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Introduction

The constraint equations play an important role in the analysis of the Einstein field equations of General Relativity. Once a set of initial data which satisfies the constraint equations is known, then by the fundamental theorem of Y. Choquet-Bruhat [START_REF] Foures-Bruhat | Théorème d'existence pour certains systèmes d'équations aux dérivées partialles non linéaries[END_REF] and its extension by Y. Choquet-Bruhat and R. Geroch [START_REF] Choquet-Bruhat | Global aspects of the Cauchy problem in general relativity[END_REF] there exists a spacetime which solves the Einstein equations. The constraint equations have been thoroughly studied in the context of vacuum spacetimes (see [START_REF] Bartnik | The constraint equations, The Einstein Equations and the Large Scale Behavior of Gravitational Fields 1-38[END_REF] for a comprehensive review), and recently a number of results have appeared regarding the constraint equations for Einstein-scalar field theories. In particular, we would like to mention the works concerning respectively constant mean curvature (CMC) solutions on closed manifolds [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF] and [START_REF] Hebey | A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds[END_REF] and on asymptotically Euclidean manifolds [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF].

In the light of these recent developments, an interesting task is to analyze solvability of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds. Intuitively, these spaces can be described as noncompact Riemannian manifolds with the metric approaching a metric of constant negative curvature as one approaches infinity.

It was conjectured in [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF] that in the CMC case one can effectively analyze the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds using the same strategy as in the case of closed manifolds. This approach is followed in the current paper. Owing to conformal relatedness of asymptotically hyperbolic manifolds to manifolds with negative scalar curvature [START_REF] Andersson | On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations[END_REF], it makes sense to split the set of conformal data into subclasses depending on the possible signs for the coefficients of its terms. This splitting is used as the basis for proving Theorem 3.2 and Theorem 3.3, concerning non-existence and existence of CMC solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic geometries respectively.

2. The Einstein-scalar field constraint equations and asymptotically hyperbolic manifolds 2.1. The conformal method. Consider an (n + 1)-dimensional manifold N with a spacetime metric γ and a real-valued scalar field Ψ. Given an n-dimensional spacelike hypersurface M in N , let h be its induced metric and K its second fundamental form. Denote by ψ the restriction of the scalar field Ψ to M and by π the value of the derivative of Ψ in the direction of the unit normal of M in (N, γ).

Then the Einstein-scalar field constraint equations [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF] comprise the Hamiltonian constraint

(1) Rh -K 2 h + tr K 2 = π2 + ∇ h ψ 2 h + 2V ( ψ),
and the momentum constraint

(2) divh K -∇ h tr K = -π∇ h ψ,
where all derivatives and norms are taken with respect to the metric h on M , the potential V is a smooth function of a real variable, and Rh denotes the scalar curvature of h. Note that in general it is not required that V (0) should be equal to zero. For example, one can consider potentials with strictly positive minimum, which lead to accelerated expansion in cosmological models [START_REF] Rendall | Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound[END_REF].

If one can solve these equations for the Cauchy data ( h, K, ψ, π) defined on a chosen n-dimensional manifold M then there exists an (n +1)-dimensional spacetime solution (M × R, γ, Ψ) of the Einstein-scalar field equations which is consistent with the given Cauchy data on M (see, for example, [15, Theorem 14.2]).

There is a standard procedure for rewriting the constraint equations in a form which is more suitable for analysis, namely the conformal method [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF]. The idea is to split the Cauchy data on M into (i) the (freely chosen) conformal background data, which in the scalar field case consist of a Riemannian metric h, a symmetric trace-free and divergence-free (0,2)tensor σ and scalar functions τ , ψ and π on M , and (ii) the determined data, which comprise a vector field W and a positive function φ. Denote by ∇ h the covariant derivative with respect to h and by ∆ h the nonpositive Laplacian on functions, i.e. ∆ h = div h •∇ h . Let D h be the conformal Killing operator relative to h, defined (in index notation) by

(D h W ) ab := ∇ h a W b + ∇ h b W a -2 n h ab ∇ h m W m .
The kernel of D h consists of the conformal Killing vector fields on (M, h). Then the system (1)-( 2) is solvable if and only if for some choice of conformal background data (h, σ, τ, ψ, π) one can solve the conformally formulated Einstein-scalar field constraint equations

