, parametrisation by a spatial size parameter, the injectivity radius rinj,
suggests the Lebesgue measure. In this case, the probability space over the injectivity
radius implies that flat models occur almost surely (a.s.), in the sense of probability
theory, and non-flat models a.s. do not occur.
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1. Introduction

Recent empirical analyses regarding the shape of the comoving spatial section of

the Universe, assuming a perturbed Friedman-Lemâıtre-Robertson-Walker (perturbed-

FLRW) model, have mostly focussed on the Wilkinson Microwave Anisotropy Probe

(WMAP) all-sky maps of the cosmic microwave background. The results are presently

inconclusive regarding both curvature and topology. The curvature has been found to

be “nearly” zero, i.e., comoving space could be hyperbolic, flat or spherical. Writing the

curvature as an effective density parameter Ωk := 1 − Ω, where Ω is the total density

parameter,‡ none of the three possible curvatures k ∈ {0,±1} have been observationally

excluded to high statistical significance. It is true that the precision in upper limits to

|Ωk| has improved by about one a half orders of magnitude in the last decade and a half,

and that the accuracy in |Ωk| upper limits has similarly improved, but these limits do

not exclude any of k ∈ {0,±1}.
Results regarding topology, i.e. the fundamental group Γ of holonomy

transformations of the comoving spatial section, are also inconclusive. Sev-

eral groups have found that the Poincaré dodecahedral space S3/I∗, with cov-

ering space M̃ = S3 and fundamental group Γ = I∗, is preferred over

simply connected infinite flat space (Luminet et al., 2003; Aurich et al., 2005a,b;

Gundermann, 2005; Caillerie et al., 2007; Roukema, Buliński, Szaniewska and Gaudin,

2008; Roukema, Buliński and Gaudin, 2008) in order to fit the WMAP data, while oth-

ers exclude detectable cosmic topology (Cornish et al., 2004; Key et al., 2007), or pre-

fer simply connected infinite flat space (Niarchou and Jaffe, 2007; Lew and Roukema,

2008).

While a well-established theoretical basis for cosmic curvature exists (the Einstein

field equations match the spatial curvature of the Universe to its matter-energy density),

there are at present only hints as to what might constitute a theory of cosmic topology.

Various quantum gravity aspects of cosmic topology include the decay from pure

quantum to mixed states (e.g., Hawking, 1984), smooth topology evolution (e.g.,

Dowker and Surya, 1998), and work that could contribute to a physical motivation for

deciding which 3-manifold should be favoured by a theory of quantum cosmology (Seriu,

1996; Anderson et al., 2004). A recent heuristic result is that of the dynamical

effect of cosmic topology in the presence of density perturbations. A residual weak-limit

gravitational effect in the presence of a density perturbation selects well-proportioned

spaces (Weeks et al., 2004) in general, and the Poincaré dodecahedral space S3/I∗ in

particular, to be special in the sense of being “better balanced” (Roukema et al., 2007;

Roukema and Różański, 2009). The agreement between the residual gravity effect and

many of the empirical analyses in choosing the same space, the Poincaré space, suggests

that this effect might have been important in the early universe in selecting the comoving

‡ The total density parameter is defined Ω := ρtot/ρcrit, where ρtot and ρcrit are the total density and
the critical density, respectively. The latter is ρcrit := 3H2/(8πG) where H is the Hubble parameter
and G the gravitational constant.
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3-manifold in which we live.

On the other hand, Aurich et al. (Aurich et al., 2007; Aurich, 2008; Aurich et al.,

2008, 2010) have recently carried out several studies showing that a flat compact model

(specifically, T 3) generally provides a better fit to the WMAP data than infinite flat

models. This work provides one of the few ways of potentially showing that the

Universe is flat in the sense of being a flat 3-manifold (apart from perturbations), if

that is indeed the true shape of the Universe, rather than a Poincaré space. Approaches

that ignore topology sometimes argue in favour of flatness while simultaneously stating

(correctly) that they cannot determine the curvature. For example, Vardanyan et al.

(2009) calculate the odds “in favour of a flat Universe”, but also state that “the

[curvature] of the Universe is not knowable” if log10 |Ωk| < −4, and make no claim

that log10 |Ωk| ≥ −4. That is, they assert that either the curvature has not yet been

determined, or it is unknowable. In contrast, use of the global properties of the comoving

spatial section potentially offers a way to determine the curvature, even if the curvature

is zero, as suggested by Aurich et al.’s work, and even in the (realistic) presence of

perturbations.

