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Trapping and reaction on inhomogeneous structues

Di¤usion limited reactions are deeply a¤ected by geometry and topology. This phenomenon can be easily evidenced using the random walk model, where the chemical species are described by random walkers di¤using on a given structure [START_REF] Weiss | Aspects and Applications of the Random Walks[END_REF][START_REF] Ben-Avraham | Di¤ usion and Reactions in Fractals and Disordered Systems[END_REF]. On regular lattices and on homogeneous structures (i.e. on structures where all sites are topologically equivalent), it is possible to prove simple analytical relations between survival probabilities and basic random walks functions, making explicit the dependence on universal geometrical parameters such as spatial dimension. The case of irregular structures is more complex, due to the absence of symmetries allowing for a reduction of the degrees of freedom involved in analytical calculations. Therefore, in general, it is not possible to relate time decays and survival probabilities to simple geometrical parameters characterizing the underlying structures.

In this paper, we analyze two typical cases of di¤usion limited annihilation reactions, where the chemical species A disappears when it meets the chemical species B: A+B ! B.

In the …rst case, the A species is immobile, and it acts as a target for the moving traps B. This case is known as the target reaction [START_REF] Blumen | [END_REF].

In the second case the opposite happens: A is moving and it is trapped when it reaches a site where a species B (trap) is present. This is the case of the trapping reaction [4].

Even if at a …rst sight the two cases appear rather similar, they cannot be reduced to each other, even on the simplest geometrical structures. Indeed, while the target problem can be analytically solved, on regular lattices and homogeneous structures [START_REF] Blumen | [END_REF]5], the trapping problem requires some important mathematical approximations. However, on these particular structures, the asymptotic behaviour of survival probabilities can be expressed in terms of the fundamental quantity S(t), the mean number of distinct sites visited by a random walk after time t, giving rise to similar decay laws. This is not the case for inhomogeneous structures, where, as we will show in the following, the two asymptotic behaviours can be very di¤erent. Let us begin by introducing some basic de…nitions concerning graphs and random walks [6]:

II. BASIC DEFINITIONS

A graph G is a countable set V of vertices (or sites) (i) connected pairwise by a set E of unoriented links (or bonds) (i; j) = (j; i).

The graph topology can be algebraically represented introducing its adjacency matrix A ij given by:

A ij = 8 < : 1 if (i; j) 2 E 0 if (i; j) 6 2 E (1)
and the coordination number of site i; which is the number of nearest neighbors of i, is given by z i = P j A ij . The discrete time simple random walk on a graph G is de…ned by assuming that at each time step t the walker can only jump to a nearest neighbor site, and that all nearest neighbor sites can be reached with the same probability. Therefore, we can de…ne the jumping probabilities p ij between sites i and j by

p ij = A ij z i = (Z 1 A) ij (2) 
where

Z ij = z i ij .
Now we introduce the functions P ij (t), each representing the probability of being in site j at time t for a walker starting from site i at time 0, and the …rst passage probabilities F ij (t), each representing, for j 6 = i, the conditional probability for a walker starting from i of reaching for the …rst time the site j in t steps, and, for i = j , the probability of returning to the starting point i for the …rst time after t steps (F ii (0) = 0).

The fundamental relation between the P ij (t) and the F ij (t) is given by

P ij (t) = t X k=0 F ij (k)P jj (t k) + ij t0 : (3) 
Introducing the generating functions Pij ( ) and Fij ( ) by the de…nition

f ( ) = 1 X t=0 t f (t) (4) 
from eq.( 3) we obtain the simpler relation which will be useful in the proof of our main results.

Pij ( ) = Fij ( ) Pjj ( ) + ij (5) 
On in…nite graphs, representing real systems in the thermodynamic limit, P ii (t) vanishes for t ! 1: If the graph can be embedded in a …nite dimensional Euclidean space, and if the coordination numbers are bounded, i.e. if 9 z max j z i z max 8i 2 V; then P ii (t) vanishes typically as a power law, whose exponent allows to de…ne the so called (local)

spectral dimension e d, which is the natural generalization of the Euclidean dimension for dynamic processes [6]: 

P ii (t

III. THE TARGET DECAY PROBLEM

Now we can de…ne the target decay problem on an in…nite graph, following the formalism introduced in [7].

For more technical details on this subject, see [8], where the problem was …rst analyzed.

Since each target decays independently of the other ones, we can study the decay of a single target without loss of generality. Let us suppose a target molecule A is placed at site k, while, at time t = 0, the B molecules are randomly and independently distributed over the other sites, with average site occupation number q. The occupation number distribution at each sites turns out to be Poissonian, and the probability p(n) of …nding exactly n B molecules at a given site is p(n) = q n e q n! :For t > 0; the B molecules are moving randomly and independently according to the jumping probabilities (2), and the target A is annihilated when it is reached by one of them. Under these hypotheses, it has been shown [7] that the survival probability k (t) of target A at time t is given by where On inhomogeneous graphs, F ik (t) 6 = F ki (t), and the simple relation mentioned above no longer holds, giving rise to a more complex behavior [7].

k (t) = e q k (t) (7) 
k (t) = X i6 =k t X =0 F ik ( ) (8) 
Let us proceed to the calculation of the asymptotic behavior of k (t) by introducing its generating function:

e k ( ) = 1 X t=0 t k (t) = 1 1 X i6 =k Fik ( ) (9) 
From ( 3), for i 6 = k; we get [6] 

Fik ( ) = Pik ( ) Pkk ( ) = z k z i Pki ( ) Pkk ( ) , therefore z k zmax Pki ( ) Pkk ( )
Fik ( )

z k z min Pki ( )
Pkk ( ) where z min 1 is the minimum coordination number. Moreover, since P i P ki (t) = 1 for every t, we have that

