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Abstract

We consider the problem of two chemical species, A and B, undergoing an annihilation process

A+B! B, on generic discrete inhomogeneous structures, such as disordered solids, glasses, fractals,

polymer networks and gels. Two particular cases are analysed: in the �st one A is immobile and

B is di¤using (target decay process), in the second one A is di¤using and B is immobile (trapping

process). The survival probability of A is analytically calculated in the limit of large times, showing

that, while for the target decay it is related to the spectral dimension ed of the structure, for the
trapping problem it depends, in general, on a di¤erent anomalous dimension, we call the exploration

dimension.

PACS numbers: 82.33.-z, 82.39.Rt, 05.40.-a
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I. INTRODUCTION

Di¤usion limited reactions are deeply a¤ected by geometry and topology. This phenom-

enon can be easily evidenced using the random walk model, where the chemical species are

described by random walkers di¤using on a given structure [1, 2]. On regular lattices and on

homogeneous structures (i.e. on structures where all sites are topologically equivalent), it is

possible to prove simple analytical relations between survival probabilities and basic random

walks functions, making explicit the dependence on universal geometrical parameters such

as spatial dimension. The case of irregular structures is more complex, due to the absence of

symmetries allowing for a reduction of the degrees of freedom involved in analytical calcula-

tions. Therefore, in general, it is not possible to relate time decays and survival probabilities

to simple geometrical parameters characterizing the underlying structures.

In this paper, we analyze two typical cases of di¤usion limited annihilation reactions,

where the chemical species A disappears when it meets the chemical species B: A+B ! B.

In the �rst case, the A species is immobile, and it acts as a target for the moving traps

B. This case is known as the target reaction [3].

In the second case the opposite happens: A is moving and it is trapped when it reaches

a site where a species B (trap) is present. This is the case of the trapping reaction [4].

Even if at a �rst sight the two cases appear rather similar, they cannot be reduced to

each other, even on the simplest geometrical structures. Indeed, while the target problem

can be analytically solved, on regular lattices and homogeneous structures [3, 5], the trap-

ping problem requires some important mathematical approximations. However, on these

particular structures, the asymptotic behaviour of survival probabilities can be expressed

in terms of the fundamental quantity S(t), the mean number of distinct sites visited by a

random walk after time t, giving rise to similar decay laws.

This is not the case for inhomogeneous structures, where, as we will show in the following,

the two asymptotic behaviours can be very di¤erent.

II. BASIC DEFINITIONS
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Let us begin by introducing some basic de�nitions concerning graphs and random walks

[6]:

A graph G is a countable set V of vertices (or sites) (i) connected pairwise by a set E of
unoriented links (or bonds) (i; j) = (j; i).

The graph topology can be algebraically represented introducing its adjacency matrix Aij

given by:

Aij =

8<: 1 if (i; j) 2 E
0 if (i; j) 62 E

(1)

and the coordination number of site i; which is the number of nearest neighbors of i, is given

by zi =
P

j Aij.

The discrete time simple random walk on a graph G is de�ned by assuming that at

each time step t the walker can only jump to a nearest neighbor site, and that all nearest

neighbor sites can be reached with the same probability. Therefore, we can de�ne the

jumping probabilities pij between sites i and j by

pij =
Aij
zi
= (Z�1A)ij (2)

where Zij = zi�ij.

Now we introduce the functions Pij(t), each representing the probability of being in site

j at time t for a walker starting from site i at time 0, and the �rst passage probabilities

Fij(t), each representing, for j 6= i, the conditional probability for a walker starting from i

of reaching for the �rst time the site j in t steps, and, for i = j , the probability of returning

to the starting point i for the �rst time after t steps (Fii(0) = 0).

The fundamental relation between the Pij(t) and the Fij(t) is given by

Pij(t) =
tX

k=0

Fij(k)Pjj(t� k) + �ij�t0: (3)

Introducing the generating functions ~Pij(�) and ~Fij(�) by the de�nition

~f(�) =
1X
t=0

�tf(t) (4)

from eq.(3) we obtain the simpler relation

~Pij(�) = ~Fij(�) ~Pjj(�) + �ij (5)

3
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which will be useful in the proof of our main results.