Although flat, compact space models have been frequently modelled, they have

generally been disliked for fine-tuning reasons, especially in relation to inflationary

motivations and scenarios. It is frequently stated that the probability of the spatial

section of the Universe, according to the exact-FLRW model, being exactly flat is

zero. For example, in a discussion about common misconceptions regarding “standard

universe models” and inflation, Ellis (2006) states that being exactly flat “requires

infinite fine tuning of initial conditions; if say the two millionth digit in the value of

Ωk is non-zero at any time, then the universe is not spatially flat” and that “although

the scale-free k = 0 exponential case is the model underlying the way many people

approach the problem, it is highly exceptional — it is of zero measure within the space

of all inflationary FL models” (Sect. 2.8.1, 2.7.1, resp., Ellis, 2006). That is, if the

measure µ on the space F of all exact-FLRW models is a probability measure, i.e. if

µ(F ) = 1, then the probability of exact flatness is zero: P (k = 0) = µ(k = 0) = 0.

Since inflationary scenarios only favour near flatness, not exact flatness, the subclass

of inflationary scenarios I ⊂ F can validly have µ(I) > 0, i.e. a positive probability,

according to this implicit definition of a measure space (F, Σ, µ).

However, is being exactly flat necessarily a physical possibility that has zero

measure? Ellis and van Elst (1999) argue that finding a natural, plausible, measure

in the “full space of cosmological space-times” is an open problem. Previous

suggestions of measures (e.g., Gibbons et al., 1987; Coule, 1995; Evrard and Coles, 1995;

Kirchner and Ellis, 2003; Gibbons and Turok, 2008) have typically only considered the

curvature of the spatial section and not the fact that it is a 3-manifold that has both a

curvature and a topology. In other words, the set F of exact-FLRW models is considered

to be equivalent to FΓ=0 := {Ω ∈ R : Ω > 0}, i.e. it is parametrised only by the density

parameter Ω. The measure is implicitly assumed to be a simple function of the Lebesgue

measure on FΓ=0 that gives µ(Ω = 1) = 0 and a normalised measure P (FΓ=0) = 1, so
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that P (Ω = 1) = 0.

The fact that an FLRW model has both a curvature and a topology is

not a new insight. Both curvature and topology have been mentioned quite

clearly by several of the founders of relativistic cosmology (de Sitter, 1917;

Friedmann, 1923, 1924; Lemâıtre, 1931; Robertson, 1935). The curvature

and topology of FLRW models have usually been thought to be independent

of one another, except that the set of possible 3-manifolds is divided between

hyperbolic, flat, and spherical 3-manifolds. Some work that does consider

topology includes that of Seriu (1996) and Anderson et al. (2004). Seriu (1996)

defined a “spectral distance” function over pairs of universes with (in general) different

spatial sections, but did not try extending this to a measure. Anderson et al. (2004)

applied a Hartle-Hawking “no boundary” path integral approach to the spatial section

that constitutes a boundary to a global space-time. Alternatively, a Bayesian approach

to measure spaces and the flatness problem, using Jaynes’ principle, finds that the

flatness problem is not a problem (Evrard and Coles, 1995; Kirchner and Ellis, 2003).

Here, a more elementary approach to obtaining a measure on the set of exact-

FLRW models, considering both the curvature and topology of the models, is presented.

In Sect. 2.1, a physically motivated hypothesis is proposed. This hypothesis is used to

determine the set of compact, 3-spatial sections of exact-FLRW models where the density

parameter Ω is a derived rather than fundamental physical parameter. Only compact

models are considered, with the motivation that this is physically more reasonable than

infinite models.§ The resulting set and the natural measure on it are presented in

Sect. 2.4. An alternative definition of the set, using the injectivity radius rinj (half the

length of the shortest closed comoving spatial geodesic), and the natural measure on it

are discussed in Sect. 3. Conclusions are given in Sect. 4.

For early references to cosmic topology see Schwarzschild (1900)‖; de Sitter (1917);

Friedmann (1923, 1924); Lemâıtre (1931) and Robertson (1935). For a short, modern

introduction see Roukema (2000). For reviews, see Lachièze-Rey and Luminet (1995);

Luminet (1998); Starkman (1998); Luminet and Roukema (1999); Blanlœil and Roukema

(2000); Rebouças and Gomero (2004).

2. Parametrisation by Ω

2.1. Hypothesis

The implicit assumption that the space of exact-FLRW models consists

of FΓ=0 := {Ω ∈ R : Ω > 0} is a statement that Ω is a free parameter,

unconstrained by prior physics. One way of introducing some physical

motivation for a theory of a set of possible universes is to extrapolate from

known physics.

§ For hyperbolic models, replacing the condition “compact” by “finite volume”, i.e. allowing finite
volume models containing infinite spatial geodesics, should not modify the results in this paper.
‖ English translation: Stewart et al. (1998).
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Local geometry is a fundamental and experimentally well-established

part of modern physics, via the Einstein field equations. It would be

physically reasonable that as a result of quantum gravity processes or

during (mostly) smooth early-universe topology evolution as explored by

Dowker and Surya (1998), some global physical properties of the Universe

in the FLRW approximation (not necessarily the density Ω) could be

determined by a global geometrical property. The most obvious global

geometrical property is geometria situs (Euler, 1736), known today as

topology. For exact-FLRW models, the topological characteristic that is

usually discussed is equivalent to the choice of constant curvature 3-manifold.