P i6 =k Pki ( ) = (1 ) 1 Pkk ( ):
Therefore

z k z max 1 (1 ) 2 Pkk ( ) 1 1 e k ( ) z k z min 1 (1 ) 2 Pkk ( ) 1 1 (10) 
Now we can proceed to the singularity analysis of e k ( ) in order to obtain the asymptotic behavior of k (t) by applying Tauberian theorems [START_REF] Ph | Analytic Combinatorics[END_REF]. After some mathematics [8] , we get the …nal result Pki ( ) Phi ( ) = 1, uniformly in i, z k turns out to be site independent:

k (t) ! t!1 8 > > > > < > >
z k = z.
Notice that, if the graph is homogeneous, we exactly recover the usual asymptotic form of S(t): this happens not only for Euclidean lattices [START_REF] Blumen | [END_REF], but also for regular ultrametric spaces [5], and for Bethe lattices, for which the spectral dimension turns out to be in…nite [START_REF] Cassi | [END_REF]. In other cases, such as fractal structures, even if k (t) is di¤erent from S k (t), it turns out to have the same t dependence for t ! 1:

IV. THE TRAPPING PROBLEM

The trapping problem is de…ned considering the trap molecules B immobile, and randomly and independently distributed over the other sites, with average site occupation number p, while the target molecule A is randomly moving on the graph, starting from a randomly chosen point i at time t = 0.

The survival probability of A is given by [4] 

(t) = (1 p) N i (t) 1 (12) 
where N i (t) is the number of distinct sites visited in t steps by a walker starting from i in a given walk, and the average is over all possible walks and over all possible starting points i:

For small p, a …rst order development can be introduce, known as the Rosentock's approximation [11] :

(t) = exp(k kS(t)) (13) 
where k ln(1 p) and S(t) hN i (t)i is the average number of distinct sites visited by a random walker (the average is, as above, also over all possible starting points). As one can easily verify, on homogeneous graphs equation (13) coincides with (7) for k = q, suggesting a kind of similarity between the two processes.

However, this is not the case for inhomogeneous structures and we are going to show that the asymptotic behaviour of S(t) turns out to be, in general, di¤erent from the asymptotic behaviour of k (t) described in (11). Now, S(t) can be expressed in terms of F ij (t) by

S(t) = * 1 + X j t X =0 F ij ( ) + ( 14 
)
where the average is over all possible starting sites i.

Introducing the generating functions and using (5), we get D e S( ) (1

E = 1 1 + 1 (1 ) 2 * X j Fij ( ) + = 1 1 + 1 (1 ) 2 * 
) 1 D E 2 if lim !1 D 1 e P ii ( ) E = 0 (1 ) D E 2 1 if lim !1 D 1 e P ii ( ) E > 0 (20) 
On lattices D E = d; but on inhomogeneous graphs it, can be di¤erent from e d [12]. It can be shown [12] that D E determines the long times asymptotic behaviour of hF ii (t)i according to hF ii (t)i t We have shown that the target decay problem and the trapping problem in the Rosentock's approximation, which have the same asymptotic behaviour on homogeneous lattices, can exhibit very di¤erent decay laws on inhomogeneous structures, since the former depend on the spectral dimension, while the latter depend on the exploration dimension. However, the decay laws have the same asymptotic behaviour even when D E 6 = e d, provided they are both > 2, suggesting the recovery of a kind of universality in dimensions higher than 2, even if it is interesting to notice that almost all experimental determinations of spectral dimension for real systems, up to now have given the result e d < 2:

  ) p i t

			e d=2	for t ! 1 8i 2 G	(6)
	with e d	1, where p i	p 0 z

i (i.e. it depends only on the coordination number of i) if e d 2: For e d 2, Fij (1) = 1; i.e., the probability of ever reaching any site starting from any site is 1, and the graph is called recurrent. For e d > 2, Fij (1) < 1;and the graph is called transient.

  Now, on homogeneous graphs, F ik (t) = F ki (t), and, due to this symmetry, k (t) = S(t) 1, where S(t) is the number of distinct sites visited by a walker after t steps (on homogeneous graphs it is independent of the starting site k). This result gives rise to the well known results obtained on d-dimensional Euclidean lattices, where, for t ! 1,

k (t) p t for d = 1, k (t) t= ln t for d = 2; and k (t) t for d 3 [3].

  the weighted average of the inverse coordination numbers 1=z i , with weights e P ki ( ), for ! 1 . Notice that the hypothesis of boundedness of z i could be replaced with the weaker condition z k < 1; leaving our results unchanged. On recurrent graphs, since lim
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	j where D E is the exploration dimension of the graph, and is de…ned according to the e P ij ( ) e + 1 ! (15) P e singular behaviour of D E 1 e P ii ( ) by e r P jj ( ) Now, * X j e P ij ( ) e P jj ( ) + = * X j z i z j e P ij ( ) e P ii ( ) + (16) therefore R w e i v e * + 8 > < 1 sing e P ii ( ) > :
			z min z max	1	1	*	1 P ii ( ) e	+ * X j	Fij ( ) +	+ 1	z max z min O 1 1 n * e P ii ( ) 1	+	(17)
	and z min z max	(1	1	) 2	*	1 P ii ( ) e	+	1	1		! D	e S( ) E z max z min	(1	1	) 2 l e P ii ( ) 1 * y +	1	1	!
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	Even if (18) looks very similar to (10), the presence of the average over all sites can give
	rise to dramatic di¤erences between the asymptotic behaviours of k (t) and S(t): Indeed,
	on inhomogeneous lattices, in general we can have
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