∆ h φ - n -2 4(n -1) R h -|∇ h ψ| 2 h φ + n -2 4(n -1) |σ + D h W | 2 h + π 2 φ -3n-2 n-2 - n -2 4(n -1) n -1 n τ 2 -2V (ψ) φ n+2 n-2 = 0, (3) 
(4) div h (D h W ) = n -1 n φ 2n n-2 ∇ h τ -π∇ h ψ
for the determined data W and φ > 0, in which case the initial data

h = φ 4 n-2 h, K = φ -2 (σ + D h W ) + τ n φ 4 n-2 h, ψ = ψ, π = φ -2n n-2 π (5) 
solve the original Einstein-scalar field constraint equations.

If one chooses to work under the CMC assumption τ = const, the system (3)-( 4) becomes semi-decoupled, which means that the conformally formulated momentum constraint (4) becomes a linear, elliptic, vector equation for W in which the unknown φ does not appear. If it can be solved, the problem reduces to finding a positive solution φ to the conformally formulated Hamiltonian constraint [START_REF] Aviles | Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds[END_REF], which is commonly referred to as the Einstein-scalar field Lichnerowicz equation.

In the sequel we will repeatedly use the fact that the Einstein-scalar field Lichnerowicz equation is conformally covariant in the following sense. The function φ > 0 is a solution to (3) for the Einstein-scalar field conformal background data (h, σ, τ, ψ, π), where the vector field W solves (4) with respect to (h, σ, τ, ψ, π), if and only if θ -1 φ is a solution to (3) with respect to the conformally transformed background data set ( h, σ, τ , ψ, π) := (θ

4 n-2 h, θ -2 σ, τ, ψ, θ -2n n-2 π),
where the vector field W solves (4) with respect to ( h, σ, τ , ψ, π) [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF].

The Einstein-scalar field constraint equations on closed manifolds.

It should be emphasized that the current work is largely inspired by [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF]. Below we give a brief overview of the method for analyzing the Einsteinscalar field constraint equations on closed (compact without boundary) manifolds developed in that paper. The authors work in the CMC setting and assume that all conformal background data sets (h, σ, τ, ψ, π) are smooth. In this case, a smooth solution of the equation (4) exists provided that the right hand side π∇ h ψ is orthogonal to the space of conformal Killing vector fields on (M, h) and is unique if this space is empty.

In order to analyze the Einstein-scalar field Lichnerowicz equation (3), the authors write it in the form

∆ h φ -R h,ψ φ + A h,W,π φ -3n-2 n-2 -B τ,ψ φ n+2 n-2 = 0,
and divide the background data sets into subclasses depending on the possible signs for the coefficients

R h,ψ := n -2 4(n -1) (R h -|∇ h ψ| 2 h ), A h,W,π := n -2 4(n -1) (|σ + D h W | 2 h + π 2 ),
and

B τ,ψ := n -2 4(n -1) n -1 n τ 2 -2V (ψ) .
In view of the conformal covariance, this splitting of the conformal background data set is convenient. Indeed, it was shown in [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF] that there always exists a smooth θ > 0 such that R e h, e ψ , computed with respect to the conformally transformed metric h = θ 4 n-2 h is either positive, negative, or identically zero. As for B τ,ψ , there are six different possibilities, namely, this coefficient can be strictly positive, greater than or equal to zero, identically zero, less than or equal to zero, strictly negative, or of indeterminate sign. This combined with the two options A h,W,π ≡ 0 and A h,W,π ≡ 0 gives rise to 36 classes of Einstein-scalar field CMC conformal background data (h, σ, τ, ψ, π).

Concluding this brief overview of [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF], we note that for many of the classes it was possible to determine whether or not the smooth positive solution exists. More details are to be found in the original paper.

Asymptotically hyperbolic geometries.

The goal of this paper is to find asymptotically hyperbolic solutions to (1)-( 2). This is done by solving (3)-( 4) with asymptotically hyperbolic conformal background data and correct asymptotics of the solutions.