What property or properties could most reasonably be hypothesised to

be determined by the choice of topology? Although density (in an exact-

FLRW model) can be evaluated globally, a more fundamental property

in a classical, pre-relativistic sense, is mass. In pre-relativistic physics,

conservation of mass in any closed system is a fundamental principle. In

FLRW cosmological models, let us define the global (by volume), total (by

component) non-relativistic plus relativistic mass-energy in the 3-spatial

section as m := ρtotV
′, where ρtot is the total (by component) mass-energy

density, and V ′ is the volume of the spatial section in physical units, if k = 0,

and as m := ρtotV R3
C, where RC is the curvature radius in physical units and

V is the volume of the spatial section in units of R3
C, if k 6= 0. Since, in

general, m is not conserved with time, due to the change in frequency of (in

particular) photons with respect to locally comoving observers, this should

be evaluated at a given epoch.

Another parameter that could reasonably depend on the choice of 3-

manifold is the Hubble parameter H. Thus, along with the above definition

of m, the following hypothesis is proposed.

Hypothesis 1 The topological evolution processes in the early universe that

determine the comoving spatial 3-manifold M of an FLRW universe lead

to, at a given post-topology-evolution epoch tt, a global, total¶ matter-

energy m(M) := m(M)|tt, and a rate of expansion, i.e. the Hubble

parameter H(M) := H(M)|tt = (ȧ/a)(M)|tt. That is, m and H at the epoch

tt are functions from the space of exact-FLRW models F to R, written

m(M), H(M) to denote this dependence. The total mass-energy m(M) is

determined in the comoving frame. The manifold M is assumed to be

compact and orientable, and to be fixed for all epochs at t > tt.

The epoch tt is thought of here to be pre-inflationary if an inflationary scenario is

invoked, but neither requires nor rejects an inflationary epoch at t > tt. To investigate

¶ The term “global” refers to the whole of comoving space, while “total” refers to all of the matter-
energy density components, such as baryons, non-baryonic dark matter, neutrinos, radiation, and dark
energy.
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possible measure spaces using Hypothesis 1, spatially curved and flat models

need to be considered separately.

2.2. Curved models

For curved models, first let us consider the density parameter Ω as a local parameter,

i.e. as a limit towards a space-time point. In order to have a real, positive curvature

radius RC for both negative (k = −1) and positive (k = +1) curvature, let us define

RC ∈ R such that RC > 0 and the Friedmann equation is

Ω = 1 ±
(

c

H(M)RC

)2

, k = ±1. (1)

In a compact, exact-FLRW model, Ω also has a global meaning. Let us write the

volume of a compact 3-manifold M of constant, non-zero curvature and (real) curvature

radius RC > 0 as V R3
C, i.e. V is dimensionless. For example, the lens space L(p, q)

for p, q ∈ Z, 0 < q ≤ p/2, with p, q relatively prime (e.g., Gausmann et al., 2001), has

volume 2π2R3
C/p, so that V [L(p, q)] = 2π2/p. In the hyperbolic case, the uniqueness

of V for a given fundamental group Γ was less obvious than for the spherical case, but

follows from Mostow (1968)’s rigidity theorem.+ The definitions of the critical density

and the density parameter give

Ω :=
ρ

ρcrit
=

m(M)

V R3
C

8πG

3 [H(M)]2
. (2)

What values of Ω simultaneously satisfy (1) and (2)? Clearly, the local and global

values of the density parameter must be equal in an exact-FLRW model. Hence,

1 ±
(

c

H(M)RC

)2

=
m(M)

V R3
C

8πG

3 [H(M)]2
, (3)

where ± correspond to curvatures k = ±1, respectively, as above. The range of RC

values that satisfy this equation, and in turn, the values of Ω that satisfy both (1) and

(2) for a given pair [m(M), H(M)], are presented in Sect. 2.4.

2.3. Zero spatial curvature

The equivalent of (1) for a flat, compact, exact-FLRW model is

Ω = 1. (4)

Hence, the equivalent of (2) is not needed in order to determine the valid range of Ω for

flat models.