On in�nite graphs, representing real systems in the thermodynamic limit, Pii(t) vanishes

for t!1: If the graph can be embedded in a �nite dimensional Euclidean space, and

if the coordination numbers are bounded, i.e. if 9 zmax j zi � zmax8i 2 V; then Pii(t)
vanishes typically as a power law, whose exponent allows to de�ne the so called (local)

spectral dimension ed, which is the natural generalization of the Euclidean dimension for
dynamic processes [6]:

Pii(t) � pit�
ed=2 for t!1 8i 2 G (6)

with ed � 1, where pi � p0 zi (i.e. it depends only on the coordination number of i) ifed � 2: For ed � 2, ~Fij(1) = 1; i.e., the probability of ever reaching any site starting from any
site is 1, and the graph is called recurrent. For ed > 2, ~Fij(1) < 1;and the graph is called

transient.

III. THE TARGET DECAY PROBLEM

Now we can de�ne the target decay problem on an in�nite graph, following the formalism

introduced in [7].

For more technical details on this subject, see [8], where the problem was �rst analyzed.

Since each target decays independently of the other ones, we can study the decay of a

single target without loss of generality. Let us suppose a target molecule A is placed at site

k, while, at time t = 0, the B molecules are randomly and independently distributed over

the other sites, with average site occupation number q. The occupation number distribution

at each sites turns out to be Poissonian, and the probability p(n) of �nding exactly n B

molecules at a given site is p(n) = qne�q

n!
:For t > 0; the B molecules are moving randomly

and independently according to the jumping probabilities (2), and the target A is annihilated

when it is reached by one of them. Under these hypotheses, it has been shown [7] that the

survival probability �k(t) of target A at time t is given by

�k(t) = e
�q�k(t) (7)

4
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where

�k(t) =
X
i6=k

tX
�=0

Fik(�) (8)

Now, on homogeneous graphs, Fik(t) = Fki(t), and, due to this symmetry, �k(t) =

S(t) � 1, where S(t) is the number of distinct sites visited by a walker after t steps (on
homogeneous graphs it is independent of the starting site k). This result gives rise to

the well known results obtained on d-dimensional Euclidean lattices, where, for t ! 1,
�k(t) �

p
t for d = 1, �k(t) � t= ln t for d = 2; and �k(t) � t for d � 3 [3].

On inhomogeneous graphs, Fik(t) 6= Fki(t), and the simple relation mentioned above no
longer holds, giving rise to a more complex behavior [7].

Let us proceed to the calculation of the asymptotic behavior of �k(t) by introducing its

generating function:

e�k(�) = 1X
t=0

�t�k(t) =
1

1� �
X
i6=k

~Fik(�) (9)

From (3), for i 6= k; we get [6] ~Fik(�) =
~Pik(�)
~Pkk(�)

= zk
zi

~Pki(�)
~Pkk(�)

, therefore zk
zmax

~Pki(�)
~Pkk(�)

� ~Fik(�) �
zk
zmin

~Pki(�)
~Pkk(�)

where zmin � 1 is the minimum coordination number.

Moreover, since
P

i Pki(t) = 1 for every t, we have that
P

i6=k
~Pki(�) = (1��)�1� ~Pkk(�):

Therefore

zk
zmax

�
1

(1� �)2 ~Pkk(�)
� 1

1� �

�
� e�k(�) � zk

zmin

�
1

(1� �)2 ~Pkk(�)
� 1

1� �

�
(10)

Now we can proceed to the singularity analysis of e�k(�) in order to obtain the asymptotic
behavior of �k(t) by applying Tauberian theorems [9]. After some mathematics [8] , we get

the �nal result

�k(t) !
t!1

8>>>><>>>>:
sin
�
�
ed
2

�
zp0 �

ed
2

t
ed
2 for ed < 2

1
zp0

t
log t

for ed = 2
zk

zk ePkk (1) t for ed > 2
(11)
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where 1
zk
� lim

�!1�
(1 � �)

P
i

ePki(�) 1zi = lim
�!1�

P
i

ePki(�) 1zi=P
i

ePki(�), with zmin � zk � zmax,

is the weighted average of the inverse coordination numbers 1=zi, with weights ePki(�), for
�! 1�. Notice that the hypothesis of boundedness of zi could be replaced with the weaker

condition zk <1; leaving our results unchanged. On recurrent graphs, since lim
�!1�

~Pki(�)
~Phi(�)

= 1,

uniformly in i, zk turns out to be site independent: zk = z.