The prototype for asymptotically hyperbolic manifolds is a constant negative curvature hyperboloid in Minkowski spacetime. They are the interiors of compact manifolds with boundary; the points on the boundary represent "points at infinity" for the asymptotically hyperbolic manifold. Definition 2.1. [START_REF] Andersson | On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations[END_REF] Let (M, g) denote an oriented, compact C ∞ Riemannian manifold of dimension n ≥ 3, with nonempty boundary ∂M and interior M . Assume that ρ ∈ C ∞ (M ) is a defining function for ∂M , i.e. ρ > 0 on M while ρ = 0 but dρ = 0 everywhere on ∂M . Then the manifold ( M, h), where h = ρ -2 g, is said to be conformally compact. If, in addition, |dρ| g = 1 holds on ∂M, then ( M, h) is called asymptotically hyperbolic.

A standard calculation shows that the sectional curvature K h of a conformally compact manifold ( M, h) satisfies K h (p) → -|dρ| 2 g (q) as p → q ∈ ∂M , which means that if ( M, h) is asymptotically hyperbolic then all sectional curvatures tend to -1 at infinity. In this paper we will largely rely upon the fact that any asymptotically hyperbolic geometry ( M , h) is conformally related to one with constant negative scalar curvature [START_REF] Andersson | On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations[END_REF]. Namely, on every conformally compact manifold ( M, h) there exists a unique function w such that w > 0 on M such that

the metric h = wρ n-2 2 4 n-2 h = ρ -2 wρ n-2 2 4
n-2 g has scalar curvature

-n(n -1). In addition, on an asymptotically hyperbolic manifold ( M, h) the conformal factor wρ

n-2 2 satisfies wρ n-2 2
→ 1 as ρ → 0, which implies that ( M, h) is also asymptotically hyperbolic.

Another important technical lemma to be used in this work is the following version of the maximum principle. Theorem 2.2. [10, Theorem 3.5] Suppose that ( M, h) is an asymptotically hyperbolic manifold and f ∈ C 2 (M ) is bounded. Then there exists a sequence

x k ∈ M such that (i) lim k→∞ f (x k ) = inf M f ; (ii) lim k→∞ |∇ h f (x k )| h = 0; (iii) lim inf k→∞ ∆ h f (x k ) ≥ 0.
When dealing with asymptotically hyperbolic manifolds, it is important to control the behavior of the data near ∂M, which is achieved by using weighted spaces with weights being the powers of the defining function ρ. The simplest example of weighted space is C 0 δ (M ), δ ∈ R. Its elements are continuous functions such that u C 0 δ (M ) := sup M |ρ -δ u| is finite. Using the standard definitions of W k,p ( M, h) and C k,α ( M, h) (see e.g. [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF]) for each real number δ one can also define the weighted Sobolev spaces W k,p δ (M ) := { ρ δ u : u ∈ W k,p ( M, h) } and the weighted Hölder spaces

C k,α δ (M ) := { ρ δ u : u ∈ C k,α ( M, h) } with the respective norms given by u W k,p δ (M ) := ρ -δ u W k,p ( f M ,h) and u C k,α δ (M ) := ρ -δ u C k,α ( f M,h) .
All results pertaining to these spaces and elliptic operators on asymptotically hyperbolic manifolds to be used in this paper can be found in [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF].

Main results

From now on let ( M , h) be an asymptotically hyperbolic manifold as in Definition 2.1 and suppose that dim M = n. Our goal is to analyze the solvability of the conformally formulated Einstein-scalar field constraint equations ( 3)-( 4) on ( M, h), for which we will employ essentially the same strategy as in [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF]. In particular, we will assume that all conformal background data (h, σ, τ, ψ, π) are smooth and that τ is constant.

3.1. Solving the momentum constraint. By analogy with [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF], before formulating our results for the full set of constraint equations we restrict ourselves to considering only those sets of conformal background data for which the conformally formulated momentum constraint (4) is solvable. Due to the CMC assumption and the following result many such sets of conformal background data can be found. Proposition 3.1. [12, Proposition G] For an integer k > 0 and real α and δ such that 0 < α < 1 and 0 < δ < n, the vector Laplacian

div h •D h : C k+2,α δ (M, h) → C k,α δ (M, h
) is a Fredholm operator. Its index is zero, and its kernel is equal to the L 2 kernel of div h •D h .

Since an asymptotically hyperbolic manifold does not have any conformal Killing vector fields in L 2 (M, h) [9, Lemma 6.7], the operator in the above proposition is an isomorphism.

3.2.