+ Extended to the non-compact, finite volume case by Prasad.
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Figure 1. Example of local and global dependence of the (total) density parameter
Ω on the curvature parameter RC in hyperbolic, compact FLRW models, given
Hypothesis 1, in the special case where m(M) and H(M) are constants
independent of M . The local definition of the density parameter (1) gives the
pair of curves that are symmetric around RC = 0 and decrease without bound
as RC → 0 (solid curves). The global definition of the density parameter (2) is
shown for dimensionless volume V = 0.943 (“×” symbols; this is for the smallest-
volume orientable hyperbolic 3-manifold, the Weeks-Matveev-Fomenko manifold) and
for V = 3.0, 10.0, and 100.0. The unphysical range RC ≤ 0 is shown for algebraic
completeness, in order to show the cases where one or more unphysical solutions with
RC < 0 occur. The units are chosen so that c = H(M) = 8π G m(M)/3 = 1, i.e. RC

is in units of c/H(M).
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Figure 2. As for Figure 1, for spherical models. The local definition of the density
parameter (1) gives the pair of curves symmetric around RC = 0 that increase without
bound as RC → 0 (solid curves). The global definition of the density parameter (2) is
shown for V = 2π2 (“×” symbols; this is for the largest spherical 3-manifold S3) and
V = π2, π2/10, and π2/60. The unphysical range RC ≤ 0 yields no solutions.
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2.4. The set FΩ
m,H of FLRW models parametrised by Ω

The set F of compact, exact-FLRW models is considered here to be the

set of compact, comoving spatial sections that have an FLRW metric. A

superscript Ω is used to indicate the parameter over which a measure space

is to be defined. The subscripts m, H indicate that Hypothesis 1 is assumed.

Equation (3) is a cubic equation in RC. The discriminant is

∆ = −324V 2H(M)2(±c6V 2 + 48π2G2m(M)2H(M)2). (5)

For positive curvature, ∆ < 0, so there is only one real root for RC. For negative

curvature, there can be up to three distinct, real roots, but from (1) and (2), it is clear

that only one of these is positive. This is illustrated in Figures 1 and 2. The multiple

root or the two additional roots that can occur in the hyperbolic case (Figure 1) occur

for RC < 0, which is unphysical given the definition of RC used here.∗
For illustrative purposes, we can consider the case where m(M) and H(M)

are equal for all 3-manifolds. Figure 1 shows that in this case, for hyperbolic

3-manifolds, there is a maximum possible curvature radius RC, i.e. a maximum

possible density parameter Ω, at tt. These maxima are attained for the smallest-

volume hyperbolic 3-manifold. If we consider only orientable, hyperbolic 3-manifolds,

then the Weeks-Matveev-Fomenko space [m003(−3, 1) in the SnapPea census]] of

volume V ≈ 0.943 is the smallest-volume orientable hyperbolic 3-manifold (Weeks,

1985; Matveev and Fomenko, 1988; Gabai et al., 2009), shown here by “×” symbols.

Larger volume hyperbolic 3-manifolds give the continuous curves in the figure [shown

for V ≈ 3.0, e.g. m117(−5, 2) in the SnapPea census, and for V = 10.0, 100.0], which

successively give lower RC and Ω. In Figures 1 and 2, not only are m(M) and H(M)

fixed, but the displayed ranges of numerical values of RC and Ω have been

chosen for convenience only, i.e. with the units c = H(M) = 8π G m(M)/3 = 1.

Elsewhere, these parameters are considered to retain their physical units.

Similarly, Figure 2 shows that for the spherical case, fixed values of m(M)

and H(M) independent of M imply a minimum possible curvature radius RC as the

choice of 3-manifold (i.e. Γ) is varied, which corresponds to a maximum possible density

parameter Ω. These are attained for the largest-volume spherical 3-manifold, i.e. S3

itself, of volume V = 2π2. While both signs of the curvature give upper limits to Ω for

fixed m(M) and H(M) as Γ varies, the hyperbolic case prevents Ω from approaching

the flat case, while the spherical case allows Ω to approach arbitrarily close to flatness

as the volume decreases. The volume V = π2/60 is that of the Poincaré dodecahedral

space.

More generally, i.e. without fixing m(M) and H(M), the unique physical

∗ An alternative definition could use imaginary values of RC for the hyperbolic case.
] The file /usr/share/snappea/ClosedCensusData/ ClosedCensusInvariants.txt of version 3.0d3-
20 of SnapPea is referred to in this paper.

ClosedCensusInvariants.txt
/usr/share/snappea/ClosedCensusData/
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solution for RC in both cases is

RC±(M) =

(√
±c6V 2 + 48π2m2G2H2 + 4

√
3πmGH

) 2
3 ∓ c2V

2
3

√
3HV

1
3

(√
±c6V 2 + 48π2m2G2H2 + 4

√
3πmGH

) 1
3

, (6)

where the dependence of RC on the manifold M occurs through the dependences

V (M), m(M), and H(M).

The density parameter for a curved FLRW model can be written using either (1)

or (2). The former gives

Ω±(M) = 1 ±
[

c

H(M)RC±(M)

]2

, (7)

where M = H3/Γ or M = S3/Γ, and RC± is given in (6). As noted above (4), the

solution in the flat case is

Ωk=0(M) = 1. (8)

Together, these give the following result. For any given manifold M , Hypothesis 1

implies a single value of Ω rather than a continuous interval of possible values of Ω.