Notice that, if the graph is homogeneous, we exactly recover the usual asymptotic form

of S(t): this happens not only for Euclidean lattices [3], but also for regular ultrametric

spaces [5], and for Bethe lattices, for which the spectral dimension turns out to be in�nite

[10]. In other cases, such as fractal structures, even if �k(t) is di¤erent from Sk(t), it turns

out to have the same t dependence for t!1:

IV. THE TRAPPING PROBLEM

The trapping problem is de�ned considering the trap molecules B immobile, and randomly

and independently distributed over the other sites, with average site occupation number p,

while the target molecule A is randomly moving on the graph, starting from a randomly

chosen point i at time t = 0.

The survival probability of A is given by [4]

�(t) =


(1� p)Ni(t)�1

�
(12)

where Ni(t) is the number of distinct sites visited in t steps by a walker starting from i in a

given walk, and the average is over all possible walks and over all possible starting points i:

For small p, a �rst order development can be introduce, known as the Rosentock�s ap-

proximation [11] :

�(t) = exp(k � kS(t)) (13)

where k � � ln(1� p) and S(t) � hNi(t)i is the average number of distinct sites visited
by a random walker (the average is, as above, also over all possible starting points).
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As one can easily verify, on homogeneous graphs equation (13) coincides with (7) for

k = q, suggesting a kind of similarity between the two processes.

However, this is not the case for inhomogeneous structures and we are going to show that

the asymptotic behaviour of S(t) turns out to be, in general, di¤erent from the asymptotic

behaviour of �k(t) described in (11).

Now, S(t) can be expressed in terms of Fij(t) by

S(t) =

*
1 +

X
j

tX
�=0

Fij(�)

+
(14)

where the average is over all possible starting sites i.

Introducing the generating functions and using (5), we get

DeS(�)E = 1

1� � +
1

(1� �)2

*X
j

~Fij(�)

+
=

1

1� � +
1

(1� �)2

 *X
j

ePij(�)ePjj(�)
+
� 1
!

(15)

Now,

*X
j

ePij(�)ePjj(�)
+
=

*X
j

zi
zj

ePij(�)ePii(�)
+

(16)

therefore

zmin
zmax

1

1� �

*
1ePii(�)

+
�
*X

j

~Fij(�)

+
+ 1 � zmax

zmin

1

1� �

*
1ePii(�)

+
(17)

and

zmin
zmax

 
1

(1� �)2

*
1ePii(�)

+
� 1

1� �

!
�
DeS(�)E � zmax

zmin

 
1

(1� �)2

*
1ePii(�)

+
� 1

1� �

!
(18)

Even if (18) looks very similar to (10), the presence of the average over all sites can give

rise to dramatic di¤erences between the asymptotic behaviours of �k(t) and S(t): Indeed,

on inhomogeneous lattices, in general we can have

7
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sing

*
1ePii(�)

+
� sing

1ePii(�)

since

sing

*
1ePii(�)

+
� (1� �)

���DE2 �1
��� (19)

where DE is the exploration dimension of the graph, and is de�ned according to the

singular behaviour of
D

1ePii(�)
E
by

sing

*
1ePii(�)

+
�

8><>:
(1� �)1�

DE
2 if lim

�!1�

D
1ePii(�)
E
= 0

(1� �)
DE
2
�1if lim

�!1�

D
1ePii(�)
E
> 0

(20)

On lattices DE = d; but on inhomogeneous graphs it, can be di¤erent from ed [12]. It can
be shown [12] that DE determines the long times asymptotic behaviour of hFii(t)i according
to hFii(t)i � t�

���DE2 �1
����1
:

Finally, from (19), we get

hS(t)i �
t!1

8>>><>>>:
t
DE
2 for DE < 2

t
log t

for DE = 2

t for DE > 2

(21)

which exhibits a di¤erent behaviour from (11) whenever DE 6= ed and at least one of the
two dimensions is < 2.
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V. CONCLUSIONS

We have shown that the target decay problem and the trapping problem in the Rosen-

tock�s approximation, which have the same asymptotic behaviour on homogeneous lattices,

can exhibit very di¤erent decay laws on inhomogeneous structures, since the former depend

on the spectral dimension, while the latter depend on the exploration dimension. However,

the decay laws have the same asymptotic behaviour even when DE 6= ed, provided they are
both > 2, suggesting the recovery of a kind of universality in dimensions higher than 2,

even if it is interesting to notice that almost all experimental determinations of spectral

dimension for real systems, up to now have given the result ed < 2:
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