Solving the Hamiltonian constraint. Our next goal is to determine for which choices of the Einstein-scalar field conformal data (h, σ, τ, ψ, π) such that ( M, h) is asymptotically hyperbolic the Lichnerowicz equation with a vector field W , ( 6)

∆ h φ -R h,ψ φ + A h,W,π φ -3n-2 n-2 -B τ,ψ φ n+2 n-2 = 0,
admits a smooth solution φ > 0 which satisfies the boundary condition

(7) φ → 1 as ρ → 0.
This boundary condition guarantees that h = φ

4 n-2 h = ρ -2 φ 4
n-2 g is also asymptotically hyperbolic.

The conformal covariance property and the results recalled in Section 2.3 allow us to assume that R h = -n(n -1), which we will do from now on. In addition, since the mean curvature of the n-dimensional constant negative curvature hyperboloid in Minkowski spacetime is equal to n, the same value will be assumed for the constant mean curvature: τ = n. This gives the following expressions for the coefficients of (6):

R h,ψ = n -2 4(n -1) (-n(n-1)-|∇ h ψ| 2 h ), A h,W,π = n -2 4(n -1) (|σ+D h W | 2 h +π 2 ), and 
B τ,ψ = n -2 4(n -1) (n(n -1) -2V (ψ)) .
In order to analyze (6) we split the set of background data into subclasses in the same way as it was done for closed manifolds (see Section 2.2). Since R h,ψ is strictly negative, we see that the possibilities we have to analyze are the same as those listed in the first rows of Table 1 and Table 2 in [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF].

Anticipating the theorems to be formulated below we note that our results bear a lot of similarity with those listed in the aforementioned tables. In particular, we will show that if the potential V is such that B τ,ψ is nonpositive or zero, then ( 6)-( 7) admits no solution. We will also see that, under reasonable restrictions on the conformal background data, the condition B τ,ψ > 0 guarantees the solvability of the Einstein-scalar field Lichnerowicz equation ( 6) with the boundary condition [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF], while in the case B τ,ψ ≥ 0 a partial result can be proved.

The main theorems.

In this paper we prove the following two theorems. The first one is a non-existence result.

Theorem 3.2. Assume that we are given a manifold M and conformal background data (h, σ, τ, ψ, π), with τ = n on M , such that ( M, h) is asymptotically hyperbolic. If

inf V (ψ) ≥ n(n -1) 2 ,
then there is no solution to ( 6)- [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF].

In fact, the argument in the proof shows that there can be no solution to (6) which is bounded from below by a positive constant.

The second theorem is an existence result.

Theorem 3.3. Assume that we are given a manifold M and conformal background data (h, σ, τ, ψ, π) with τ = n on M such that ( M, h) is asymptotically hyperbolic. Suppose that for some 0 < δ < n -1 we have

(8) 2V (ψ) + |∇ h ψ| 2 h ∈ C 0 δ
, and the conformally reformulated momentum constraint ( 4) is solvable with the solution W satisfying

(9) |σ + D h W | 2 h + π 2 ∈ C 0 δ .
If the potential V is bounded from below and satisfies [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF] sup

V (ψ) < n(n -1) 2 ,
then there is a unique positive smooth solution φ to the Einstein-scalar field Lichnerowicz equation ( 6) such that φ -1 ∈ C 0 δ and the initial data ( h, K, ψ, π) defined in the equations ( 5) satisfy the Einstein-scalar field constraint equations ( 1)-(2).

Proof of Theorem 3.2

Note that the assumption made on V implies that B τ,ψ ≤ 0. Using this we will prove that the Einstein-scalar field Lichnerowicz equation ( 6) with the boundary condition [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF] admits no positive smooth solution. Assume that smooth φ > 0 satisfies ( 6)-( 7) and set

α = inf M φ.
If α is attained at some point p ∈ M then α is strictly positive. Applying the maximum principle, one immediately gets a contradiction. Now suppose that α is not attained in M . In this case α = 1 by [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF]. Moreover, by Theorem 2.2, there exists a sequence of points p k ∈ M , such that p k → p ∈ ∂M, and

φ(p k ) → α, lim inf k→∞ ∆ h φ(p k ) ≥ 0.
Evaluating (6) at p k and then passing to limit when k → ∞ yields lim sup

k→∞ -R h,ψ (p k )α + A h,W,π (p k )α -3n-2 n-2 -B τ,ψ (p k )α n+2 n-2 ≤ 0,
which is a contradiction.