In other words, there is no freedom in choosing Ω once M has been selected. Since the

set of constant curvature manifolds {M} is countable (e.g., Lachièze-Rey and Luminet,

1995), we can write FΩ
m,H as the countable (infinite) set

FΩ
m,H = {Ω(M) : M ∈ F}, (9)

where Ω(M) is given by (7) and (8).

2.5. Measure spaces and probability spaces

Let us choose the obvious σ-algebra, 2FΩ
m,H , i.e. the set of all subsets of FΩ

m,H , and any

discrete measure µ on R satisfying

µ(Ω) > 0, Ω ∈ FΩ
m,H

µ(Ω) = 0, Ω 6∈ FΩ
m,H . (10)

Then (FΩ
m,H , 2FΩ

m,H , µ) is a measure space over the density parameter Ω of exact-FLRW

models of the Universe. It is clear that there is no physical requirement that µ(Ω = 1)

be zero, i.e. there is no requirement that the measure of the case of a flat FLRW model

be zero.

For a probability space (FΩ
m,H , 2FΩ

m,H , µ̂) to be made starting from the

measure µ, it would be required that µ̂(FΩ
m,H) = 1. Let the manifolds be enumerated

{Mi}∞i=1 and Ω(M) as given by (7) and (8) be enumerated Ωj, where a non-bijective

function j(i) is provided so that j1 6= j2 ⇒ Ωj1 6= Ωj2 i.e. manifolds of equal Ω are

included as a single case with respect to the measure. (Otherwise, µ̂(Ωj) would be

multiply defined for some values of Ωj, e.g. Ωj = 1.) Any convergent series {xj}∞j=1

with Σjxj = 1 now satisfies

µ̂[Ωj(Mi)] = xj, Mi ∈ F

µ̂(Ω) = 0, Ω 6∈ FΩ
m,H , (11)
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giving a probability space (FΩ
m,H , 2FΩ

m,H , µ̂).

For example, this would be satisfied by

j = 1, xj = 1/e, 1 ≤ i ≤ 6 (12)

j ≥ 2, xj = 1/[(j − 1)! e], i ≥ 7

Mi = Ei, 1 ≤ i ≤ 6, (13)

where Ei are the six compact, flat, orientable 3-manifolds as labelled in Table I

of Riazuelo et al. (2004), and the non-flat, compact, orientable 3-manifolds are

enumerated by i ≥ 7, j(i) ≥ 2. This gives

µ̂(Ω = 1) = µ̂(Ω1) = x1 = 1/e ≈ 0.37 > 0 (14)

That is, given this example of {xj}, the probability of a flat space would be about 37%,

i.e. strictly greater than zero. No physical motivation is suggested for this particular

choice of {xj} and enumeration {Mi} of the 3-manifolds. This choice of {xi} and

corresponding (partial) enumeration {Mi} are presented only as a numerical example

of how P (Ω = 1) > 0 is possible, with P (Ω = 1) ≡ µ̂(Ω = 1) = 1/e. It would remain

possible to choose {xj} in a way that gives P (Ω = 1) = 0, but it would be not be

necessary to do so. Additional physical assumptions would be required to determine

what the normalised discrete measure µ̂ should be. Alternatively, Ω might not be

a physically useful choice for defining a measure space. The construction in Sect. 3

suggests one alternative.

2.6. How can Ω = 1 not be a case of measure zero?

Fine-tuning arguments have played a role in cosmology for (at least) several decades.

It may seem strongly counterintuitive that exactly Ω = 1 models do not necessarily

constitute a case of measure zero, since the number 1 is a single real number on the

continuous real number line. How does the topology of spatial sections invalidate this

argument? The reason is that while topology in some sense might appear to give

“additional” parameter freedom to the FLRW models, curvature can be thought of

as a type of rigidity that together with topology reduces a continuous interval in the

possible range of Ω to a set of discrete points.

Thus, the hypothesis presented here leads to a physical link between curvature

and topology. This link is represented algebraically in (3). This equation represents a

physical relation between curvature and topology implied by Hypothesis 1. For a given

compact manifold M , the relativistic mass-energy m(M) must be distributed uniformly

throughout the space, expanding at the given rate H(M) = (ȧ/a)(M), in a way that

simultaneously gives the curvature implied locally at each point in comoving space by

the Friedmann equation and fills the volume implied by the global shape of the manifold.

The local and global roles of the density Ω do not have the freedom to be unrelated to

one another if m and H are determined by the choice of 3-manifold.

The full mathematics that underlies this physical argument has only become known

in the second half of the twentieth century, and some details even more recently. The



A measure on compact FLRW models 11

complete classification of spherical 3-manifolds and Mostow (1968)’s rigidity theorem

for compact, hyperbolic 3-manifolds play a role by implying a unique volume V for

any given curved, compact 3-manifold. A proof that the Weeks-Matveev-Fomenko

manifold is the smallest-volume orientable hyperbolic 3-manifold was only published

in 2009 (Gabai et al., 2009).

It is this physical relation between Ω being both local and global, which is a result

of the rigidity of (constant curvature) curved 3-manifolds, that reduces the apparent

continuum of values of Ω in the curved case to a discrete set. The set of values of Ω in

the flat case is already discrete, since it contains just one member, Ω = 1. Hence, the

full set of allowed values of Ω is discrete, and the natural measure is a discrete measure

µ, as indicated in (10), rather than the Lebesgue measure. This is why Ω = 1 need not

be a case of measure zero.

3. Parametrisation by a one-dimensional size parameter

Moreover, while Hypothesis 1 reduces the freedom of Ω in curved FLRW models, it

implies more parameter freedom in flat FLRW models for other parameters.

In the 3-torus model T 3, there are (at least) three parameters required to define

the fundamental domain. Following Lehoucq et al. (1996), we can write the size of the

domain as LaLeLu. For orthogonal side-lengths of the fundamental parallelepiped of a

T 3 model, the definition of the critical density gives

LaLeLu =
8π G m(T 3)

3[H(T 3)]2
, (15)

as for (2). This equation was ignored in Sect. 2.3, since it provides no constraint on Ω.

The Friedmann equation in this case is (4), which provides no constraint on the global

parameters La, Le, Lu. Hence, two of these parameters are free. In general, the angles

between the faces of the fundamental domain constitute additional free geometrical

parameters, but for La, Le, Lu defined orthogonally, these angles do not affect the volume

of the manifold.

The parameter freedom for compact, flat FLRW models has frequently been thought

of as an empirically undesirable property, since it makes the models easier to fit

to observations, reducing the models’ falsifiability. This freedom is not total. In

the presence of an inhomogeneity, the residual gravity effect (Roukema et al., 2007;

Roukema and Różański, 2009), can be invoked as a motivation for La ≈ Le ≈ Lu.

3.1. The set F
2rinj

m,H of FLRW models parametrised by 2rinj

However, without invoking the residual gravity effect, the parametrisation of compact,

flat FLRW models can be made in a way that also applies to compact, curved FLRW

models, by using a size parameter. Here, we propose twice the injectivity radius, i.e.,

the length of the shortest closed comoving spatial geodesic, written 2rinjRC, where 2rinj

is dimensionless, in the curved case, and 2r′inj, including a length dimension, in the
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flat case. This underestimates the full parameter freedom of the flat case, providing a

conservative approach to constructing a measure space.

Equation (15) implies an upper limit to 2r′inj. This occurs for the regular T3 model,

in which La = Le = Lu, so that

2r′inj = min(La, Le, Lu) =

{
8π G m(T3)

3[H(T3)]2

}1/3

. (16)

Increasing any of the dimensions decreases at least one of the other dimensions,

forcing 2r′inj to decrease. A reasonable empirical lower bound for 2r′inj can also

be set, e.g. a comoving scale of ∼ 10h−1 Gpc. Aurich (2008) estimate

2rinj = 11.5 ± 0.3h−1 Gpc from applying the cross-correlation Monte Carlo

Markov chain method (Roukema, Buliński, Szaniewska and Gaudin, 2008;

Roukema, Buliński and Gaudin, 2008) to the 5-year WMAP data for a

T3 model. Hence, for the T3 and related compact models with rectangular-prism

fundamental domains

10a(tt)h
−1 Gpc <∼ 2r′inj

= min(La, Le, Lu)

≤
(

8π G

3

)1/3

max
i=1,2,3

{
m(Ei)

[H(Ei)]2

}1/3

, (17)

where E1, E2, E3 follow Table I of Riazuelo et al. (2004). The compact flat

models with hexagonal-prism fundamental domains, E4 and E5, have the

corresponding limit

10a(tt)h
−1 Gpc <∼ 2r′inj

≤ 21/33−1/6

(
8π G

3

)1/3

max
i=4,5

{
m(Ei)

[H(Ei)]2

}1/3

(18)

(Appendix A.1). The other compact, orientable, flat model, i.e. the

Hantzsche-Wendt space, E6, has a smaller injectivity radius, maximised in

the regular case, giving

10a(tt)h
−1 Gpc <∼ 2r′inj

≤ 2−1/3

(
8π G

3

)1/3{
m(E6)

[H(E6)]2

}1/3

(19)

(Appendix A.2).

Hence, over all curvatures, we can classify the full set of compact FLRW models by

2r′inj for the flat case and 2rinjRC for the curved cases. F
2rinj

m,H can now be written

F
2rinj

m,H =
{

2r′inj : 10a(tt)h
−1 Gpc < 2r′inj ≤

(
8π G

3

)1/3

η
}

⋃ {
2rinj(M) RC(M) : M ∈ F, M̃ ∈ {H3, S3}

}
, (20)
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where

η := max

({{
m(Ei)

[H(Ei)]2

}1/3

, i = 1, 2, 3

}

⋃ {
21/33−1/6

{
m(Ei)

[H(Ei)]2

}1/3

, i = 4, 5

}

⋃ {
2−1/3

{
m(E6)

[H(E6)]2

}1/3
})

. (21)

As in the case of FΩ
m,H (9), a single value of 2r′inj or 2rinjRC can correspond to more

than one exact-FLRW model.