Sub-and supersolution method

The proof of the existence result relies on the method of sub-and supersolutions. In the proposition below (which was stated and proved in a more general form in [START_REF] Andersson | Solutions of the constraint equations in general relativity satisfying 'hyperboloidal boundary conditions[END_REF]) we recall how to construct sub-and supersolutions on asymptotically hyperbolic manifolds. Proposition 5.1. [START_REF] Andersson | Solutions of the constraint equations in general relativity satisfying 'hyperboloidal boundary conditions[END_REF] Let (M, h) be an asymptotically hyperbolic manifold. Consider the equation

(11) ∆ h u + F (x, u) = 0
for a scalar function u on M . Suppose that (i) There exist constants C + ≥ 1 and C -≤ 1 such that for any x ∈ M we have F (x, C + ) ≤ 0 and F (x, C -) ≥ 0.

(ii) There exist a constant C > 0 and 0 < δ < n -1 such that for 0 < ρ < ρ 0 we have

if 1 ≤ u ≤ C + then F (x, u) ≤ Cρ δ ; if C -≤ u ≤ 1 then F (x, u) ≥ -Cρ δ .
Then there exists a constant B > 0 such that u + = min{1 + Bρ δ , C + } and u -= max{1 -Bρ δ , C -} are respectively a supersolution and a subsolution of the equation ( 11), i.e.

∆ h u + + F (x, u + ) ≤ 0 and ∆ h u -+ F (x, u -) ≥ 0. Proof. A computation shows that (12) ∆ h ρ δ = δ(1 -n + δ)ρ δ |∇ g ρ| 2 g + δρ δ+1 ∆ g ρ,
which means that there exists C 1 > 0 and

ρ 1 > 0 such that ∆ h ρ δ ≤ -C 1 ρ δ for 0 < ρ < ρ 1 . Let ρ := min{ρ 0 , ρ 1 }.
We construct a constant B + > 0 such that u + = min{1 + B + ρ δ , C + } is a supersolution. First, we want u + = C + for all ρ ≥ ρ , and therefore we require

B + ≥ C + -1 (ρ ) δ . Second, if u + = C + then it is clearly a supersolution.
Now it remains to ensure that ∆ h u + + F (x, u + ) ≤ 0 on that part of {0 < ρ < ρ } where u + = 1 + B + ρ δ . But for 0 < ρ < ρ we have

∆ h u + + F (x, u + ) ≤ (-B + C 1 + C)ρ δ .
Consequently, the constant

B + = max{ C C 1 , C + -1 (ρ ) δ } satisfies our needs. The constant B -such that u -= max{1 + B -ρ δ , C -} is a subsolution is constructed similarly. Finally, we set B := max{B + , B -}.
Next statement is a sub-and supersolution theorem for asymptotically hyperbolic manifolds. Theorem 5.2. Let (M, h) be an asymptotically hyperbolic manifold and suppose that F : M × (0, +∞) → R is smooth in both arguments. Assume that there exist continuous functions u -and u + in W 1,2 loc (M ) such that 0 < u -< u + < C and u -and u + are respectively a weak subsolution and a weak supersolution of [START_REF] Foures-Bruhat | Théorème d'existence pour certains systèmes d'équations aux dérivées partialles non linéaries[END_REF]. Then there exists a smooth solution u of ( 11) on M such that u -≤ u ≤ u + . Remark 5.3. If F : M × [0, +∞) → R is smooth in both arguments, then u -= 0 can also be used as a subsolution.

Proof. The proof is standard, cf. [3, Proposition 2.1].
To construct a solution of (11) on M , suppose that