3.2. Measure spaces and probability spaces

Let us set Σ to be the smallest σ-algebra that contains all open sets on FΩ
m,H induced

by the usual topology on R. Then (F
2rinj

m,H , Σ, λ), where λ is the Lebesgue measure, is

a measure space over 2r′inj, twice the injectivity radius of exact-FLRW models of the

Universe. Let us normalise this by defining

λ̂ =
λ

(
8πG
3

)1/3
η − 10a(tt)h

−1 Gpc
, (22)

where η is given by (21), yielding the probability space (F
2rinj

m,H , Σ, λ̂).

Hence, under the obvious probability space over the size of the 3-spatial section

of FLRW models, the probability of a flat FLRW model is unity and the probability of

a curved FLRW model is zero:

λ̂ (2rinj |Ω=1) = 1,

λ̂ (2rinj |Ω6=1) = 0. (23)

This follows from (20) and (22), since the Lebesgue measure on an interval

on the real line is the length of that interval, and the Lebesgue measure on

a set of discrete, isolated points is zero.

An event that occurs with a probability of one is referred to as being almost sure

(a.s.) in the Kolmogorov construction of probability spaces. This should not be confused

with certainty. For example, an event of a uniform random process that selects a value

from the interval 0 ≤ x ≤ 1 on the real line results in a specific value x∗, despite

the fact that the process a.s.†† does not choose that specific value x∗. Thus, an a.s.

outcome is not certain, even though its probability is one. In the case of interest here,

if the Lebesgue measure is adopted and normalised, then a flat model a.s. occurs and a

non-flat model a.s. does not occur.

††Almost sure and almost surely are both abbreviated as a.s.
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3.3. How can Ω = 1 occur almost surely?

The probability space over Ω, i.e. (FΩ
m,H , 2FΩ

m,H , µ̂), follows from the link between local

and global definitions of the density parameter, i.e. between curvature and topology,

implied by Hypothesis 1. This relation can be described in terms of the curvature

radius RC, as shown above. Thus, equality of the local and global definitions of

Ω discretises it. In the flat case, the curvature is zero and RC is undefined. The

mathematical nature of flat, constant curvature 3-manifolds allows them a continuous

range of fundamental domain shapes. The physical processes that are presumed to select

a 3-manifold from among those mathematically available are not constrained to choose

fundamental domain size parameters from a discrete set. Unless a physical constraint

is added, a continuous, finite range in 2r′inj, the size parameter adopted here, is allowed.

On the other hand, constant-curvature, curved 3-manifolds do not allow 2rinj to

vary. The same rigidity that suggests the discrete measure in (FΩ
m,H , 2FΩ

m,H , µ̂) leads even

further, to the Lebesgue measure in (F
2rinj

m,H , Σ, λ̂). Another way of saying this is that

Hypothesis 1 not only links together the curvature and topology of exact-FLRW models,

so that the rigidity of curved 3-manifolds constrains them to a discrete parameter space,

but it also frees up flat 3-manifolds to occupy a continuous parameter space, if the

parameter chosen is, for example, the injectivity radius. This is why, given Hypothesis 1,

the natural choice of measure leads to a probability space where a flat model a.s. occurs

(P ≡ λ̂ = 1) and a non-flat model a.s. does not occur (P ≡ λ̂ = 0).

4. Conclusions

Cosmic topology has been referred to in the cosmological context in the pre-relativistic

era (Schwarzschild, 1900) and by de Sitter (1917), Friedmann (1923, 1924), Lemâıtre

(1931) and Robertson (1935) during the founding of relativistic cosmology. When the

topology of the FLRW models is taken into account, the popular idea that Ω = 1 FLRW

models constitute a class of measure zero among the full set of exact-FLRW models is

no longer self-evident. This has been shown here by proposing that the parameters

determined at a given epoch tt following topology evolution, i.e. as the

results of the processes of primordial spatial 3-manifold evolution (quantum

or otherwise), are the global (by volume), total (by component) mass-energy

m(M)|tt and the Hubble parameter H(M)|tt, i.e. these are functions of the

3-manifold M selected by those processes, while the density Ω is relegated

to a derived parameter (Hypothesis 1).

This hypothesis leads to quite different measure spaces and associated probability

spaces than those in which Ω = 1 FLRW models constitute a class of measure zero.

When Ω is used to parametrise the FLRW models, the hypothesis leads to the discrete

measure as the obvious choice. In this case, there is no obvious constraint requiring

µ(Ω = 1) = 0. Moreover, use of the injectivity radius rinj to parametrise FLRW models,

rather than Ω, suggests the Lebesgue measure as the natural measure. In this case,
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the measure of the class of non-flat models is zero. Since the measure is normalisable,

the probability of a flat FLRW model in the corresponding probability space is unity.