M = ∞ k=1 Ω k ,
where Ω k are open and bounded with C 1 boundary and Ω k ⊂ Ω k+1 . It is easy to check that maximum principle holds for functions in W 1,2 (Ω k ) ∩ C(Ω k ), therefore the monotone iteration scheme [16, Theorem 2.3.1] can be applied to produce a W 2,p solution u k such that u -≤ u k ≤ u + on Ω k . Let us consider the sequence {u k } k>3 on Ω 3 . By construction, for x ∈ Ω 3 and k ≥ 4, using local Schauder estimates we find that

u k W 2,p (Ω 2 ) ≤ C F (•, u k (•)) L p (Ω 3 ) + C u k L p (Ω 3 ) < C,
where the generic constant C does not depend on k and p ≥ 1 is arbitrary. Suppose that p > n. Then it follows from the Sobolev embedding theorem that u k C 0,γ (Ω 2 ) ≤ C. We apply interior elliptic estimates, and deduce that

u k C 2,γ (Ω 1 ) ≤ C F (•, u k (•)) C 0,γ (Ω 2 ) + C u k C 0,γ (Ω 2 ) < C uniformly in k. Since C 2,γ (Ω 1 ) ⊂⊂ C 2 (Ω 1 )
, we finally deduce that {u k } has a subsequence {u k i } which converges to a solution of [START_REF] Foures-Bruhat | Théorème d'existence pour certains systèmes d'équations aux dérivées partialles non linéaries[END_REF] on Ω 1 .

We set u 1 i := u k i . We repeat this procedure with {u 1 k } on Ω 4 to obtain a subsequence {u 1 k i } which converges to a solution of (11) on Ω 2 . Set u 2 i := u 1 k i . Proceeding by induction for every j we can construct a subsequence {u j k i } converging to a solution of [START_REF] Foures-Bruhat | Théorème d'existence pour certains systèmes d'équations aux dérivées partialles non linéaries[END_REF] on Ω j+1 . Then a diagonal subsequence {u j k j } converges to a C 2 solution u of (11) on M . Further regularity of u follows by induction and bootstrap argument.

Existence

In this section we prove the existence part of Theorem 3.3. For the sake of convenience, we state this result in the following form. Proposition 6.1. If B τ,ψ is positive and is bounded from above, and if for some 0 < δ < n -1 we have A h,W,π ∈ C 0 δ and R h,ψ + B τ,ψ ∈ C 0 δ , then the Einstein-scalar field Lichnerowicz equation ( 6) admits a positive smooth solution φ such that φ -1 ∈ C 0 δ . Note that the assumption (10) on V implies B τ,ψ > 0, that V is bounded from below yields that B τ,ψ is bounded from above, and that from (8) it follows that R h,ψ + B τ,ψ ∈ C 0 δ . Moreover, the assumption ( 9) is exactly that

A h,W,π ∈ C 0 δ .
Proof. We first apply Proposition 5.1 with

F (x, u) := -R h,ψ u + A h,W,π u -3n-2 n-2 -B τ,ψ u n+2 n-2
in order to construct sub-and supersolutions of [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF].

It is readily checked that F (x, C -) ≥ 0 is satisfied provided that C 4 n-2 - ≤ inf(-R h,ψ ) sup B τ,ψ . It is also easy to see that lim u→+∞ sup x F (x, u) = -∞, hence there exists C + ≥ 1 such that F (x, C + ) ≤ 0. Moreover, if 1 ≤ u ≤ C + then F (x, u) ≤ -u(R h,ψ + B τ,ψ ) + A h,W,π ≤ Cρ δ ,
by our assumptions on A h,W,π , R h,ψ and B τ,ψ . Similarly, for

C -≤ u ≤ 1 we have F (x, u) ≥ -u(R h,ψ + B τ,ψ ) + A h,W,π ≥ -Cρ δ .
By Proposition 5.1 there exists a constant B > 0 such that u + = min{1 + Bρ δ , C + } and u -= max{1 -Bρ δ , C -} are respectively a supersolution and a subsolution of [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF]. Since u + , u -and F satisfy the conditions of Theorem 5.2 we deduce that there exists a smooth positive solution u of ( 6) such that u -1 ∈ C 0 δ .

Partial result

When B τ,ψ ≥ 0 is not strictly positive, Proposition 5.1 no longer applies, since the constant C + might not exist. The theorem below is aimed at facilitating the analysis of solvability of the Einstein-scalar field Lichnerowicz equation in this case. Namely, it shows that the situation when A h,W,π ≡ 0 can be reduced to the case A h,W,π ≡ 0, when the problem is that of prescribed R h,ψ . since ξ ≡ 0, and from the Hopf strong maximum principle it follows that v is nonnegative. Since f is nonnegative, it is clear that u + := v can be used as a supersolution.

The application of Theorem 5.2 completes the proof.

Assume that (iii) holds, that is, that there exists a smooth positive φ 1

such that φ 1 -1 ∈ C 0 δ and h := φ 4 n-2 1 h satisfies (14) R e h, e ψ = -B τ,ψ .
To show that (i) holds we will follow the argument from the proof of Proposition 3 in [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF], which is based on a method presented by Maxwell in [START_REF] Maxwell | Rough solutions of the Einstein constraint equations[END_REF].

Since we have already shown that (ii) and (iii) are equivalent, it can be assumed that A h,W,π ≡ 0 and that

(15) ∆ h φ 1 -R h,ψ φ 1 -B τ,ψ φ n+2 n-2 1 = 0.
Note that from (iii) and the fact that R h,ψ + B τ,ψ ∈ C 0 δ it can be deduced that φ 1 ∈ C 0,γ 0 for some 0 < γ < 1. Indeed, we know that φ 1 = 1 + w where w ∈ C 0 δ . It is obvious that w satisfies

∆ h w = φ 1 (R h,ψ + B τ,ψ φ 4 n-2 1 ). Observe that φ 1 (R h,ψ + B τ,ψ φ 4 n-2 1 ) = φ 1 (R h,ψ + B τ,ψ + O(ρ δ )) is in C 0 δ
, hence in W 0,p δ for p sufficiently large, where 0 < δ < δ -n-1 p . It will be assumed that p > n. Since 0 < δ + n-1 p < δ < n -1, we deduce by Theorem C and Theorem F in [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF] that w ∈ W 2,p δ , hence w ∈ C 1,γ δ for some 0 < γ < 1. Finally, w ∈ C 0,γ 0 and the same holds for φ 1 = 1 + w.

Recall that φ 1 is bounded away from zero, thus A e h, f W ,e π = φ

-4n n-2 1 A h,W,π ∈ C λ
δ for λ := min{α, γ}. Since both B τ,ψ and A e h, f W ,e π are nonnegative, it follows from Lemma 7.2 that the equation

-∆ e h θ + B τ,ψ θ = A e h, f
W ,e π has a nonnegative smooth solution θ ∈ C 0 δ . Hence φ 2 = 1 + θ solves the equation ( 16)

-∆ e h φ 2 + B τ,ψ φ 2 = A e h, f W ,e π + B τ,ψ .

Set h := φ 4 n-2 2 h. Using ( 14) and ( 16), we compute

R b h, b ψ = n -2 4(n -1) (R b h -|∇ b h ψ| 2 b h ) = φ -n+2 n-2 2 (-∆ e h φ 2 + R e h, e ψ φ 2 ) = φ -n+2 n-2 2 (-∆ e h φ 2 -B τ,ψ φ 2 ) = φ -n+2 n-2 2 (A e h, f W ,e π + B τ,ψ (1 -2φ 2 )) = A b h, c W ,b π φ 3n-2 n-2 2 + B τ,ψ (φ -n+2 n-2 2 -2φ -4 n-2 2 
), and the Einstein-scalar field Lichnerowicz equation with respect to the conformally transformed background data ( h, σ, τ , ψ, π) becomes

∆ b h φ + A b h, c W ,b π (φ -3n-2 n-2 -φ 3n-2 n-2 2 
φ) + B τ,ψ (2φ

-4 n-2 2 φ -φ -n+2 n-2 2 φ -φ n+2 n-2 ) = 0.
It is checked straightforwardly that

F (x, u) := A b h, c W ,b π (u -3n-2 n-2 -φ 3n-2 n-2 2 
u) + B τ,ψ (2φ

-4 n-2 2 u -φ -n+2 n-2 2 u -u n+2 n-2 )
satisfies the conditions of Proposition 5.1. Indeed, one easily verifies that C + ≥ 2 since φ 2 = 1 + θ ≥ 1, and θ ∈ C 0 δ . This implies that F (x, u) ≤ Cρ δ for 1 ≤ u ≤ C + , and it is similarly checked that F (x, u) ≥ -Cρ δ for C -≤ u ≤ 1.

By Proposition 5.1 the sub-and supersolutions are now constructed, and it only remains to apply Theorem 5.2 to complete the proof.

The uniqueness

In this final section we prove that if the solution of the Einstein-scalar field Lichnerowicz equation ( 6) with the boundary condition [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF] exists, then it is unique. By this we, in particular, complete the proof of Theorem 3.3.