Hence, in this case, a flat model occurs a.s. and a non-flat model a.s. does not occur, in

the Kolmogorov probability sense of these terms. This is the reverse of what has been

thought to be the case when topology is ignored.

How does this happen? For exact-FLRW models with compact spatial sections, the

density parameter has both a local and a global physical meaning. The requirement

of equality between the two definitions of the density parameter, and the rigidity of

curved, constant-curvature 3-manifolds, reduce the parameter freedom of the non-flat

models. In contrast, the lack of rigidity of the flat models allows them a continuum

of possible sizes. Hence, the flat models become much more probable. This approach

suggests a motivation independent of inflationary scenarios for the recent work finding

that a T3 FLRW model provides a good fit to the WMAP sky maps (Spergel et al.,

2003; Aurich et al., 2007; Aurich, 2008; Aurich et al., 2008, 2010). Moreover, a physical

relation between the curvature and topology of comoving space is implied.
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Appendix A.1. Injectivity radius of hexagonal-prism spaces

Figure 3 shows a projection of the fundamental domain (FD) of a hexagonal-

prism space, with dimensions that maximise the injectivity radius for a fixed

volume, i.e. the “vertical” and “horizontal” shortest closed geodesics are

both of length L. The volume of the FD is V =
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3 L/2

L

Figure 3. Orthogonal projection in z direction of one copy of the
fundamental domain (FD) of a hexagonal-prism (third-turn or sixth-turn)
space illustrating its volume, given that the injectivity radius (horizontal
and vertical shortest closed geodesic) is L. The hexagonal area can be cut
and paste into an L ×

√
3L/2 rectangle.
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Figure 4. Orthogonal projection in z direction of one copy of the
fundamental domain (FD) of the Hantzsche-Wendt space illustrating its
volume and injectivity radius. Looking down on the FD from high z, four
rhombic (diamond) faces, AE, BE, DE, and CE, are visible as projections to
squares (solid lines). The FD can be thought of as a cube of side length L/2
inscribed in the FD, surrounded by lateral square-pyramidal extensions A,
B, C, and D, a superior square-pyramidal extension E, and a corresponding
one below the cube (not shown). Positions to which some of these can be
pasted for volume calculation are shown by long-dashed lines. The X and
Y axes’ zero points are at the centre of the FD. Point p1 is mapped to g(p1)
by the holonomy g (A.3).
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Appendix A.2. Injectivity radius of Hantzsche-Wendt space

Figure 4 shows a projection of the FD of a regular (side length L/2 := La/2 =

Le/2 = Lu/2) Hantzsche-Wendt space, E6 in Table I of Riazuelo et al. (2004).

Five of the square-pyramidal extensions around the inscribed cube, A, B,

D, E, and the unshown lower square-pyramidal extension can be cut off

and pasted around the sixth one C, making a second cube of identical size.

Hence, the FD volume is

V = 2(L/2)3. (A.2)

Let us, w.l.o.g., choose holonomy g to be the first mapping in (48) in

Riazuelo et al. (2004)

g : (x, y, z) 7→ (x + L/2,−y + L/2,−z). (A.3)

Since the shift in the x direction is identical for all points in the FD, 2rinj

cannot be smaller than L/2. The point p1 = (L/4, L/4, 0) in Fig. 4 is mapped

to g(p1) = (3L/4, L/4, 0), i.e. by a distance of L/2. Thus, the L/2 lower bound

is attained. Hence,

2rinj

V 1/3
=

L/2

21/3(L/2)
= 2−1/3. (A.4)


	Introduction
	myred Parametrisation by 
	myred Hypothesis
	Curved models
	Zero spatial curvature
	The set Fm,H of FLRW models parametrised by 
	Measure spaces and probability spaces
	How can =1 not be a case of measure zero?

	myred Parametrisation by a one-dimensional size parameter
	The set Fm,H2rinj of FLRW models parametrised by 2rinj
	Measure spaces and probability spaces
	How can =1 occur almost surely?

	Conclusions
	Injectivity radii
	Injectivity radius of hexagonal-prism spaces
	Injectivity radius of Hantzsche-Wendt space

	Contents of measure_sp-cqg.tex
	Go to page 1 of 19
	Go to page 2 of 19
	Go to page 3 of 19
	Go to page 4 of 19
	Go to page 5 of 19
	Go to page 6 of 19
	Go to page 7 of 19
	Go to page 8 of 19
	Go to page 9 of 19
	Go to page 10 of 19
	Go to page 11 of 19
	Go to page 12 of 19
	Go to page 13 of 19
	Go to page 14 of 19
	Go to page 15 of 19
	Go to page 16 of 19
	Go to page 17 of 19
	Go to page 18 of 19
	Go to page 19 of 19