Assume that φ 1 and φ 2 are two positive solutions to the boundary value problem ( 6)- [START_REF] Choquet-Bruhat | The Einstein-scalar field constraints on asymptotically Euclidean manifolds[END_REF]. By the conformal covariance, 1 = φ 2 φ -1 2 and φ := φ 1 φ -1 

n-2 4 and C -≤ inf φ - 1 2satisfyF 2 θ

 412 (x, C + ) ≤ 0 and F (x, C -) ≥ 0 respectively. Moreover, if 1 ≤ u ≤ C + then u -≤ Cρ δ .
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  are then solutions to the equation∆ e h φ -R e h, e ψ φ + A e h, f W ,e π φ -3n-2 n-2 -B τ,ψ φ n+2 n-2 = 0with respect to the conformally transformed metric h := φR e h, e ψ = A e h, f W ,e π -B τ,ψ and φ satisfies (17) ∆ e h φ -(A e h, f W ,e π -B τ,ψ )φ + A e h, f W ,e π φ -3n-2 n-2 -B τ,ψ φ If α is achieved at p ∈ M then (18) -(A e h, f W ,e π (p) -B τ,ψ (p))α + A e h, f W ,e π (p)α -3n-2 n-2 -B τ,ψ (p)α n+2 n-2 ≤ 0,which is impossible in the case α < 1. If α is not attained in M , then the same conclusion can be drawn from Theorem 2.2. Thus inf M φ ≥ 1. A similar argument shows that sup M φ ≤ 1, and φ 1 = φ 2 follows.
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Theorem 7.1. If the coefficients of the Einstein-scalar field Lichnerowicz equation [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF] are such that B τ,ψ is nonnegative and is bounded from above, A h,W,π ∈ C α δ and B τ,ψ + R h,ψ ∈ C 0 δ then the following statements are equivalent (i) The Einstein-scalar field Lichnerowicz equation ( 6) admits a smooth positive solution φ such that φ -1 ∈ C 0 δ . (ii) The Einstein-scalar field Lichnerowicz equation [START_REF] Choquet-Bruhat | The constraint equations for the Einstein-scalar field system on compact manifolds[END_REF] with A h,W,π ≡ 0 admits a smooth positive solution φ such that φ -1 ∈ C 0 δ . (iii) There exists a smooth positive φ such that φ-1 ∈ C 0 δ and h :=

It is obvious from this formula that (ii) and (iii) are equivalent. Suppose that (i) holds. Since A h,W,π ≥ 0, the solution of ( 6) is also a supersolution of (6) with A h,W,π ≡ 0, and from now on it will be denoted by φ + . Note that there exists

The respective subsolution φ -is easily constructed by Proposition 5.1. Namely, if B τ,ψ ≡ 0, we pick a constant C -so that C -≤ min φ + , and if B τ,ψ ≡ 0, we choose

, min φ + .

It is also easy to check that if C -≤ u ≤ 1 then -R h,ψ u -B τ,ψ u n+2 n-2 ≥ -Cρ δ . By Proposition 5.1 we deduce that there exists B > 0 such that φ -= max{C -, 1 -Bρ δ } is a subsolution. However, note that we might need to increase B in order to ensure that φ -≤ 1 -Bρ δ ≤ 1 -C 0 ρ δ ≤ φ + . Applying Theorem 5.2, we deduce that (ii) holds.

The proof will be completed if we show that (iii) implies (i). The following supplementary lemma will be required. Lemma 7.2. Suppose that smooth functions f and ξ ≡ 0 are nonnegative, and, moreover, that ξ ∈ C α δ for some 0 < δ < n -1 and 0 < α < 1. Then the equation [START_REF] Maxwell | Rough solutions of the Einstein constraint equations[END_REF] -∆ h u + fu = ξ has a nonnegative smooth solution u ∈ C 0 δ . Proof. The proof is again based on sub-and supersolution method. It is clear that u -= 0 can be used as a subsolution, thus it remains to construct a supersolution.

Since the L 2 kernel of ∆ h is zero, by Theorem C and Theorem F in [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF], we see that there exists a solution v ∈ C 2,α δ of the equation -∆ h v = ξ provided that 0 < δ < n -1 and 0 < α < 1. Moreover, v is not constant